
Efficient GRE Techniques for the Scattering of Three-Dimensional 
Arbitrarily Shaped Deep Cavities 

 
Shumin Wang 

Department of Electrical Engineering, The Ohio State University, 
1320 Kinnear Road, Columbus, OH 43212, U.S.A 

Email: james.wang@ieee.org 
 

Mingzhi Li,  Changqing Wang and Xili Zhu 
Department of Electronics, Beijing University, Beijing, 100871, P. R. China 

 
ABSTRACT: An efficient implementation of the 
Generalized Ray Expansion (GRE) method for 
computing the scattering of three-dimensional (3-D) 
arbitrarily shaped deep cavities is studied in this 
paper. Efficiency is being sought from two aspects: 
ray racing in discrete cavities and reflection from 
individual patches. An improved algorithm for 
detecting intersections between a ray and triangular 
patches has been proposed, which is about 2.83 
times faster than the traditional algorithm. Also, 
sectional algorithm and Wavefront Advancing and 
Candidate Narrowing (WACN) algorithm for 
tracing rays inside 3-D cavities are proposed to 
boost efficiency. As to reflection from individual 
patches, different local cavity reconstruction 
methods are being tested and interpolative 
triangular patches are found to be an efficient 
choice. Finally, several numerical examples further 
demonstrate the versatility and validity of our 
approach. 
 

I.    INTRODUCTION 
 

Electromagnetic scattering from arbitrarily shaped 
deep cavities is of great importance in radar cross 
section (RCS) estimation of modern jet aircraft [1]-[8]. 
Because these targets are usually composed of two 
different parts, i.e., an electrically large, smooth varying 
air duct and a relatively short, geometrically complex 
termination, methods suitable for one part generally 
become unsuitable or even fail for the other part. Due to 
this discrepancy, hybrid methods are often used instead 
to solve for different parts [8]. In this article, we shall 
focus on efficient computation of the electrically large, 
smooth varying air duct. The methods involved 
generally include differential equation-based methods 
[7], integral equation-based methods, waveguide modal 
analysis and high frequency asymptotic methods [3]. 
Differential equation- and integral equation-based 
methods are accurate while much less efficient for deep 
cavity problems due to the prohibitive amount of 
memory and CPU requirements. Furthermore, 
differential equation-based methods suffer from 
numerical dispersion error for electrically large 

problems and their applications to deep cavity 
scattering are limited. Waveguide modal analysis also 
provides accurate results [3], [4], but the exact 
waveguide eigenmodes have only been found for 
simple cross sections. These methods are most often 
used to give reference solutions. 

Because of the smooth varying property of the air 
duct required by aerodynamics, ray and beam 
techniques are usually used for high frequency 
asymptotic methods. The early version was the 
Shooting and Bouncing Ray (SBR) method which 
utilizes Geometric Optics (GO) for ray tracing and 
Aperture Integration (AI) or Reciprocal Integral (RI) 
for far field computations [1]-[4], [6]. The major 
problem with the SBR method is that it does not 
consider higher order effects -especially the field 
diffracted into the cavity by the rim of the open end. 
Thus it generally provides an envelope but not details 
of the scattering pattern. Gaussian Beam (GB) is 
another approach which instead traces Gaussian beams 
[3], [5]. Since the Gaussian beam is caustic free by its 
nature and because it considers fields diffracted into the 
cavity from the open end, it has much better accuracy 
than the SBR method. But the beam distortion after a 
few reflections generally prevents this method from 
deep cavity problems. The GRE method could be 
thought of as a combination of SBR and GB methods in 
some sense [3]. Based on the sub-aperture expansion 
techniques of the GB method, the GRE method traces 
GO rays instead of Gaussian beams to improve the 
beam distortion problem. Since the GRE method 
includes the interior diffraction by the edge of the open 
end, it is also more accurate than the SBR method. 

The usage of the GRE method is limited by the 
necessity of tracing massive amounts of rays. This is in 
turn related to the modeling of a cavity. For simple 
geometry, analytical functions could be used thus ray 
tracing is obviously not a problem. For realistic large 
and arbitrarily shaped cavities, modeling a cavity with 
ordered 3-D discrete points, which could either be the 
results of physical measurements or generated by CAD 
software, is of great versatility and generality. 

