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ABSTRACT: An efficient implementation of the
Generalized Ray Expansion (GRE) method for
computing the scattering of three-dimensional (3-D)
arbitrarily shaped deep cavities is studied in this
paper. Efficiency is being sought from two aspects.
ray racing in discrete cavities and reflection from
individual patches. An improved algorithm for
detecting inter sections between a ray and triangular
patches has been proposed, which is about 2.83
times faster than the traditional algorithm. Also,
sectional algorithm and Wavefront Advancing and
Candidate Narrowing (WACN) algorithm for
tracing rays inside 3-D cavities are proposed to
boost efficiency. As to reflection from individual
patches, different local cavity reconstruction
methods are being tested and interpolative
triangular patches are found to be an efficient
choice. Finally, several numerical examples further
demonstrate the versatility and validity of our
approach.

I. INTRODUCTION

Electromagnetic scattering ofm arbitrarily shaped

problems and their applications to deep cavity

scattering are limited. Waveguide modal analysis also
provides accurate results [3], [4], but the exact

waveguide eigenmodes have only been found for
simple cross sections. These methods are most often
used to give reference solutions.

Because of the smooth varying property of the air
duct required by aerodynamics, ray and beam
techniques are wusually used for high frequency
asymptotic methods. The early version was the
Shooting and Bouncing Ray (SBR) method which
utilizes Geometric Optics (GO) for ray tracing and
Aperture Integration (Al) or Reciprocal Integral (RI)
for far field computations [1]-[4], [6]. The major
problem with the SBR method is that it does not
consider higher order effects -especially the field
diffracted into the cavity by the rim of the open end.
Thus it generally provides an envelope but not details
of the scattering pattern. Gaussian Beam (GB) is
another approach which instead traces Gaussian beams
[3], [5]. Since the Gaussian beam is caustic free by its
nature and because it consiléelds diffracted into the
cavity from the open end, it has much better accuracy
than the SBR method. But the beam distortion after a

deep cavities is of great importance in radar crosgew reflections generally prevents this method from
section (RCS) estimation of modern jet aircraft [1]-[8]. deep cavity problems. The GRE method could be
Because these targets are usually composed of twbought of as a combination of SBR and GB methods in

different parts, i.e., an elemtally large, smooth varying some sense [3]. Based on the sub-aperture expansion
air duct and a relatively short, geometrically complextechniques of the GB method, the GRE method traces
termination, methods suitable for one part generallyGO rays instead of Gaussian beams to improve the
become unsuitable or even falil for the other part. Due tbeam distortion problem. Since the GRE method
this discrepancy, hybrid methods are often used insteadcludes the interior diffraction by the edge of the open
to solve for different parts [8]. In this article, we shall end, it is also more accurate than the SBR method.
focus on efficient computation of the electrically large, The usage of the GRE method is limited by the
smooth varying air duct. The methods involvednecessity of tracing massive amounts of rays. This is in
generally include differential equation-based methodsurn related to the modeling of a cavity. For simple
[7], integral equation-based methods, waveguide modajeometry, analytical functions could be used thus ray
analysis and high frequency asymptotic methods [3]tracing is obviously not a problem. For realistic large
Differential equation- and integral equation-basedand arbitrarily shaped cavities, modeling a cavity with
methods are accurate while much less efficient for deeprdered 3-D discrete points, which could either be the
cavity problems due to the prohibitive amount ofresults of physical measurements or generated by CAD

memory and CPU requirements. Furthermoresoftware, is of great versatility and generality.
differential equation-based methods suffer from When applying GRE methods to such realistic 3-D
numerical dispersion enro for electrically large discrete cavities, two essential issues need to be
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considered. The fist issue fast ray tracing algorithms into the product of a spherical wave and a vector far
in 3-D discrete cavities. This topic is rarely documented zone pattern. Portions of the spherical wave could be
because most 3-D ray tracing algorithms are designeiddividually traced as GO rays. Incident field
for 3-D bodies. We shall solve this problem from twoinformation is only contained in the vector far zone
aspects: fastening the intersection test of a ray and ﬁ’atterrif (f? E). Ray tracing and the calculation of
triangular patch and reducing the total number of such_ nyn

