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Abstract.   The calculation of integrals
containing the free-space Green’s function in
electromagnetic problems is difficult to
perform with great accuracy.   Three
approaches to the calculation are
investigated.   The inadequacy of the
singularity-subtraction method is
demonstrated.   The Duffy transform is shown
to provide good results when the test-point is
on the surface being investigated.   A
Maclaurin series expansion with integration
prior to summation is shown to be efficient
and reliable both on and off the surface under
study.   Solutions, in both Cartesian and
cylindrical coordinate systems, that allow the
calculations to be performed to a pre-defined
level of accuracy are presented.

Introduction.

The magnetic vector potential, or MVP, is an
important quantity that appears in many
electromagnetic problems that involve
evaluation of electric and/or magnetic fields.
For example, it is a component in the
definition of the electric field integral equation,
EFIE [1, p17].   In this context it may exist in
its basic form or it may be subject to
differentiation.   Its use is at its most basic
when used in the solution of Hallen’s integral
equation for a cylindrical dipole.   When used
for solving Pocklington’s integro-differential
equation for the same dipole the second
differential of the MVP must be considered.
Derivatives of the MVP are also derivatives of
the Green’s function contained within the
definition of the MVP.   Because the three-
dimensional Green’s function contains a
singularity, it is preferable to keep the order of

differentiation to a minimum, preferably zero.
When it cannot be kept to zero, then one of
two actions are generally undertaken.   Either
the derivatives must be transferred to the
basis/testing function used in the solution of
the particular EFIE under investigation or one
of the special formulations that have been
developed to accommodate the differentiation
[2] [3] must be considered.   Even when one
examines the evaluation of just the non-
differentiated form of the MVP one has certain
numerical difficulties to face.   These
difficulties are addressed in this report.
Accurate evaluation of the MVP is gaining
importance as the use of higher and higher
order basis functions is considered.   Also, as
we shall see, evaluation of the MVP when the
test-point is located a short distance from the
test surface is a requirement that, while of
interest in many applications, is handled
poorly by current techniques.

As the title of this paper suggests, the over-
riding issue here is one of solution accuracy.
When calculating entries in a matrix, Z , and
then solving the corresponding matrix
equation, ZI V= , Miller [4] has shown that

the solution error, /dI I , is comparable to

the product of the error in the terms in the
matrix and the condition number of the matrix.
For example, if the error of the matrix terms,

/dZ Z , is 610−  and the condition number is
410 , the error of the solution may be no better

than 210−  - if nothing else introduces further
errors.   The resulting accuracy is at the lower
limit of usefulness.   It can be improved by
either reducing the condition number of the
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matrix or by reducing the error in the
calculation of the matrix entries.    This work is
about the latter.

After setting out some basic definitions, this
report will investigate the difficulties
associated with the most widely used
approach to the evaluation of the MVP.   The
second section will examine the use of the
Duffy [5] transform which was originally
conceived to address issues arising in the
evaluation of integrals such as found in the
MVP.   The third section will show how the
MVP can be dealt with in a manner that is not
only rigorous but also efficient.    This will be
followed by a discussion of testing,
concluding with a statement of key findings.

Definitions.

The three-dimensional MVP is defined as:

'

3 ( ') '
4 '

jk r r
e

I J r dv
r rπ

− −

=
−∫ ∫ ∫           (1)

When examining currents on surfaces, this
definition reduces to:

'

2 ( ') '
4 '

jk r r
e

I J r dv
r rπ

− −

=
−∫ ∫           (2)

In the above, r  denotes the position vector to
the test/observation point, and 'r  is the
position vector to the surface under study.
The scalar component(s), sI , of the surface

current will be represented by polynomials, in

u, in the form: 
0

p
i

s i
i

I a u
=

= ∑ .

Machine precision will be referred to often in
this study.   By machine precision we will be
referring to machine epsilon, ε , which is the
gap between 1 and the next larger floating

point number [6, p14].   ( 1)2 pε − −=  where p
is the precision of the machine in bits.
Machine precision is:

10 10log ( ) ( 1)log (2)pε = − −  (3)
Results for Compaq Fortran on an Alpha
processor are shown in Table I.

