Electromagnetic Scattering by a System of Dielectric Spheres Coated With a Dielectric Shell

A-K. Hamid
Department of Electrical and Computer Engineering
University of Sharjah
P.O. Box 27272, Sharjah, U.A.E
email: akhamid@Sharjah.ac.ae

M. I. Hussein
Department of Electrical Engineering
United Arab Emirates University
P.O. Box 17555, Al-Ain, United Arab Emirates
email: MIHussein@uae.ac.ae

M. Hamid
Department of Electrical Engineering
University of South Alabama
Mobile, AL 36688, U.S.A
email: mhamid@.usouthal.edu

Abstract

Analytical solution is derived to the problem of scattering of electromagnetic plane wave by an array of dielectric spheres each coated with a dielectric shell. The incident, scattered and transmitted electric and magnetic fields are expressed in terms of the vector spherical wave functions. The vector spherical translation addition theorem is applied to impose the boundary conditions on the surface of various layers. Numerical results are computed and presented graphically for the radar cross sections of several configurations of spheres system with multi dielectric layers.

1. Introduction

Many authors have studied the scattering of electromagnetic plane wave by a dielectric sphere coated with a dielectric shell. Aden and Kerker [1] obtained analytical expressions to the scattering of electromagnetic plane wave by a dielectric sphere coated with a concentric spherical shell of different dielectric materials, while Scharfman [2] presented numerical results for the special case of a small electrical radius (ka<1) dielectric coated conducting sphere. It was found in those early studies that the presence of dielectric coatings leads to substantial increase in the backscattering cross section for an appropriate choice of the dielectric constant and thickness of the coating relative to that of uncoated sphere. Further, Wait has extended the solution to the case of scattering by a radially inhomogeneous sphere [3], while a numerical solution using the method of moments obtained by Medgyesi-Mitschang and Putnam for the case of dielectric-coated concentric sphere [4]. More recently, an exact solution of electromagnetic plane wave scattering by an eccentric multilayered sphere was developed by Lim and Lee [5]. Numerous papers on the scattering from systems of spheres of various natures in close proximity have been treated by numerous researchers [6-11].

Up to now, there has been no analytical or numerical solution to the problem of scattering of electromagnetic plane wave by an array of conducting spheres each coated with a dielectric layer. In this paper, we extend the solution of scattering by two dielectric spheres covered with a dielectric shell [9] to the case of scattering by a system of dielectric spheres each covered with a dielectric shell. The solution to this problem has many practical applications since, for example, it may be used to study the scattering by complex objects simulated by a collection of spheres [12], and it may also be used to check the accuracy of numerical solutions.

From the design point of view, the backscattering cross section of an array of N dielectric coated spheres can be controlled to exploit multiple resonances by optimizing the multivariables of the system. These include the size and location of each sphere, number of dielectric layers coating each sphere as well as the thickness and relative dielectric constant of each layer as already done for conducting cylinders [13].

2. Formulation of the Problem

Consider a linear array of N dielectric spheres each coated with a dielectric shell and having different radii and unequal spacing with centers lying along the z axis, as shown in Fig. 1. Electromagnetic plane wave of unit electric field intensity, whose propagation vector \(\vec{K} \) lies in the x-z plane and makes an angle \(\alpha \) with the z-axis, is assumed to be incident on the spheres. Its incident electric and magnetic fields are

\[
\overline{E}_i = e^{j \vec{K} \cdot \vec{r}} \hat{y} \\
\overline{H}_i = -\frac{1}{\eta} e^{j \vec{K} \cdot \vec{r}} (\cos \alpha \hat{x} - \sin \alpha \hat{z})
\]

with \(k \) being the wave number, \(\hat{x}, \hat{y}, \) and \(\hat{z} \) are the unit vectors along the \(x, y \) and \(z \) axes, respectively, and \(\eta \) is the surrounding medium intrinsic impedance. The incident electric and magnetic fields may be expanded in terms of spherical vector wave functions around the center of the \(p^{th} \) sphere as
The scattered electric and magnetic fields of the first and third kinds can be also expressed in terms of the vector spherical wave functions defined in [7-8,14]. The field in the region II where \(\pi q(q) \) is the scattered field coefficients, i.e.

