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            ABSTRACT 

Hybrid FEM/MoM methods combine the finite 
element method (FEM) and the method of moments 
(MoM) to model inhomogeneous unbounded 
problems. These two methods are coupled by 
enforcing field continuity on the boundary that 
separates the FEM and MoM regions. Hierarchical 
higher-order tangential vector finite elements 
(TVFE’s) are of practical interest because they can be 
easily combined with low-order elements to improve 
the accuracy of numerical solutions. This paper 
presents a hybrid FEM/MoM formulation applying a 
set of hierarchical TVFE’s developed by Webb and 
Forghani. Higher-order FEM elements are coupled to 
MoM elements based on Rao-Wilton-Glisson (RWG) 
functions. The FEM matrix assembly procedure is 
described in sufficient detail to aid other investigators 
who wish to develop codes employing this technique. 
Three practical electromagnetic problems are 
presented that demonstrate the advantages of the 
higher-order elements.  

                      I. INTRODUCTION 

The hybrid finite-element-method and method-of-
moments (FEM/MoM) can be used to analyze many 
kinds of electromagnetic problems effectively by 
applying FEM to model the fields in regions with 
geometric complexity and using MoM to model 
larger, simpler structures outside this region and to 
provide an accurate radiation boundary condition 
(RBC) to terminate the FEM mesh. Both the MoM 
and FEM are powerful methods, but each of these 
methods has its own advantages and disadvantages. 
MoM handles unbounded problems very effectively 
but is less efficient when complex inhomogeneities 
are present. Inhomogeneities are easily handled by 
the FEM, which requires less computer time and 
storage. However, the FEM is most suitable for 
bounded problems. Hence, hybrid FEM/MoM 
methods that combine MoM and FEM are 
advantageous for treating electromagnetic problems 
involving unbounded, complex structures.  

Conventional hybrid FEM/MoM codes employ linear 
tangential vector finite elements (TVFE’s). These 
elements are commonly referred to as Whitney 

elements defined by Nedelec [1]. Because the 
functions do not impose normal component 
continuity between tetrahedra, they do not produce 
the spurious modes that can be generated by using 
node-based elements [2]. However, these elements 
limit the accuracy of the finite element solution since 
they only support a constant tangential value along 
element edges and a linear field variation inside the 
element (CT/LN). Thus, when electric fields in a 
certain region vary quickly, the number of tetrahedra 
has to be relatively high to obtain reasonable 
accuracy. Higher-order elements that support non-
linear field variations can be used to model rapidly 
varying fields using fewer elements. One set of 
higher-order basis functions for tetrahedra supports a 
linear tangential, quadratic normal (LT/QN) 
representation of the fields. Basis functions of the 
next higher order have a quadratic tangential, cubic 
normal (QT/CuN) representation for the fields. A set 
of TVFE’s is referred to as interpolatory if values 
within the element can be interpolated from node or 
edge values. It is referred to as hierarchical if the 
lower-order basis functions are a subset of the higher 
order basis functions. Webb and Forghani [3], Savage 
and Peterson [4], Graglia et al. [5], and Andersen and 
Volakis [6] have employed LT/QN basis functions. 
The TVFE’s presented in [4] and [5] are interpolatory 
while those presented in [3] and [6] form a 
hierarchical set with the Whitney TVFE. Hierarchical 
sets of TVFE’s allow for selective field expansion 
using different order elements in different regions of 
the computational domain. Hence, for the regions 
where the fields vary slowly, the lowest order 
TVFE’s can be employed, while for the regions 
where the fields vary rapidly, higher-order TVFE’s 
can be employed. This can save memory and CPU 
time without compromising computational accuracy. 
Andersen developed and applied mixed-order 
hierarchical TVFE’s in [7].  

For MoM techniques based on EFIE formulations, 
Nedelec [1] presented a general family of divergence-
conforming functions whose lowest-order member 
was a set of CN/LT basis functions, known as Rao-
Wilton-Glisson (RWG) or triangular rooftop 
functions. These functions are widely used for 
representing surface currents in EFIE formulations. 
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In a hybrid FEM/MoM technique, hierarchical sets of 
TVFE’s are readily coupled to linear MoM boundary 
elements because the coefficients corresponding to 
any higher-order terms on the boundary can be set to 
zero to enforce the continuity of the tangential fields. 

The coefficient matrices generated by FEM/MoM 
codes may have large condition numbers. When 
LT/QN basis functions are used in the FEM, the 
condition numbers of the hybrid matrix generally 
become much larger. Savage [8] showed that 
interpolatory vector basis functions are generally 
better conditioned than hierarchical vector basis 
functions. However, only the condition numbers of 
individual element matrices were studied in [8]. 
Andersen [9] examined the inter-relationships 
between the condition numbers of element and global 
matrices based on various interpolatory and 
hierarchical TVFE’s using a cavity resonator 
example. However because they were solving for the 
eigenvalues of a cavity resonator, the condition 
numbers of the global FEM matrices were not 
considered.   