Relative error, Rel. error, is defined as:

Rel. error = 
approx ref

ref

f f

f

−
.        (4)

reff  will be defined each time that relative

error is discussed.   When evaluating integrals
one frequently compares the result, nf ,

obtained in the most recent evaluation, to the
result, 1nf −  obtained in the prior evaluation.

This is more accurately defined as
convergence rate and:

Convergence Rate 1n n

n

f f

f
−−

=      (5)

Singularity Subtraction.

The free-space Green’s function is defined as

( ) jkRG R e R−=  where R  is the distance
between the source and the observation or
test point.   The mathematical definition of R
is specific to the coordinate system in use and
will be elaborated on later.   For this section of

the report we define 2 2R u δ= + where u
is an independent variable and δ  will assume
various fixed values.   ( )G R  is split into two

parts ( ) ( ) ( )r sG R G R G R= + , where

( )rG R is the non-singular part and ( )sG R is

the singular part [7].   Specifically, we have:

0( ) / 1jkR
rG R e R R−= −         (6a)

0( ) 1sG R R=         (6b)

( )sG R  is developed from a Taylor series

expansion of ( )G R  and when possible it is
evaluated analytically [8].   An example of a
solution in the Cartesian coordinate system is
given in [1, p420].   In the event an analytical
solution is not available, a recent discussion
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of numerical methods is available in [9].   The
focus in the following is on ( )rG R .

For purposes of this immediate analysis we
express ( )rG R  in terms of its real and
imaginary components:

( ) (cos( ) 1) sin( )rG R kR R j kR R= − −         (7)

These two components, when R u=  (i.e.

0δ = ) are plotted in Figure 1.   Both
components are finite throughout the range.
However, the real component is obviously not
‘smooth’ at 0.0u = .

The results for integrating the real component
of ( )rG R  with Gauss-Legendre quadrature
are plotted in Figure 2a, where d is the same
as δ in the text.   The reference values were
calculated using the series expansion method
described later. It is observed that the
integration convergence becomes worse as

0δ → , a finding which is  somewhat
unexpected, counter-intuitive and
disconcerting.   A similar observation is
implied in Figure 2 in [10].

When evaluating integrals numerically,
particularly close to the source, it is important
to remember that integration rules generally
exhibit an error that is proportional to the
derivatives of the function being integrated.   
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Figure 1.   Plots of the real and imaginary
parts of G(R) as a function of u.
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In the case of: (cos( ) 1)f kR R= −         (8a)

then 
2

2

df k u

du R

−
≈         (8b)

and
2 3 2 2 2

2 2 33 2

d f k u k

du R R

δ
≈ − −         (8c)

From this last equation we see that as:

0u → , 
2 2

2 2

d f k

du δ
→ −         (8d)

which provides an explanation for the
behavior of the curves in Figure 2a.   To
illustrate that it is, in fact, the presence of the
discontinuity at 0u =  that creates the
problems, the lower limit of integration was
moved from 0 to 0.01u u= = .   The results
of this change are shown in Figure 2b and
clearly demonstrate that the problem has
been significantly mitigated.

For the special case of 0δ = , we find that
although there is a jump in the values of

2

2
, 

df d f

du du
 and higher derivatives when

− + moves from 0  to 0u  they are finite in that
region nevertheless, and so the integration
rules hold for this special case.

For double/triple integrals δ  is introduced into
the inner integral by the outer integral defining
the MVP and thus δ  may become arbitrarily

1 1 1 1 /
2 2 2

0 1 1

0 0 0 0 0 0

 where  and /
x y x y y KKxjkr jkr jkr

cart

e e e
I dxdy dx dy dy dx r x y z K y x

r r r

− − −

= = + = + + =∫ ∫ ∫ ∫ ∫ ∫
Substituting  and y uKx x vy K= =  in the inner integrals, we arrive at:

1 11 1

2 2 2 2 2 2
0 0 0 00 0(1/ ) ( / ) ( / )

x yjkr jkr

cart

e du e dv
I dx dy

u K z Kx v K z K y

− −

= +
+ + + +

∫ ∫ ∫ ∫        (9)