When applying GRE methods to such realistic 3-D 
discrete cavities, two essential issues need to be 
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considered. The fist issue is fast ray tracing algorithms 
in 3-D discrete cavities. This topic is rarely documented 
because most 3-D ray tracing algorithms are designed 
for 3-D bodies. We shall solve this problem from two 
aspects: fastening the intersection test of a ray and a 
triangular patch and reducing the total number of such 
test needed. An improved intersection test algorithm is 
proposed for the first aspect and two other algorithms, a 
sectional algorithm for general cavities and a WACN 
algorithm for convex cavities, are proposed for the 
second aspect. The second issue is local cavity 
reconstruction. There are quite a few choices ranging 
from simple triangular patches to complex Hermitian 
bicubic patches. We shall study the accuracy of using 
different reconstruction methods for reflection 
computation. We found that an interpolative triangular 
patch, which is simple to implement and highly 
accurate, was the best choice. 

This article is organized as follows: Section II briefly 
introduces the GRE method. Section III discusses the 
efficiency issues. Section IV provides numerical 
examples. Finally, some conclusions are drawn in 
Section V. 
 

II.     GRE METHOD 
 
In the GRE method, the open end of the cavity is 

divided into multiple sub-apertures. The electric field 
radiated by the n-th sub-aperture is determined by far 
zone Kirchhoff approximation with the cavity wall 
absent. Cone-shaped angular grids of ray-tube are 
launched from the center of each sub-aperture to 
represent the spherical wave entering into the cavity. 
By assuming a local plane wave at the open end and 
using Physical Optics (PO) to obtain the equivalent 
electric and magnetic currents, the electric field of the 
p-th ray-tube of the n-th sub-aperture is expressed as 
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where k is the wave number, p

n
p

n
p

n rrr ˆ= and p
nr̂  is the 

unit vector representing the direction of the p-th ray-
tube, nr ′ represents the location of an equivalent source 

on the sub-aperture, ns′ˆ is the unit surface normal 

pointing inwards the cavity, and( )rE and ( )rH  

represent the incident electric and magnetic field 
respectively. The integration is over the sub-aperture. 
Note that the far zone radiating field is decomposed 

into the product of a spherical wave and a vector far 
zone pattern. Portions of the spherical wave could be 
individually traced as GO rays. Incident field 
information is only contained in the vector far zone 

pattern ),ˆ( i
p

nn ErF . Ray tracing and the calculation of 

),ˆ( i
p

nn ErF are independent. Thus the GRE method 

could generate the result at any incident angle in the 
effective angular range (10o − 15o narrower than the 
largest ray tracing angle) with just one ray tracing. 
Also, ray tracing is time consuming rather than memory 
consuming. The independency of each ray tracing 
makes it very suitable to utilize distributed computer 
systems because there are virtually no communications 
between different processes and load balancing is easy 
to handle. 

The total transmitted field could be written as 
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To evaluate ),ˆ( i
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nn ErF , we first express the incident 

field as 
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and ph

represent the directions of the incident 

electric and magnetic field respectively and Z0  is the 

free space wave impedance. Establishing a local 
coordinate system, sayΓ′ , originating at the center of a 
sub-aperture and in whichxê , yê are any two orthogonal 

unit vectors tangential to the sub-aperture, and in which 

zê points into the cavity, ),ˆ( i
p

nn ErF could be 

decomposed into θ̂  and φ̂   polarization 
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where p
nθ and p

nφ represent the elevation and azimuth 

angles of the axis of the p-th ray-tube of the n-th sub-
aperture, measured in the local coordinate system Γ′ , 

exp  and 
eyp  are the components of 

ep in Γ′ and similar 

for 
hxp  and 

hyp . The exact form of ),ˆ( i
p

n ErI  relies on 

the shape of the sub-aperture (see Ref. [3]). 
Rays are bounced back and forth inside the cavity. 