test needed. An improved intersection test algorithm i, (f,E;) are independent. Thus the GRE method
proposed for the first aspect and two other algorithms, 8oy|d generate the result at any incident angle in the
sectional algorithm for general cavities and a WACNgffective angular range (16- 15° narrower than the
algorithm for convex cavities, are proposed for theargest ray tracing angle) with just one ray tracing.
second aspect. The second issue is local cavityise, ray tracing is time consuming rather than memory
reconstruction. There are quite a few choices rangingonsuming. The independency of each ray tracing
from simple triangular patches to complex Hermitianmakes it very suitable to utilize distributed computer
bicubic patches. We shall study the accuracy of usingystems because there are virtually no communications

different reconstruction methods for reflection petween different processes and load balancing is easy
computation. We found that an interpolative triangulary handle.

patch, which is simple to implement and highly The total transmitted field could be written as
accurate, was the best choice.

N P
This article is organized as follows: Section Il briefly E(r)=)>E!Nr) (2)
introduces the GRE method. Section Il discusses the n=1 p=1

efficiency issues. Section IV provides numericalTg evaluaté (7" E,), we first express the incident
examples. Finally, some conclusions are drawn "}ield as

Section V. . - .
Ei (rn ) = peEi(rn ) (3)
Il. GREMETHOD J () = & N O
Hi(rn )_ thi(rn )_ki >(Ei(rn )/ZO
In the GRE method, the open end of the cavity igvhere p,and p,represent the directions of the incident

divided into multiple sub-apertures. The electric fieldelectric and magnetic field respectively ady is the
radiated by the th sub-aperture is determined by far ¢ space wave impedance. Establishing a local

zmt))ne tKiréthff r?pprgximatic?n Withd thef cavit¥ l;/vall coordinate system, sy, originating at the center of a
absent. Cone-shaped angular grids of ray-tube arg NSO
launched from the center of each sub-aperture t§Ub aperture and in whi€, &, are any two orthogonal

represent the spherical wave entering into the cavityunit vectors tangential to the sub-aperture, and in which

By assuming a local plane wave at the open end angZ points into the cavity, 'En(an,Ei)Comd be
using Physical Optics (PO) to obtain the equivalent

electric and magnetic currents, the electric field of thedecomposed int@ and(ﬁ polarization

-th ray-tube of the tth sub-aperture is expressed as = 2D By — A0 END = ah =0
i . ik g Ik P P F.(f E) = Fo(iY . E)DE, + an(rnp,Ei)% 4)
E ()=~ s xE @) as wi
" E (7, E) =[(p, + py, COSE? )cOSP +

~ ] AN i n’ P r . _ (5)
-Z, 7 x_”‘% Y X[Sn xH, (rn)]ejkrm‘ dS} (Py = P COSE? )sing? | €7 E))
—jkrP = rP _._ — p_ —
2 e Fulif E)=1(p, co0 ~p )0 =
" " (P * PoccOSE? )sing? ] €7 E)
)

where K is the wave numberg ® = r Pf Pand £ is the

unit vector representing the direction of thehpray-
tube, 1 represents the location of an equivalent sourc

where @” and ¢’ represent the elevation and azimuth

é'mgles of the axis of the-th ray-tube of then-th sub-
. ) aperture, measured in the local coordinate system
on the sub-aperture§ is the unit surface normal p., and p, are the components qfin and similar

pointing  inwards the cavity, arié(r)andH(r)  for P and p, . The exact form of (7", E;) relies on

represent the incident electric and magnetic ﬁeldIhe shape of the sub-aperture (see Ref. [3])
respectively. The integration is over the sub-aperture. Rays are bounced back and forth i-nsid.e the cavity.