\[
\mathbf{E}^s(r_p,\theta_p,\phi_p) = j\tilde{\mathbf{a}} \sum_{n=1}^{\infty} \left[A_{E_p}(m,n)\mathbf{M}^{(3)}_{mn}(r_p,\theta_p,\phi_p) + A_{M_p}(m,n)\mathbf{N}^{(3)}_{mn}(r_p,\theta_p,\phi_p) \right]
\]

where \(A_{E_p}(m,n), \ A_{M_p}(m,n) \) are the unknown scattered field coefficients. To express the scattered fields from the \(q \)th sphere in the coordinate system of the \(p \)th sphere, we apply the spherical vector translation addition theorem for translation along the z-axis [15], i.e.,

\[
\mathbf{M}^{(3)}_{mn}(q,r_q,\theta_q,\phi_q) = \tilde{\mathbf{a}} \sum_{q=1}^{\infty} \left[A^{ae}_{mn}(d_{pq})\mathbf{M}^{(3)}_{mn}(r_p,\theta_p,\phi_p) + B^{ae}_{mn}(d_{pq})\mathbf{N}^{(3)}_{mn}(r_p,\theta_p,\phi_p) \right]
\]

\[
\mathbf{N}^{(3)}_{mn}(q,r_q,\theta_q,\phi_q) = \tilde{\mathbf{a}} \sum_{q=1}^{\infty} \left[A^{ae}_{mn}(d_{pq})\mathbf{M}^{(3)}_{mn}(r_p,\theta_p,\phi_p) + B^{ae}_{mn}(d_{pq})\mathbf{N}^{(3)}_{mn}(r_p,\theta_p,\phi_p) \right]
\]

where \(A^{ae}_{mn}(d_{pq}) \) and \(B^{ae}_{mn}(d_{pq}) \) are the translation coefficients of the spherical vector translation addition theorem. To determine the unknown scattered field coefficients, we apply the boundary conditions on the various interfaces, i.e.,

\[
\tau_p \times \mathbf{E}^s(b_p,\theta_p,\phi_p) + \frac{\zeta}{\Phi_p} \mathbf{H}^s(b_p,\theta_p,\phi_p) = \tau_p \times \mathbf{E}^t(b_p,\theta_p,\phi_p)
\]

\[
\tau_p \times \mathbf{H}^s(a_p,\theta_p,\phi_p) + \frac{\zeta}{\Phi_p} \mathbf{E}^s(a_p,\theta_p,\phi_p) = \tau_p \times \mathbf{H}^t(a_p,\theta_p,\phi_p)
\]

Substituting the appropriate field expansion expressions in equations (13) to (16), and applying the orthogonality properties of spherical vector wave functions and eliminating the transmission coefficients we obtain

\[
A_{E_p}(m,n) = v_n(\rho_p) \ P_p(m,n) + \tilde{\mathbf{a}} \sum_{q=1}^{\infty} \left[A^{ae}_{mn}(d_{pq})A_{E_p}(m,v) + B^{ae}_{mn}(d_{pq})A_{M_p}(m,v) \right]
\]

\[
A_{M_p}(m,n) = u_n(\rho_p) \ Q_p(m,n) + \tilde{\mathbf{a}} \sum_{q=1}^{\infty} \left[A^{ae}_{mn}(d_{pq})A_{M_p}(m,v) + B^{ae}_{mn}(d_{pq})A_{E_p}(m,v) \right]
\]

where \(v_n(\rho_p) \) and \(u_n(\rho_p) \) are the electric and magnetic scattered field coefficients for a single dielectric sphere coated with a dielectric layer [19]. Equations (17) and (18) may be written in matrix form for the purpose of computing the scattered field coefficients, i.e.

\[
\mathbf{A} = \mathbf{L} + \mathbf{T} \mathbf{A}
\]

where \(\mathbf{A}, \mathbf{L} \) are column matrices for the unknown scattered and incident field coefficients, respectively, and \(\mathbf{T} \) is a square matrix which contains the translation addition coefficients.
3. Numerical Results

In order to check the validity of our computer program, several numerical tests were conducted and the results compared favorably with previously published results [7-8,11]. These tests included the limiting cases of (i) an array of dielectric spheres obtained by setting \(k_b \approx k_a \), \(\varepsilon_{II} = 1 \) or \(\varepsilon_{II} = \varepsilon_I \) (ii) an array of conducting spheres each coated with a single dielectric layer obtained by setting \(\varepsilon_I = \infty \) and (iii) an array of conducting spheres obtained by setting \(\varepsilon_{II} = \infty \) and \(k_b \approx k_a \) or \(\varepsilon_{II} = 1 \).