After each reflection, the magnitude is determined by 
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where ri is the location of the i-th reflection, 

s r ri i= − −1 , [DF]i-1 is the divergence factor at the (i-

1)-th reflection location, [R] is the reflection matrix of 
the cavity wall which could be written in the PEC case 
as 
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where superscripts r and i denote the reflected and 
incident wave respectively, and where ┴^ and // 
represent the perpendicular and parallel polarization. 
When a cavity is coated with materials, the impedance 
boundary condition could be used casually instead of 
the PEC boundary condition. Easy manipulation of 
boundary conditions is another advantage of ray-based 
techniques over other methods. The divergency factor is 
determined by s and the principal radii of the curvature 

of the wavefront, say R1 and R2, at 1−ir  
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Note that the reflection field is singular if the i-th 

reflection is located at the caustics, i.e., 1Rs −=  

or 2Rs −= . The caustic problem is inherent to all GO-

based techniques. When it occurs, we chose to abandon 
the ray being traced for efficiency considerations. 

Rays could exit from either the front end or the rear 
end. In the first case, the far zone scattering field is 
determined by the AI method. In the second case, RI 
could be used to calculate the far field contribution of a 
ray tube directly without tracing it back. Without wall 
losses, the cross section area of the reflected ray-cube, 
say S, could be determined via energy conservation by 

S E S E0 0

2 2=                                  (9) 

where 0S  is the initial beam solid angle of the ray-tube. 

 
III.    EFFICIENCY IMPROVEMENTS 

 
The major thrust of the GRE method is to trace 

massive amounts of ray-tubes inside an arbitrarily 
shaped cavity. Usually, 105 - 106 rays are expected; 
however, if the axial length of the cavity is about 100λ, 
this number could reach 107 - 108. Therefore, ray 
tracing efficiency is of paramount importance.  

Ray tracing is essentially a computer graphics topic. 
In our context, its efficiency is determined rather by the 
accuracy of scattering field computation than by the 
quality of graphic displaying. We can further divide the 
ray tracing problem into two weakly coupled problems: 
determination of the reflection position and 

computation of the reflected field. In general, when we 
calculate a GO ray reflection, we need to reconstruct 
the local cavity from those discrete points surrounding 
the reflection point. For a fixed set of discrete points, if 
their is a better way to reconstruct the local surface so 
that the resultant reflection calculation is more accurate, 
we can use less discrete points to model the cavity. The 
efficiency of determining the reflection position in a 
discrete cavity is essentially dominated by the number 
of discrete points being used to describe the cavity. 
Thus these two problems are weakly coupled in this 
sense. In general, we can improve the overall efficiency 
by working on each problem individually. 

 
A.    Ray Tracing  

Ray tracing involves finding the reflection of a ray-
tube. During each ray tracing, triangular patches were 
used to determine the reflection position, though in 
some cases as a preliminary step. Basic ray tracing 
algorithms include two procedures: 1) Determination of 
possible intersections of a ray and all triangular patches; 
2) Sorting the distance between the current position and 
all possible intersections. The shortest distance 
corresponds to the actual reflection. We attempt to 
improve the efficiency of each procedure in the 
following. 

 
A.1    Determine Intersections 

The traditional way to determine a possible 
intersection starts from calculating the intersection of a 
ray and the plane where a triangular patch is located 
[9]. Considering a ray originating at (x0 , y0 , z0) and 
shooting towards (kx , ky , kz), the ray function is written 
as                         

00001 )(,)( yzzkyxzzkx z +−=+−=  

with zx kkk /1 = and zy kkk /2 = . This requires two 

multiplications and four summations (we do not 
consider those operations solely related to the ray 
function because they are performed only once for a ray 
but not for all triangular patches being tested.). The 
plane function of a triangular patch, written as 

0=+++ dczbyax , could be determined by the 

coordinates of its three vertices by solving a set of 
inhomogeneous linear equations, which requires 36 
multiplications/divisions and 20 summations. The 
solution of the intersection needs additional seven 
multiplications/divisions and six summations. Next, the 
intersection is tested to determine whether it is inside 
the triangular patch or not. We adopt the following 
scheme: 1) Three vectors were constructed by 
connecting three vertices to the intersection. This 
requires nine summations. 2) All cross products 
between any two of the three vectors were gathered. 
This requires 18 multiplications and nine summations. 
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3) All dot products of any two vectors obtained in step 
two were obtained. This requires nine multiplications 
and six summations. If the intersection is inside the 
triangular patch, all cross products must be in the same 
direction if being calculated with a certain circulation 
order. Otherwise, their must be one cross product with a 
sign different from the others. In fact, if we find that 
two dot products have different signs, we can reach a 
conclusion immediately. This step requires 27 
multiplications and 24 summations in the worst case. 
Thus in the traditional method, totally 72 
multiplications/divisions and 64 summations are needed 
in the worst case (136 flops). 
 