Note that the far zone radiating field is decompose%ﬂer each reflection, the magnitude is determined by
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E(Ti)=[R] [E(ri_l)mDF]i_le—Jks 7) computation of the reflecteq field. In general, when we
i ] ] ) calculate a GO ray reflectionye need to reconstruct
where fiis the location of the th reflection, ihe |ocal cavity from those discrete points surrounding
5= ‘f _ r_l‘, [DF].. is the divergence factor at the (i- the reflection point. For a fixed set of discrete points, if
P : _ _ _ their is a better way to reconstruct the local surface so
1)-th reflection location, [R] is the reflection matrix of that the resultant reflection calculation is more accurate,
the cavity wall which could be written in the PEC casewe can use less discrete points to model the cavity. The

as efficiency of determining the reflection position in a
_ E’ _ -1 0] |E discrete cavity is essentially dominated by the number
E' :[ ?} =[R] [E' :[ }[ﬁ ID} of discrete points being used to describe the cavity.

Il 0 1 |[E Thus these two problems are weakly coupled in this

where superscripts and i denote the reflected and sense. In general, we can improve the overall efficiency

incident wave respectively, and where and // by working on each problem individually.

represent the perpendicular and parallel polarization.

When a cavity is coated with materials, the impedancé. Ray Tracing

boundary condition could be used casually instead of Ray tracing involves finding the reflection of a ray-

the PEC boundary condition. Easy manipulation oftube. During each ray tracing, triangular patches were

boundary conditions is another advantage of ray-basedsed to determine the reflection position, though in

techniques over other methods. The divergency factor iSome cases as a preliminary step. Basic ray tracing

determined by and the principal radii of the curvature algorithms include two procedures: 1) Determination of

of the wavefront, saR, andR,, atf;_ possible intersections of a ray and all triangular patches;
’ P 2) Sorting the distance between the current position and

[DF]._ = 1 B 1 (8) all possible intersections. The shortest distance
-1 \/1.,. s/IR \/1.,. s/R, _corresponds to Fh_e actual reflection. We attempt to
improve the efficiency of each procedure in the

Note that the reflection field is singular if thethi-

following.
reflection is located at the caustics, i.68,=—R,
1 Determine Intersections

orS=—R,. The caustic problem is inherent to all Go-A: o . .
The traditional way to determine a possible

based tec_hnlques. When It occurs, We_ChOS.e to abandfmersection starts from calculating the intersection of a
the ray being traced for efficiency considerations.

; . ray and the plane where a triangular patch is located
Rays could exit from either the front end or the rea_rg]. Considering a ray originating ak( Y, , z) and

end. In the first case, the far zone scattering field i ; P ;
determined by the Al method. In the second case, hooting towardsk(, k. k). the ray function is written

could be used to calculate the far field contribution of a —k ~ K
ray tube directly without tracing it back. Without wall X=k(z=2)+ %,y =k, (z2=7) +Y,

losses, the cross section area of the reflected ray-cubgith k, =k, /k,and k, = ky/ k,. This requires two

sayS, could be determined via energy conservation by multiplications and four summations (we do not

S)‘EO‘Z :§E|2 (9) consider those operations solely related to the ray
function because they are performed only once for a ray
but not for all triangular patches being tested.). The
plane function of a triangular patch, written as
1. EFFICIENCY IMPROVEMENTS ax+by+cz+d =0, could be determined by the

coordinates of its three vertices by solving a set of
inhomogeneous linear equations, which requires 36
3fnultiplic::xtions/divisions and 20 summations. The
solution of the intersection needs additional seven
x multiplications/divisions and six summations. Next, the
this number could reach 16 10" Therefore, ray jniersection is tested to determine whether it is inside

tracing effipieng:y s of pgramountimportance. . . the triangular patch or not. Wedapt the following
Ray tracing is essentially a computer graphics topiCscheme: 1) Three vectors were constructed by

In our context, its efficiency is determined rather by the;onnecting ‘three vertices to the intersection. This
accuracy of scattering field computation than by th&eq ires nine summations. 2) All cross products
quality of graphic displaying. We can further divide the hoyyeen any two of the three vectors were gathered.

ray tracing problem into two weakly coupled problems:rpis requires 18 multiplications and nine summations.
determination of the reflection position and

where §; is the initial beam solid angle of the ray-tube.