In this paper, we presented numerical results for different sphere arrays to show the dependence of the radar cross section on various parameters characterizing the geometry, material properties, and incidence angles. Fig. 2 shows the normalized bistatic cross section versus the scattering angle \(\theta \) for a system of three identical spheres in the E- and H-planes. The electrical radii of the outer and inner spheres are \(k_a = 2.0 \) and \(k_b = 2.5 \), respectively, while the electrical separation between successive spheres is \(k_d = 7.0 \), and the relative dielectric permittivity of the inner dielectric layer is 3.0 and the outer is air. The purpose of this comparison is to check the accuracy of the computer code for the dielectric sphere case [8] as a special case of the dielectric spheres except the relative dielectric permittivity of the dielectric layer is set equal to unity. The parameters of Fig. 3 are similar to Fig. 2 except that the dielectric layer has a value of 2. We can see that the number of resonances in the E plane is increased. Figs. 4 and 5 have the same parameters as in Fig. 3 except that the number of spheres is increased to five and eight, respectively. We can see that the number of resonances also increases with the number of spheres.

Fig. 6 shows the normalized backscattering cross section versus the electrical distance \(k_d \), which ranges from 8 (touching) to 15.5 for end fire incidence and the number of spheres is five. The electrical radii of the outer and inner spheres are \(k_a = 4.0 \) and \(k_b = 3.0 \), respectively, while the relative dielectric permittivity of the inner dielectric layer is 3.0 and for the outer layer is 2. Fig. 7 is similar to Fig. 6 except the number of spheres is increased to 8. We can see that the location of the maximum peaks did not change by increasing the number of spheres for both cases. Furthermore, the magnitude of the normalized backscattering cross section at the maximum peaks increased with increasing number of spheres.

In Figs. 8 and 9 we have plotted the normalized backscattering cross as a function of the angle of incidence \(\alpha \), which ranges from 0 to 90 degrees for a system of three and eight spheres. The electrical radii of the outer and inner spheres are \(k_a = 1.5 \) and \(k_b = 1.0 \), respectively, while the relative permittivity of the inner dielectric layer is 4 while for the outer layer is 3 and the electrical separation between the centers of the spheres is 3.0 (touching).

4. CONCLUSIONS

We have obtained an analytic solution of the problem of scattering by an array of dielectric spheres each coated with a dielectric shell. The boundary conditions are satisfied at various interfaces with the help of the vector translation addition theorem. The system of equations was written in matrix form while the scattered field coefficients were obtained by matrix inversion. Numerical results were presented for different numbers of spheres, angles of incidence, electrical separation, and relative dielectric constant. For the general case of spheres orientation, the reader may find more details in [8].

ACKNOWLEDGMENT

The first author wishes to acknowledge the support provided by University of Sharjah. The second author wishes to acknowledge the support of the United Arab Emirates University, while the third author wishes to acknowledge the financial support of the University of South Alabama and the National Science Foundation.
Fig. 2: Normalized bistatic cross section patterns for three identical dielectric spheres each covered with dielectric layer with $k_a=2.0$, $k_b=2.5$, $k_d=7.0$, $\alpha=0$, $\varepsilon_r=3.0$, and $\varepsilon_{ir}=1.0$. In the E-plane ($\phi = \pi / 2$) and H-plane ($\phi = 0$).

Fig. 3: Normalized bistatic cross section patterns for three identical dielectric spheres each covered with dielectric layer with $k_a=2.0$, $k_b=2.5$, $k_d=7.0$, $\alpha=0$, $\varepsilon_r=3.0$, and $\varepsilon_{ir}=2.0$.

Fig. 4: Normalized bistatic cross section patterns for five identical dielectric spheres each covered with a dielectric layer with $k_a=2.0$, $k_b=2.5$, $k_d=7.0$, $\alpha=0$, $\varepsilon_r=3.0$, and $\varepsilon_{ir}=2.0$.

Fig. 5: Normalized bistatic cross-section patterns for eight identical dielectric spheres each covered with a dielectric layer with $k_a=2.0$, $k_b=2.5$, $k_d=7.0$, $\alpha=0$, $\varepsilon_r=3.0$, and $\varepsilon_{ir}=2.0$.
Fig. 6: Normalized backscattering cross section versus electrical separation (kd) for end-fire incidence and a linear array of five identical dielectric spheres each covered with a dielectric layer with: $ka=4.0$, $kb=3.0$, $\alpha = 0.0$, $\varepsilon_{lr}=3.0$, and $\varepsilon_{llr}=2.0$.