 
Fig. 1. Comparison of traditional and proposed intersection 

determination approaches. 
 

The key to efficiency improvements is to bring 3-D 
operations to two-dimensional (2-D) operations. To do 
so, we first project the three vertices of a triangular 
patch onto the x-y plane of another coordinate system 
originating at (x0, y0, z0) and whose z-axis coincides 
with the direction of the ray. This requires 18 
multiplications and 21 summations. Then all cross 
products between any two of three 2-D vectors obtained 
in the first step are calculated. If the intersection is 
inside the triangular patch, all three cross products must 
be of the same sign when being calculated with a 
certain circulation order. Otherwise, their must be one 
cross product with a sign different from the others. This 
step requires six multiplications and three summations. 
Therefore, the proposed scheme requires a total of 24 
multiplications and 24 summations (48 flops). 
Compared with the traditional approach, this algorithm 
needs 35% less flops and hence is 2.83 times faster. 
Moreover, this algorithm is more accurate and robust 
because it does not involve any division operation. 

 
A.2    Ray Tracing In Cavities 

As has already been pointed out, the heart of any ray 
tracing algorithm is sorting and the key to efficiency 
improvements is exploiting data coherence [9], [10]. An 
efficient algorithm is typically achieved by avoiding 
expensive intersection computation as much as possible 
and by sorting the least possible amount of intersections 
or no such sorting at all. If all 3-D discrete points are 

given without any coherence, it would be hard to 
improve the efficiency. 

Let us assume that all discrete points are given in m 
consecutive cuts along the z-axis and let us call them z-
cut. Discrete points in one z-cut form a polygon (z-
polygon) and those in adjacent cuts form a section of 
the cavity when connected. The whole cavity is formed 
by (m -1) such sections, e.g. Fig.5 and Fig.6. With this 
model, we can search for the next reflection section by 
section from where the current reflection is and along 
either positive or negative z-directions, depending on 
the direction of the ray. In this manner, the first 
intersection must be the actual reflection and no sorting 
is needed at all. We call this method the sectional 
algorithm. 

In fact, 3-D discrete points are either specified by 
physical measurement or generated by CAD software. 
It would be natural to require them to be generated in 
the above manner. For those models which are different 
and can not be regenerated, we may run a pre-
processing program to reform them. In the following, 
we shall assume that such a model is always available. 

The sectional algorithm totally avoids sorting, but the 
number of intersection computations could still be 
large. We can further improve the performance for 
convex cavities with the following Wavefront 
Advancing and Candidate Narrowing (WACN) 
algorithm. This algorithm starts from computing the 
intersection of a ray and a z-cut and determining 
whether the intersection is inside the z-polygon. If the 
intersection is out of the current z-polygon but is inside 
the previous z-polygon, it must be reflected by the 
section formed by these two z-polygons. To test 
whether an intersection is inside a z-polygon, we need 
to specify a gauge point for each z-polygon. To 
understand the role of gauge points, we notice that any 
2-D line (formed by adjacent vertices of a z-polygon) 
divides a 2-D space (or hyper plane) into two half-
spaces. When all points in one half-space are 
substituted into the line equation, the results must bear 
the same sign [10]. If the line equation is adjusted such 
that any point from the interior of the polygon yields a 
positive (or negative) sign when being substituted into 
the line equation, we can determine whether an 
intersection is inside a z-polygon or not. A gauge point 
serves this purpose and it could be any point inside a z-
polygon. A 2-D line equation 0=+++ dczbyax  

could be solved by the coordinates of its two vertices 
with six multiplications/divisions and three 
summations. The gauging and the determination 
procedures totally require four multiplications and four 
summations. Thus for one possible triangular patch, ten 
multiplications/divisions and seven summations (17 
flops) are required. This is about 35% of the proposed 
intersection tests needed. Since the current wavefront 
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advances consecutively, we call it Wavefront 
Advancing. 

x’

y’

y’

x’

candidate points

previous z-cut

intersection

candidate points

current z-cut

intersection

 
Fig. 2. The local coordinate systems and candidate points that 

the candidate triangular patch must contain. 
 