The major thrust of the GRE method is to trace
massive amounts of ray-tubes inside an arbitraril
shaped cavity. Usually, 10 10 rays are expected:;
however, if the axial length of the cavity is about 41,00
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3) All dot products of any two vectors obtained in stepgiven without any coherence, it would be hard to
two were obtained. This requires nine multiplicationsimprove the efficiency.

and six summations. If the intersection is inside the Let us assume that all discrete points are givem in
triangular patch, all cross products must be in the sameonsecutive cuts along tlzeaxis and let us call them
direction if being calculated with a certain circulation cut. Discrete points in onecut form a polygon £
order. Otherwise, their must be one cross product with polygon) and those in adjacent cuts form a section of
sign different from the others. In fact, if we find that the cavity when connected. The whole cavity is formed
two dot products have different signs, we can reach hy (m-1) such sections, e.g. Fig.5 and Fig.6. With this
conclusion immediately. This step requires 27model, we can search for the next reflection section by
multiplications and 24 summations in the worst casesection from where the current reflection is and along
Thus in the traditional method, totally 72 either positive or negative-directions, depending on
multiplications/divisions and 64 summations are needethe direction of the ray. In this manner, the first

in the worst case (136 flops). intersection must be the actual reflection and no sorting
is needed at all. We call this method the sectional
e pnewhere o e algorithm.

e 7 e iended In fact, 3-D discrete points are either specified by
5 7 imensscton . w physical measurement or generated by CAD software.

) 4 / VR It would be natural to require them to be generated in
~_ / < V the above manner. For those models which are different
1\ < 4 Y Y/ _pcion and can not be regenerated, we may run a pre-

]:? \N intended '\,‘ / "’ processing program to reform them. In the following,

cusrent reflstion L= x we shall assume that such a model is always available.

Teaditunal inrseetion detertination approsch. Proposel inkersaction determination spprsch The sectional algorithm totally avoids sorting, but the
Fig. 1. Comparison of_traditional and proposed intersection nymber of intersection computations could still be
determination approaches. large. We can further improve the performance for

. . ) ) convex cavities with the following Wavefront
The key to efficiency improvements is to bring 3-D Advancing and Candidate Narrowing (WACN)

operations to two-dimensional (2-D) operations. To doyqorithm. This algorithm starts from computing the
so, we first project the three vertices of a triangular

) intersection of a ray and &cut and determining
patch onto thecy plane of another coordinate system, peher the intersection is inside ta@olygon. If the
originating at Xo, Yo, o) and whosez-axis coincides

i > X0 : k intersection is out of the currempolygon but is inside
with the direction of the ray. This requires 18, previousz-polygon, it must be reflected by the

multiplications and 21 summations. Then all crosssection formed by these twapolygons. To test
products between any two of three 2-D vectors obtaine,ather an intersection is insidezaolygon, we need

in the first step are calculated. If the intersection isto specify a gauge point for eachpolygon. To
inside the triangular_ patch, all thr(_ae Cross products_ MU$tnderstand the role of gauge points, we notice that any
be of the same sign when being calculated with & p jine (formed by adjacent vertices ofzaolygon)
certain circulation order. Otherwise, their must be ongyides a 2-D space (or hyper plane) into two half-
cross product with a sign different from the others. Thi%paces. When all points in one half-space are
step requires six multiplications and three summationsypstituted into the line equation, the results must bear
Therefore, the proposed scheme requires a total of 2fe same sign [10]. If the knequation is adjusted such
multiplications ~and 24 summations (48 flops). ih4t any point from the interior of the polygon yields a
Compared with the traditional approach, this algorithm,ogitive (or negative) sign when being substituted into
needs 35% less flops and hence is 2.83 times fastgfs |ine equation, we can determine whether an
Moreover, this algorithm is more accurate and robusf,iersection is inside 2polygon or not. A gauge point
because it does not involve any division operation. serves this purpose and it could be any point insizie a
polygon. A 2-D line equationax+by+cz+d =0