1 1/ 2 / 2 /

0 0 0 0 0 0

2 2 2
0 0

1

 

            where 4 ( )sin ,  K=
2z

z zK Kzjkr jkr jkr
p p p
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e e e
I z d dz d z dz z dz d

r r r

r z a a

π π θ

θ θ θ

π
ρ ρ θ

− − −

= = +

= + ∆ + + ∆

∫ ∫ ∫ ∫ ∫ ∫

Substituting /  and z u K vKzθ θ= =  in the inner integrals we obtain:
/ 2 1

2 2 2
0 0 0 0

( / )

4 ( )( sin / ) ( / )

p jkr

cyl

u K e du
I d

u a a K K

π θ
θ

ρ θ θ ρ θ

−

= +
+ + ∆ + ∆

∫ ∫
1 1

2 2 2
0 0 0 0(1/ ) 4 ( )(sin( ) / ) ( / )

z jkr
p e dv
z dz

K a a vKz Kz Kzρ ρ

−

+ + ∆ + ∆
∫ ∫      (10)

Equation Set 1.   The MVP equation, expressed in two different coordinate systems,
transformed, by the Duffy method, to remove the singularity at the origin.
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small, but non-zero, leading to these
problems.   Consequently, when evaluating
the real part of ( )rG R , it would appear that all
quadrature rules, when applied directly, are
doomed to fail as even the simple trapezoid
rule requires that the second derivative of the
integrand be well behaved.   With this
conclusion it is advisable to seek alternative
methods.

Singularity Removal by Transformation.

In 1982, Duffy [5] proposed a method that,
through a change of variable, causes the
removal of  the singularity in the integrand of
two and three dimensional integrals.   His
method is presented here first with a constant
current, for simplicity, in the Cartesian
coordinate system.   Currents of polynomial
form pu , are included with the discussion of
the cylindrical coordinate system.

The formalism for each of the two coordinate
systems is shown in Equation Set 1.   It allows
for the test/observer point to be offset from
the surface – by amount 0z  in the Cartesian

system and 0ρ∆  in the cylindrical system.

When the offset is zero, the formulae in the
Cartesian system clearly show that the
singularity has been removed.   Furthermore,
in this case, the denominator in the  integrand
is not dependant on the variable associated
with the outer loop other than through the
value of K , which is fixed.   Consequently,
the derivatives of the integrand are all well
behaved and one can expect that quadrature
integration will work well, and indeed it does.  

Precision ε Outer
Integral

Inner
Integral

Single 1.2E-07 7 7
Double 2.3D-16 7 13
Quad 2.0D-34 13 37

Table I.   The number of terms required in
one of the double integrals for a square
domain using the Duffy transform.

For example, using Gauss-Legendre for both
the inner and outer integrals, the numbers of
terms necessary for computing the double
integral, to a precision of 2ε , on a flat surface
are shown in Table 1.   The dimensions of the
cell were 0.0 0.1,   0.0 0.1x y≤ ≤ ≤ ≤ .
Because of symmetry in this example, the
numbers of terms, required in the two double
integrals, are the same.   All the integrals
terminate when the convergence rate falls
below the precision level, 2ε .   

When examining a cylindrical case we look at
a cell width of 0.1 wavelengths on a cylinder
of radius 0.007 wavelengths.   In addition,
polynomial representations of the current, to
the degree p, are incorporated.   Again, the
examination takes place on the surface, so
that 0 0ρ∆ = .   For this case we track the

number of terms in the outer(out) and
inner(in) integrals for the two transformed
double integrals.   We identify these as u-out,
u-in, v-out and v-in.   The results, calculated in
double precision to a  precision level of 2ε ,
are shown in Table II.   They indicate no
dependence between the degree, p, and the
number of terms.

p u-out u-in v-out v-in Total
0 11 36 8 10 476
1 9 38 9 10 432
2 10 36 10 9 450
3 13 34 9 10 532
4 12 29 10 9 438
5 11 29 10 9 409
Table II.   The number of terms required in
each of the integrals for the cylindrical
surface using the Duffy transform.

The good performance of the Duffy transform
when the offset is zero does not follow
through when the offset is some finite value.
This is revealed when the data of Table III is
examined.   This table shows the total number
of iterations needed by the integrals as a
function of the value of the offset, 0ρ∆ .   The

dimensions on a cylindrical surface are the
same as used in Table II.   A value of 0p =
was used.
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For comparative purposes Table III also
shows the results when the MVP is integrated
directly.   This is possible when the offset is
finite.   We conclude that for test/observation
points off the surface, the Duffy transform is
unacceptably inefficient.   Nevertheless, when
the test/observation point is on the surface
the transform offers a method that provides
rigorous convergence in the integrals
associated with the MVP.