If a reflection is about to happen in a section, the 

candidate triangular patches which are possible for 
actual reflection could be further narrowed down. This 
is accomplished through the following steps: 1) In the 
previous z-cut (where the intersection is inside the z-
polygon), construct a Cartesian coordinate system 
whose x’-axis is the projection of the ray on the z-cut 
and whose y’-axis is perpendicular to the x’-axis. 2) 
Transform all vertices of the z-polygon to this new 
coordinate system and only compute their y’ 

components. 3) Check the signs of all y’ components 
consecutively. If two adjacent y’ components are of 
opposite sign, record their indices. 4) Calculate the x’ 

components of the two pairs of points obtained in step 
three. The candidate triangular patch must contain the 
pair of points which both have positive x’ components. 
5) Repeat steps one to three for the current z-cut (where 
the intersection is out of the z-polygon). 6) Calculate 
the x’ components of the two pairs of points obtained in 
step five. The candidate triangular patch must contain 
the pair of points closest to the x’ -axis. After the above 
steps, only those triangular patch (not necessarily two 
patches) containing the two pairs of points in the 
current and previous z-cuts are possible for the actual 
reflection. The candidate triangular patches are 
narrowed down and we call this step Candidate 
Narrowing. Note that obtaining either the x’ 
components or the y’ components only requires two 
multiplications and one summation, thus expensive 
intersection tests are replaced by these simple 
operations. 
 
B.    Elementary Reflection 

In this subsection, the effect of using different cavity 
reconstruction methods for computing the reflection 
will be discussed. 
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Fig. 3. Convergence of simple triangular patches for σθθ  of 

3λ´x  9λlcircular waveguide. 
 

 
Fig. 4.  σφφ  of 10 λ lx´10 λ lcircular waveguide calculated 

by using different reconstruction methods. 
 
B.1    Simple Triangular Patch 

In this approach, each triangular patch is considered 
as a simple plane. Since the principal radii are infinite, 
the caustic problem does not exit. In general, more 
triangular patches should be used if better accuracy is 
required. To study the convergency, we calculate the θθ 
polarized mono-static RCS of a circular waveguide. 
The waveguide is of 3λ in diameter and 9λ in length. 
Different numbers of triangular patches per section, 
which are in turn represented by the number of discrete 
points per circle, is being used. The results are shown in 
Fig.3. We observe that when only 36 points per circle 
(72 patches per section) are used, there are significant 
errors for all angles. As the number of patches is 
increased, the performance improves and 180 points per 
circle yields errors within 3dB/ λ2 compared with 360 
points per circle. Fig.4 shows the φφ polarized mono-
static RCS of a circular waveguide of 10λ in diameter 
and 10λ in length. 180 points per circle are used for 
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reconstruction by simple triangular patches. Ray tracing 
is confined within 45o and the effective angle is up to 
30o - 35o

 according to theory [3]. It is observed that the 
results agree with those obtained by Modal analysis 
well up to 35o. 

Using more triangular patches makes ray tracing less 
efficient. In the following, we shall explore other 
possibilities with better performances. 
 
B.2    Coons Patch 

Since the inaccuracy with simple triangular patches is 
caused by the assumption of infinite principal radii, it is 
natural to consider using surfaces with curvature. Here 
we choose Coons patch. The Coons patch belongs to 
the family of Hermitian bicubic parametric patches. It 
only uses the information on its four corners to 
determine the parameters. To further introduce this 
method, let us denote a Coons patch with two 
parameters (u, v) as R(u, v) = {x(u, v), y(u, v),  z(u, v)}, 
with 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. If uv is used as an 
abbreviation for R(u, v), then 00, 01, 10, 11 represent 
the four corners respectively; 00u, 01u, 10u, 11u, 00v, 
01v, 10v, 11v represent the first order tangential 
derivatives at each corner; and 00uv, 01uv, 10uv, 11uv 

represent the second order tangential derivatives at each 
corner, which are also called twists. A Coons patch is 
then expressed as 

TT vvvHMHuuuuv )1,,,(][][][)1,,,( 2323 ⋅⋅⋅⋅=
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Other options for bicubic surfaces include Bézier 
surface and B-spline surface. They differ from Coons 
patch primarily by the meaning of [M] and the form of 
[H]. Since they are more often used in interactive 
graphic design, we shall not consider them here. 