As has already been pointed out, the heart of any ra .UId be. solved b.y .the.coord'ir?a.tes of its two vertices
tracing algorithm is sorting and the key to efficiency ith SIX multlpl|cat|o_ns/d|V|S|ons and t_hree_:
improvements is exploiting data coherence [9], [10]. AnSummations. The gauging and . the _determlnanon
efficient algorithm is typically achieved by avoiding procedu_res totally require four r_nult|pl_|cat|ons and four
expensive intersection computation as much as possibﬁ%*mmat'ons' Thus for one possible triangular patch, ten

and by sorting the least possible amount of intersectio uItipIications/divisions gnd seven Osummations (7
or no such sorting at all. If all 3-D discrete points are. ops) are required. This is apout 35% of the proposed
intersection tests needed. Since the current wavefront

A.2 Ray Tracing In Cavities
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advances consecutively, we call it Wavefront =
Advancing. e

candidate points L N

. candidate points sal

intersection

36 points per circle

. . 1 - 120 points per circle| |
Intersection : . . 180 points per circle

’ —— 360 points per circle

previous z-cut current z-cut

Fig. 2. The local coordinate systems and candidate points th:
the candidate triangular patch must contain. 10, w w w w w w

I I
5 10 15 20 25 30 35 40 45
6 (degrees)

If a reflection is about to happen in a section, the Fig. 3. Convergence of simple triangular patchesgrof
candidate triangular patches which are possible for 3k x 9k circular waveguide.
actual reflection could be further narrowed down. This
is accomplished through the following steps: 1) In the
previous z-cut (where the intersection is inside the
polygon), construct a Cartesian coordinate syster 4
whosex -axis is the projection of the ray on theut
and whosey'-axis is perpendicular to the&-axis. 2) I
Transform all vertices of the-polygon to this new
coordinate system andonly compute their y' S
components. 3) Check the signs of @licomponents %
consecutively. If two adjaceny components are of
opposite sign, record their indices. 4) Calculate Xhe 10
components of the two pairs of points obtained in ste|
three. The candidate triangular patch must contain th o
pair of points which both have positixe components. e somgular patch
5) Repeat steps one to three for the curzemit (where -
the intersection is out of thepolygon). 6) Calculate  ™° s w© 1 2 o (degroes)
thex components of the two pairs of points obtained in Fig. 4. 6, of 101 x 104 circular waveguide calculated
step five. The candidate triangular patch must contain by using different reconstruction methods.
the pair of points closest to the-axis. After the above
steps, only those triangular patch (not necessarily tw®.1 Simple Triangular Patch
patches) containing the two pairs of points in the In this approach, each trigular patch is considered
current and previougcuts are possible for the actual as a simple plane. Since the principal radii are infinite,
reflection. The candidate triangular patches arahe caustic problem does not exit. In general, more
narrowed down and we call this step Candidateariangular patches should be used if better accuracy is
Narrowing. Note that obtaining either the required. To study the convergency, we calculaté@he
components or thg’ components only requires two polarized mono-static RCS of a circular waveguide.
multiplications and one summation, thus expensiveThe waveguide is of3in diameter and Qin length.
intersection tests are replaced by these simpl®ifferent numbers of triangular patches per section,

50

20

©

I I I I
30 35 40 45 50

operations. which are in turn represented by the number of discrete
points per circle, is being used. The results are shown in
B. Elementary Reflection Fig.3. We observe that when only 36 points per circle

In this subsection, the effect of using different cavity(72 patches per section) are used, there are significant
reconstruction methods for computing the reflectionerrors for all angles. As the number of patches is
will be discussed. increased, the performance improves and 180 points per

circle yields errors within 3dBi* compared with 360
points per circle. Fig.4 shows the polarized mono-
static RCS of a circular waveguide ofAlih diameter
and 1Q in length. 180 points per circle are used for
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reconstruction by simple triangular patches. Ray tracingf C° continuity, C continuity is preferred in computer

is confined within 45and the effective angle is up to graphics because of more realistic results.