A Series Expansion for ( )G R .

The Maclaurin expansion for the real and
imaginary components of the Green’s function
are:

2 4 3cos( ) 1 2! 4!..kR R R k R k R= − + (11a)

3 2 5 4sin( ) 3! 5!...kR R k k R k R= − +   (11b)

The method proposed integrates the
expansions in (11a) and (11b), term by term,
until the ratio of the last term evaluated to the
largest term evaluated is less than machine-
precision.   In this way it is possible to
develop analytical terms for the inner integral.
The terms for the expansion in (11a) are
shown in the series (12a)–(12d) and the
terms for the expansion of (11b) are shown in
(13a)–(13d). Each of these integrals is exact
for a given value of δ .   The formulae are
shown with a lower limit of 0.0u = , but this
is done for convenience only.

The Green’s function is rarely evaluated on a
stand-alone basis; rather it is evaluated in
conjunctions with a representation of the
current on the surface being studied.   We will
adopt the polynomial summation defined
earlier.   The integrals of interest are: 

2

1

Re

cos( )
u

p

u

kR
G u du

R
= ∫       (16a)

2

1

Im

sin( )
u

p

u

kR
G u du

R
= ∫       (16b)

The case of 0p =  has already been
presented in equations (12) and (13).   The
case for 1p =  is shown in equation (14) and

for 2p ≥  the relevant equation is (15).   This
last equation is applicable to the
computations of both ReG  and ImG .   Thus,

once the terms for 0p =  and 1p =  have
been evaluated, the evaluations for higher
values of p  are straightforward.

The Series Expansion, Integration and
Summation, SEIS, process described above
was tested in several ways.   The first test
revisits the calculations performed for use in
Figure 2a.    We examine the effect of varying
δ  on the number of terms required to achieve
convergence in the summations of the series.
The results of such calculations on ReG  for

0p = , shown in Figure 3, demonstrate that

the value of δ  has little impact in this context
and thus we conclude that a major goal of the
present work has been achieved.

The second series of tests performed
involved the inclusion of basis functions as
discussed earlier.   Shown below, in Equation
Set III, are analytical expressions for some
inner integrals.   Using these expressions, the
accuracy of the present method can be
examined for the inner integral when p is odd.
As a practical note, the calculation of these
inner integrals (17) to high accuracy required
the use of extremely high precision software.
That used here was developed by Bailey [11].

Offset Duffy G-L

0.0 476 N/A

0.0001 12280 4356

0.001 4504 1860

0.01 1370 952

0.1 311 143

Table III.   The effect of the offset value on
the number of integration terms for the
cylindrical surface using the Duffy transform
and Gauss-Legendre applied directly to the
double integral.
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The results for ReG  appear in Figure 4.

Results for ImG  and ReG are not visually

distinguishable and hence only the results
for ReG  are shown.   The plots clearly

show that, at most, 5, 8, or 14 terms, for
single, double or quad precision
respectively, are needed in the series
expansion for this integration range.   The
plots also clearly show that the relative

error is not dependant on p, the exponent
in the basis function used to represent the
current.   The results presented in Figure
5, for the even values of p, are referenced
with respect to their own machine
precision limited values.   Their behavior
is similar to the results for odd values of p,
which are referenced to analytical values.

2 2

0

log( ) log( )
b du

b b
R

δ δ= + + −∫   (12a)

2 2 2

0 0

1
 where 

2

b b

b b

du
Rdu bR R b

R
δ δ

 
= + = + 

 
∫ ∫   (12b)

3 3 2
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1
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4

b b
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 
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 

∫ ∫   (12c)

M
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2
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δ− − − 
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 
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0
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du b=∫   (13a)
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R du u du bδ δ= + = +∫ ∫   (13b)

5 3
4 2 2 2 2

0 0

( ) 2
5 3
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n n
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When 1p =
22

1 1

1
1  where 0

1

u uu m
m

u u u

R
uR du m

m

=+
−

=

= ≤
+∫     (14)

When 2p ≥ , a recurrence formula can be derived which takes the form:
2 2

2

1
1 1

1 2 2 21
( 1)  where 1

1

u u
u up m p m p m

u u
u u

u R du u R p u R du m
p m

δ
=− + −

=

 
= − − − ≤ 

+ +   
∫ ∫   (15)

Equation Set II.   The basic equations for the term-by-term integration of a Maclaurin
series expansion of the Green’s function and its product with a polynomial.
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Figure 3.   Convergence curves for the

real component of the Green's function

for different values of d.
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Application to the Magnetic Vector
Potential.