The great advantage of the Coons patch (as with 
other Hermitian patches) is that when two adjacent 
Coons patches are constructed separately, the first order 
continuity (C1 continuity) across the patch edges is 
guaranteed. Thus we can construct a Coons patch 
whenever needed without considering the global C1 
continuity. Compared with triangle patches, which are 

of C0 continuity, C1 continuity is preferred in computer 
graphics because of more realistic results. 

On the other hand, the Coons patch is a cubic 
function of each of its parameter u and v. This property 
causes unnecessary surface twists and it is 
disadvantageous when being used to calculate the 
reflection and the divergence factor [DF]i. Fig.4 shows 
the φφ polarized mono-static RCS of a 10λ x´10λ l 
circular waveguide calculated by using Coons patches 
with 36 points per circle. We observe that except for the 
main lobe, the results roughly deviate from the 
reference values the most. 

To find the exact reflection position, we need to solve 
a set of linear and non-linear equations including Eq. 
(10) and the ray function. If the Newton iterative 
method is used, three to four iterations should be 
expected with good initial guesses and appropriate 
accuracy control. This procedure consumes more CPU 
time than the computation of the reflection field itself. 
 
B.3    Interpolative Triangular Patch 

In this approach, the reflection position is determined 
by treating a triangular patch as a simple plane. To 
compute the reflection direction and the divergence 
factor [DF]i, the triangular patch is assumed to have 
curvature. Its first and second order derivatives at the 
reflection position are obtained by linear interpolation 
of those at the vertices. Compared with the Coons 
patch, this approach not only eliminates surface twists, 
but also simplifies the calculation of the reflection. 

Fig.4 also depicts the φφ polarized mono-static RCS 
of a 10λ x 10λ circular waveguide calculated by using 
interpolative triangular patches with 36 points per 
circle. As can be seen, the results are much better than 
those for Coons patches with the same amount of points 
per circle and agree with the reference values the best 
(within effective angle 35o). Compared with that of 
simple triangular patches, the consideration of 
curvature improves the accuracy to higher degree at 
large angles (20o above) than at small angles. Bearing 
in mind that the improvements are obtained by using 
20% discrete points, as in the case of simple triangular 
patches, we consider this as our best choice. 

 
IV.    NUMERICAL EXAMPLES 

 
Besides the example shown in Fig.4 as a verification 

of our approach, we further show some more 
realistically shaped examples to demonstrate the 
versatility. The first example is a PEC cavity with a 
slanted front end. The cavity is formed by six sections. 
The first section is a slanted aperture of 10λ  in length. 
The angle between the normal to the aperture, i.e.n̂ , 
and the z-axis, is 45o. The angle between the plane, in 
which n̂ and the z-axis are located, and the x-axis is 0o. 
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The second section is 10λ in length and its cross section 
is a square with side lengths of 10λ. The third section is 
a 6.7λ transition region where the cross section changes 
from a square with a side length of 10λ to a circle of 
10λ in diameter. The fourth section is 8.3λ in length and 
its cross section is a circle of 10λ in diameter. The fifth 
section is another transition region of 8.3λ in length and 
its cross section changes from a circle of 10λ in 
diameter to a circle of 8λlin diameter. The final section 
is of 6.7λ in length and its cross section is a circle of 8λ 
in diameter. The geometry is shown in Fig.5 with 
adjusted axial ratios. The side view is shown in Fig.7 
with real axial ratios. All figures are in the unit of 
wavelength. 
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Fig. 5. Cavity with slanted front end. 
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Fig. 6. Cavity with axial lofting. 