30°- 35° according to theory [3]. It is observed that the On the other hand, the Coons patch is a cubic

results agree with those obtained by Modal analysigunction of each of its parameterandv. This property

well up to 35. causes unnecessary surface twists and it is
Using more triangular patches makes ray tracing lesdisadvantageous when being used to calculate the

efficient. In the following, we shall explore other reflection and the divergence factor [RAfig.4 shows

possibilities with better performances. the oo polarized mono-static RCS of aixl@ 101
circular waveguide calculated by using Coons patches
B.2 CoonsPatch with 36 points per circle. We observe that except for the

Since the inacaacy with simple triangular patches is main lobe, the results roughly deviate from the
caused by the assumption of infinite principal radii, it isreference values the most.
natural to consider using surfaces with curvature. Here To find the exact reflection position, we need to solve
we choose Coons patch. The Coons patch belongs #oset of linear and non-linear equations including Eq.
the family of Hermitian bicubic parametric patches. It(10) and the ray function. If the Newton iterative
only uses the information on its four corners tomethod is used, three to four iterations should be
determine the parameters. To further introduce thigxpected with good initial guesses and appropriate
method, let us denote a Coons patch with twaaccuracy control. This peedure consumes more CPU
parametersy, v) asR(u, v) ={x(u, v), y(u, v), z(u, v)}, time than the computation of the reflection field itself.
with 0 <u<1and 0<v <1 If uvis used as an
abbreviation forR(u, v), then 00, 01, 10, 11 represent B.3 Interpolative Triangular Patch
the four corners respectively; §00L, 1Q, 11, 00, In this approach, the reflection position is determined
01y, 10, 11v represent the first order tangential by treating a triangular patch as a simple plane. To
derivatives at each corner; andu@001w, 1Qwv, 12w  compute the reflection direction and the divergence
represent the second order tangential derivatives at eatdctor [DF}, the triangular patch is assumed to have
corner, which are also calladists. A Coons patch is curvature. Its first and second order derivatives at the
then expressed as reflection position are obtained by linear interpolation

— (113 112 T 34,2 T f those at the vertices. Compared with the Coons
uv = (u’,us,u) QHIOM ] OH (VARVARYA) 0 p
( )AHIOMITHT O ) patch, this approach not only eliminates surface twists,

h (10) but also simplifies the calculation of the reflection.
where 1 Fig.4 also depicts theo polarized mono-static RCS
00 01 00, O of a 10. x 10 circular waveguide calculated by using
interpolative triangular patches with 36 points per
[M] = 1011 10, 14, circle. As can be seen, the results are much better than
oo, o1, 0O, O3, those for Coons patches with the same amount of points
per circle and agree with the reference values the best
10, 1%, 10, 13, (within effective angle 3%. Compared with that of
2 -2 1 1 simple triangular patches, the consideration of
curvature improves the accuracy to higher degree at
H1= -3 3 -2 -1 large angles (Z0above) than at small angles. Bearing
[H]= 0 0 1 0 in mind that the improvements are obtained by using
20% discrete points, as in the case of simple triangular
1 0 0 O patches, we consider this as our best choice.
Other options for bicubic surfaces include Bézier
surface and B-spline surface. They differ from Coons IV.  NUMERICAL EXAMPLES

patch primarily by the meaning of [M] and the form of ] o o
[H]. Since they are more often used in interactive Besides the example shown in Fig.4 as a verification
graphic design, we shall not consider them here. of our approach, we further show some more
The great advantage of the Coons patch (as witfe@listically shaped examples to demonstrate the
other Hermitian patches) is that when two adjacenyersatility. The first example is a PEC cavity with a
Coons patches are constructed separately, the first orgg/@nted front end. The cavity is formed by six sections.
continuity (G continuity) across the patch edges is The first section is a slanted aperture of 1 IengAth.
guaranteed. Thus we can construct a Coons patchhe angle between the normal to the aperturefi.e.
whenever needed withoutonsidering the global 'C and the z-axis, is 45The angle between the plane, in
continuity. Compared with triangle patches, which arewhich fand the z-axis are located, and the x-axig’is 0

28
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The second section is L length and its cross section positive sign when an observation has a positive

is a square with side lengths ofA10’he third section is coordinate and negative sign otherwise. As we see, the
a 6.7 transition region where the cross section changesain lobes ofcy and o, of the cavity with normal
from a square with a side length ofAl a circle of front end do not occur at the normal incidence but at
10M in diameter. The fourth section is B.lB length and some larger angles. When the front end becomes
its cross section is a circle of Lth diameter. The fifth  slanted, the main lobe is close to the normal incidence
section is another transition region of’8iB length and  but shifts slightly towards negati¥edirection.

its cross section changes from a circle of: lif
diameter to a circle ofA8 in diameter. The final section
is of 6.7 in length and its cross section is a circle of 8
in diameter. The geometry is shown in Fig.5 with
adjusted axial ratios. The side view is shown in Fig.7
with real axial ratios. All figures are in the unit of
wavelength.