The application of the above procedure to
double integrals is straightforward.   The inner
integral is computed as above and then a
quadrature integration formula is applied to
the outer integral.

Cartesian coordinates.   A double integral of
interest is given by:

2 2

1

0( )
y x jkR

p
Cart

y x

e
I dy x x dx

R

−

= −∫ ∫  where

2 2 2
0 0 0( ) ( )R x x y y z= − + − + .

The surface is in the x-y plane and the test
point is at 0 0 0( , , )x y z .   In terms of the inner

integral we replace 0( )x x−  by u ,
2 2

0 0(( ) )y y z− +  by 2δ  and adjust the

integration limits appropriately.

Cylindrical coordinates.   Here, the double
integral is given by: 

2

1

2

0

0

2 2 2
0 0 0

1
( )  where 

2

( ) ( ) 4 ( )sin

z jkR
p

cyl

z

e
I d z z dz R

R

z z a a

π

φ
π

ρ ρ φ

−

= − =

− + ∆ + + ∆

∫ ∫

The surface is that of a cylinder of radius a,
and with 0 aρ∆ ≥ −  the test point is at

0 0( ,0, )a zρ+ ∆ .   In this instance
2 2 2

0 0( ) 4 ( )sina aδ ρ ρ φ= ∆ + + ∆  and

0( )u z z= −  and again the limits of

integration are appropriately adjusted.

The results for the calculation of the MVP for
a section of a cylindrical dipole with values of

0.007a λ=  and 0.0 0.1z≤ ≤  are shown
in Figures 6a and 6b.   Two quadrature
methods were investigated – the Gauss-
Legendre method and the Linlog method [12].
The reason for choosing the latter method is
that the series containing even p always
contains log terms in its real component.
Linlog was designed specifically to integrate
functions that contain polynomials and
logarithmic terms.

Both sets of calculations were performed in
quad precision.   The reference values were
calculated using 42 terms with the respective
quadrature methods.   The superiority of the
Linlog approach, when applied for even
powers of p, is clearly visible.   The relative
error is seen to reach a level of approximately
–21.4 and then remains constant.   The nodes
and weights, as originally reported, are only
known to 20 digits, hence the observation is
hardly surprising.   This, then, is the bound on
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Equation Set III.   Examples of analytical solutions for the integral for odd p.
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Figure 6a.  Performance of two integration methods on the 

real and imaginary parts of the magnetic vector potential

on the surface of a cylindrical dipole, for even values of p.
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Figure 6b.  Performance of two integration methods on the

real and imaginary parts of the magnetic vector potential

on the surface of a cylindrical dipole, for odd values of p.
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the accuracy to which this particular MVP can
be calculated using today’s tools.

It remains to examine the effect of the offset
value as was done for the Duffy transform
and reported in Table III.   Again the work is
done in double precision and is for 0p = .
The ensuing results are shown in Table IV.
Compared with the results in Table III, it is
clear that the value of the offset has little
effect on the number of terms needed to
achieve a relative accuracy equal to the
machine precision.

Offset Outer Series Total
0.0 14 8 112
0.1 17 9 153

0.01 23 7 161
0.001 24 8 192

0.0001 24 7 168
Table IV.   The effect of the offset values on
the number of integration terms for the
cylindrical surface using the term-by-term
integration of a Maclaurin series.

Comparison Between Duffy and SEIS.