 
For comparison, we built another model with a 

normal front end. The only difference is that the first 
section has the same cross section as the second section, 
i.e. the front end is perpendicular to the z-axis. Both 
cavities are terminated with simple PEC plates. 

We use interpolative triangular patches to reconstruct 
the cavity with 72 points per cross section and WACN 
algorithm for ray tracing. Fig.9 and Fig.10 show that 
both θθ and φφ polarized RCS at φ = 0o. θ takes a 

positive sign when an observation has a positive x 
coordinate and negative sign otherwise. As we see, the 
main lobes of σθθ and σφφ  of the cavity with normal 
front end do not occur at the normal incidence but at 
some larger angles. When the front end becomes 
slanted, the main lobe is close to the normal incidence 
but shifts slightly towards negative θ direction. 
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Fig. 7. Side view of the cavity with slanted front end. 

 
Note that the results for the cavity with normal front 

end are not exactly symmetrical. This is due to the low 
grid density (eight points per λ) being used in aperture 
integration. The results converge slowly to symmetrical 
forms if grid density becomes denser. Without 
exception, all aperture integration in this section will be 
performed with the above grid density. 

The second example is a concave cavity with axial 
lofting as shown in Fig.6 with adjusted axial ratios. A 
side view with real axial ratios is depicted in Fig.8. The 
axis is described by the following function with z as a 
parameter 

))100/cos((2,0 λπλ zyx −==  

Each cross section is formed by two parts. The shorter 
one is an arc of a circle of 5λ in radius. The longer one 

is described by a curve )cossin3(5 2 ψψλλ +−  with 

4π/3£≤ φ ≤ 8π/3. Both are centered at the axis. The 
cavity is also terminated by a PEC plate. 
We use interpolative triangular patches to reconstruct 
the cavity with 24 points per arc, and sectional 
algorithm for ray tracing. Fig.11 and Fig.12 reveal that 
the RCS of θθ and φφ polarization at φ = 0o and φ = 
90o. At φ = 0o, θ takes a positive sign when an 
observation has a positive x coordinate and a negative 
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sign otherwise. A similar convention holds at φ = 90o. 
The RCS at φ = 0o has main lobes at normal incidence. 
The weak asymmetry is also caused by insufficient grid 
density in aperture integration. At φ = 90o, the main 
lobes of both polarization shift toward the negative q 
direction. This corresponds to the direction where the 
termination could be illuminated directly. Note that 
there are actually two main lobes for the θθ  
polarization and its scattering is much stronger than that 
of the φφ polarization. 
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Fig. 8. Side view of the cavity with axial lofting. 

 

−30 −20 −10 0 10 20 30
15

20

25

30

35

40

45

50

θ (degrees)

σ θ 
θ (

dB
/λ

2 )

Slanted aperture
Normal aperture

 
Fig. 9. Comparison of σθθ  at φ = 0o of cavities with slanted 

and normal aperture. 
 

 

−30 −20 −10 0 10 20 30
10

15

20

25

30

35

40

45

50

θ (degrees)

σ φ 
φ (

dB
/λ

2 )

Slanted aperture
Normal aperture

 
Fig. 10. Comparison of σφφ  at φ = 0o of cavities with slanted 

and normal aperture. 
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Fig. 11. σθθ and σφφ at φ = 0o of the cavity with axial lofting. 
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Fig. 12. σθθ and σφφ at φ = 90o of the cavity with axial lofting. 
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V.    CONCLUSION 

 
 In this article, we have discussed several efficiency 

considerations of the GRE method for computing 
electromagnetic scattering from 3-D arbitrarily shaped 
deep cavities. An improved algorithm for testing the 
intersection of a ray and a triangular patch is proposed, 
which is 2.83 times faster than the traditional approach. 
Two efficient algorithms for ray tracing in 3-D discrete 
cavities - the sectional algorithm and the WACN 
algorithm - are also proposed. The WACN algorithm 
further boosts the efficiency by 2.83 times for convex 
cavities. The effects of using different reconstruction 
methods are explored. Numerical examples further 
show the validity and versatility of our approaches. 
Future work should address the implementation of these 
approaches on distributed computer systems. 
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