451

35

30

% 251
|
20+
15+
10+
5
0 ‘ ‘
-5 0 5
x-axis 6 ¢ y-axis X—axis
Fig. 5. Cavity with slanted front end. Fig. 7. Side view of the cavity with slanted front end.

Note that the results for the cavity with normal front
end are not exactly symmetrical. This is due to the low
grid density (eight points per) being used in aperture
integration. The results converge slowly to symmetrical
forms if grid density becomes denser. Without
exception, all aperture integration in this section will be
performed with the above grid density.

The second example is a concave cavity with axial
lofting as shown in Fig.6 with adjusted axial ratios. A
side view with real axial ratios is depicted in Fig.8. The

0 axis is described by the following function withas a

=

9

Il
.

7
)
%

7
i

i

-4

parameter
x =0, y = 2(A —cos@z/10Q1))
oo |y Each cross section is formed by two parts. The shorter
Fig. 6. Cavity with axial lofting. one is an arc of a circle oh5n radius. The longer one

For comparison, we built another model with aiS described by a curveA(y/31 -sin’y +cogp) with
normal front end. The only difference is that the first4n/3 < ¢ < 8r/3. Both are centered at the axis. The
section has the same crosstiggras the second section, cavity is also terminated by a PEC plate.

i.e. the front end is perpendicular to the z-axis. BothwWe use interpolative triangular patches to reconstruct
cavities are terminated with simple PEC plates. the cavity with 24 points per arc, and sectional

We use interpolative triangular patches to reconstrucilgorithm for ray tracing. Fig.11 and Fig.12 reveal that
the cavity with 72 points per cross section and WACNthe RCS 0fd0 and p¢ polarization atp = 0° andg =
algorithm for ray tracing. Fig.9 and Fig.10 show that9(’. At ¢ = (°, 0 takes a positive sign when an
both 60 and ¢ polarized RCS at = (. 0 takes a observation has a positivecoordinate and a negative
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sign otherwise. A similar convention holdsgat 9C. %0 — ‘
The RCS atp = 0° has main lobes at normal incidence. SN TI Ramed et |
The weak asymmetry is also caused by insufficient gric . P * =
. . . . . e + / \ - 4
density in aperture integration. At = 9, the main o ;/r\\“-”*'f JRR ;-\(m\ [AN
lobes of both polarization shift toward the negative AV B TR RYE A
direction. This corresponds to the direction where the st " byl CROL Yy ]
. . . . . (I Yy I [ pon ]
termination could be illuminated directly. Note that < |, | L Y kT ooy
. a 1 \
there are actually two main lobes for thgd  Exf ' Y v TR A
polarization and its scattering is much stronger than the ® | ' | ’ : N \ ! v f
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In this article, we have discussed several efficienc
considerations of the GRE method for computing
electromagnetic scattering froBiD arbitrarily shaped
deep cavities. An improved algorithm for testing the
intersection of a ray and a triangular patch sppsed,
which is 2.83 times faster than the traditional approac
Two efficient algorithms for ray tracing in 3-D discrete
cavities - the sectional algorithm and the WACN in electrical engineering at The
algorithm - are also proposed. The WACN algorithm Ohio State University. Since 1999,
further boosts the efficiency by 2.83 times for convexhe has been a Graduate Research Associate with the
cavities. The effects of using different reconstructionElectroScience Laboratory (ESL), The Ohio State
methods are explored. Numerical examples furthetJniversity. His research interests include electro-static
show the validity and versatility of our approaches.and magneto-static lens design, time-domain
Future work should address the implementation of thesdifferential equation-based methods, high frequency
approaches on distributed computer systems. asymptotic methods and their applications to scattering,

packaging, microwave circuit and antenna analysis.
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