Fig. 7: Normalized backscattering cross section versus electrical separation (kd) for end-fire incidence and a linear array of eight identical dielectric spheres each covered with a dielectric layer with: $ka=4.0$, $kb=3.0$, $\alpha = 0.0$, $\varepsilon_{lr}=3.0$, and $\varepsilon_{llr}=2.0$.

Fig. 8: Normalized backscattering cross section versus aspect angle α for a linear array of three identical dielectric spheres each covered with a dielectric layer with $ka=1.5$, $kb=1.0$, $kd=3.0$, $\varepsilon_{lr}=4.0$, and $\varepsilon_{llr}=3.0$.

Fig. 9: Normalized backscattering cross section versus aspect angle α for a linear array of eight identical dielectric spheres each covered with a dielectric layer with $ka=1.5$, $kb=1.0$, $kd=3.0$, $\varepsilon_{lr}=4.0$, and $\varepsilon_{llr}=3.0$.

References

Arbitrary Configuration of Conducting or
Dielectric Spheres", IEE Proc., Part H, vol. 148,
"Analytic Solutions of The Scattering by Two
Multilayered Dielectric Spheres", Can. J. Phys.,
10. Comberg, U., and Wriedt, T." Comparison of
scattering calculations for aggregated particles
based on different models," J. of Quantitative
149-162, 1999.
11. A-K. Hamid, M.I. Hussein, and M. Hamid,
“Radar Cross Section of a System of Conducting
Spheres Each Coated with a Dielectric Layer,” J.
Dielectric Spheroid by System of Dielectric
Spheres”, J. of Electromagnetic Waves and
multilayered dielectric-coated conducting
cylinder”, International J. of Electronics, vol. 38,
(McGraw Hill, New York), 1941
15. Cruzan, O.R., “Translational addition theorems
for spherical wave functions”, Quart. Appl.
“Bistatic Cross Section of an Array of Dielectric
Spheres Each Covered with a Dielectric Shell,”
the 19th Annual Review of Progress in Applied
Computational Electromagnetics, Naval
Postgraduate School, Monterey, California,

A.-K. Hamid was born in Tulkarm, West Bank, on Sept.
9, 1963. He received the B.Sc. degree in Electrical
Engineering from West Virginia Tech, West Virginia,
U.S.A. in 1985. He received the M.Sc. and Ph.D. degrees
from the university of Manitoba, Winnipeg, Manitoba,
Canada in 1988 and 1991, respectively, both in Electrical
Engineering. From 1991-1993, he was with Quantic
Laboratories Inc., Winnipeg, Manitoba, Canada,
developing two and three dimensional electromagnetic
field solvers using boundary integral method. From 1994-
2000 he was with the faculty of electrical engineering at
King Fahd University of Petroleum and Minerals,
Dhahran, Saudi Arabia. Since Sept. 2000 he has been an
associate Prof. in the electrical
electronics and computer
engineering department at the University of Sharjah,
Sharjah, United Arab Emirates. His research interest
includes EM wave scattering from two and three
dimensional bodies, propagation along waveguides with
discontinuities, FDTD simulation of cellular phones, and
inverse scattering using
Neural Networks.

Mousa I. Hussein received the B.Sc. degree in electrical
engineering from West Virginia Tech, USA, 1985, M.Sc.
and Ph.D. degrees from University of Manitoba,
Winnipeg, MB, Canada, in 1992 and 1995, respectively,
both in electrical engineering. From 1995 to 1997, he was
with research and development group at Integrated
Engineering Software Inc., Winnipeg, Canada, working
on developing EM specialized software based on the
Boundary Element method. In 1997 he joined the faculty
of engineering at Amman University, Amman, Jordan, as
an Assistant Professor. Currently Dr. Hussein is an
Associate Professor with the Electrical Engineering Dept.
at the United Arab Emirates University. Dr. Hussein
research interests include computational electromagnetics,
electromagnetic scattering, antenna analysis and design,
EMI and signal integrity, microstrip antennas, phased
arrays, slot and open ended waveguide antennas.

Michael Hamid Graduated from McGill University in
Montreal with a B.Eng. degree in 1960, a M.Eng. degree
in 1962 and from the University of Toronto with a Ph.D.
degree in 1966, all in Electrical Engineering. He joined
the University of Manitoba in 1965 where he became a
Professor of Electrical Engineering and head of the
Antenna Laboratory. He was a visiting Professor at the
Naval Postgraduate School as well as the universities of
California Davis and Central Florida and is presently a
Professor of Electrical Engineering at the University of
South Alabama. He is a past president of the International
Microwave Power Institute, a Fellow of IEE and IEEE
and published 307 referred articles and 25 patents.