The efficiency of the calculation of the MVP
by the two methods – the Duffy transform and
the  SEIS method – was investigated for the
cylindrical case already discussed.   In the
case of the Duffy transform the number of
function evaluations of both inner integrals
was counted.   In the case of the SEIS the
count was the product of the number of nodes
in the outer integral and the number of terms
in the series expansion.   The results are
shown in Figure 7.   The reference line is
located at πa.   It appears that both methods
are most efficient when the aspect ratio of the
cell under consideration is approximately 1:1.
The Duffy transform is particularly susceptible
to this phenomenon.   In the case of the SEIS
approach, at the high end of the z range, the
number increases as the value of z increases
– due to the need for more terms in the series
expansion.   At the low end of the range, the
number of terms needed in the series
expansion falls off – but the number of nodes
needed in the Linlog integration increases.

In this example, the number of integration
nodes needed for z=0.001 was 39.

Key Findings

1) It was shown that conventional
numerical methods give misleading results
when integrating the Green’s function.
Consider the results of Figure 2a.   When

0.0001δ =  the relative error changes very
little as the number of integration terms is
increased until very large numbers of terms
are employed.   The slow improvement in the
error curve would normally be interpreted as
convergence – leading to an inaccurate
evaluation.   It was shown that this behavior is
a direct consequence of the derivatives in the
neighborhood of 0u = . 

2) The results presented in Figures 2a
and 6 emphatically illustrate the poor
performance of Gauss-Legendre methods for
evaluating the real component of any of the
integrals studied.   This finding is applicable to
all quadrature methods that are applied
directly to this class of problem.
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3) The Duffy transform provides a
reliable method for computing the MVP when
the test point is on the surface.   As
implemented here, it is not suitable for use
when the test point is off the surface.   It has
the advantage that the integrals can be
evaluated using standard integration
techniques such as Gauss-Legendre.

4) The use of a Maclaurin expansion of
the Green’s function, followed by term by term
integration and careful summation provides a
stable means for calculating both the real and
imaginary components of the function.   The
method is efficient and can be used both on
and off the surface being examined.

5) Analytical solutions for the integral of
the Green’s function and its product with
polynomial representations, of odd degree, of
the surface current have been presented.
These solutions provide a method for
evaluating both the convergence and the
accuracy of the series-expansion-integration-
summation approach. 

6) The analytical results presented for
current representations of odd degree would
appear to offer an accurate and efficient
approach to the evaluation of those integrals.
However, it was found that rounding errors
seriously degraded the accuracy of such
calculations when the range of integration
was small and such an approach should be
avoided unless high precision software is
employed.

7) The algorithm used for the outer
integral, when using the series expansion-
integration-summation approach must
recognize the presence of the logarithmic
terms in the series expansion when p  is
even.   This means using the Linlog method
[12] for this particular integration.

Final Remarks

The calculation of integrals associated with
the magnetic vector potential has been
examined in depth.   The integration of the
Green’s function should not be attempted with

quadrature methods, unless some suitable
transformation to remove the singularity has
been undertaken.   An example of the latter is
the transform due to Duffy, and this is quite
suitable when the test point is on the surface.
For all-round performance, it is proposed that
the inner integral, that includes the Green’s
function, be evaluated by means of the
integration of each term of a Maclaurin
expansion.   The outer integral can then be
evaluated using the Linlog rule.   In all cases,
the integration can be taken to the precision
of the machine/compiler (single, double or
extended/quad), except that the Linlog
nodes/weights currently limit the relative error
to approximately 20 digits.   The integration of
the Maclaurin series prior to summation
provides a method that is efficient and
accurate.
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Addendum:   Procedural Considerations.

In order to assure the best possible accuracy
when evaluating series such as those in
equations (12) - (15), several “good practice”
issues need to be followed.
1) Terms that are to be added need to be
stored separately from those that are to be
subtracted.   Thus the values associated with
the upper limit in an integration formula must
be separated from those associated with the
lower limit of integration.   A similar separation
should be maintained when implementing the
Maclaurin series, noting that this involves the
additional complication of a series with
alternating signs.
2) When evaluating the terms associated with
the real part of the overall integral, negative
values may occur due to the presence of the
log term.   These should be identified and
stored appropriately.
3) Terms should be added by starting with the
smallest and proceeding to the largest.   To

this end, the two sets of terms need to be
sorted in ascending order prior to summation.
4) There is considerable repetition in the
components from one term to the next.   This
observation can be exploited to create a fast,
resource-conserving algorithm.
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