In this paper, the hybrid FEM/MoM formulation 
using the LT/QN TVFE’s described by Webb and 
Forghani in [3] is developed and applied to different 
electromagnetic problems. Section II presents the 
hybrid FEM/MoM formulation. Section III presents 
the FEM matrix assembly procedure for LT/QN 
TVFE’s. Section IV presents a set of numerical 
results that demonstrates the improved performance 
of the higher-order TVFE in the context of the 3-D 
hybrid FEM/MoM.                         

  II. FORMULATION 

In the hybrid FEM/MoM, an electromagnetic 
problem is divided into an interior equivalent part 
and an exterior equivalent part. The interior part is 
modeled using the FEM and the exterior part is 
modeled using a surface integral equation method-of-
moments technique (MoM). The two equivalent parts 
are coupled by enforcing the continuity of tangential 
fields on the FEM and MoM boundary [10].  

2.1 The Finite Element Method Using Higher -
Order TVFE’s 

FEM can be used to analyze the interior equivalent 
part by solving the weak form of the vector wave 
equation as follows [7]: 
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where S is the surface enclosing volume V, w(r) is the 
weighting function, and Jint is an impressed source. 
Equation (1) shows that efficient finite-element 
analysis of electromagnetic fields in 3-D regions 
requires computation of two element matrices. These 
two matrices are 
                         (2) ∫ ×∇•×∇=

V jiij dVE ww

                         (3) ∫ •=
V jiij dVF ww

where represents the ith vector basis function and 
V indicates integration over one tetrahedron. The six 
edges and four faces of a tetrahedron are numbered as 
indicated in Table 1 and Figure 1 [4]. 

iw

 
Table 1. Node and edge numbering scheme of a 

tetrahedron 
Edge# Node 1 Node 2  

1 1 2  
2 1 3  
3 1 4  
4 2 3  
5 2 4  
6 3 4  

Face# Node 1 Node 2 Node 3 
1 1 2 3 
2 1 2 4 
3 1 3 4 
4 2 3 4 

 

 
Figure 1. Edge and face definition of a tetrahedron. 

The linear-tangential, quadratic-normal (LT/QN) 
basis functions developed by Webb exist in two 
forms. One is edge-based functions, which are 
associated with tetrahedron edges. The other is face-
based functions, which are associated with 
tetrahedron faces. The two edge-based LT/QN basis 
functions associated with edge i are, 

                        (4) )(we1
1221 kkkkkk LLLLl ∇−∇= 61 ,,=k

            k             (5) )(we2
1221 kkkkkk LLLLl ∇+∇= 61 ,,=

where “e1” represents the first type of edge basis 
function, and “e2” represents the second type of edge 
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basis function.  is the area coordinate associated 
with the node i. It is unity at node i and decays in a 
linear fashion to zero at the other three nodes of the 
cell. l  is the length of edge i.  

iL

i

Figure 2 shows vector plots of the edge-based 
functions in a face of a tetrahedron. The two face-
based elements associated with face i are, 

                i            (6)   
231321

f1
iiiiiii LLLLLL ∇−∇=w 4,1=

                i            (7)                                      
132321

f2
iiiiiii LLLLLL ∇−∇=w 4,1=

where “f1” represents the first type of face basis 
function, and “f2” represents the second type of face 
basis function. Figure 3 shows vector plots of the 
face-based functions on a face of a tetrahedron. It 
shows that the field distributions in f1 elements and 
f2 elements are similar but they rotate in different 
directions.    
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Figure 2. Plot of the edge based basis functions. 
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Using these basis functions, the electric field E in the 
interior region can be expanded as the sum of four 
terms,  
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where  is a unit edge vector corresponding to the 
 edge. Hence, the terms associated with “e1” 

elements can be viewed as the main terms that 
describe fields along tetrahedron edges roughly, 
while the terms associated with “e2” elements can be 
viewed as adjustment terms that describe the field’s 
linear variation along tetrahedron edges. 
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  Figure 3. Plot of the face based basis functions,  
(a) w , (b) . f1

i
f2
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Since CT/LN functions have one unknown per edge, 
they generate 6× 6 local matrices. LT/QN functions 
have two unknowns per edge and two unknowns per 
face so they generate 20 × 20 local matrices. 
Applying the LT/QN basis functions to (1), a global 
FEM matrix can be constructed as follows, 
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The unknown coefficients [En] are partitioned into 
four types according to their corresponding basis 
functions and edge functions. The four categories are 
interior edges of “e1” type, which are denoted by the 
subscript i, dielectric boundary edges of type “e1”, 
which are denoted by the subscript d, interior edges 
of type “e2”, and interior faces of type “f”, which are 
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also denoted by the subscript i. The type “f1” and 
type “f2” basis functions have been combined into 
one common “f” type because they are essentially the 
same when they share the same face and rotate along 
the same edge. ,  and are set equal to zero 
on the MoM boundary to enforce the continuity of 
the tangential electric fields. Using this approach, the 
MoM part (employing linear basis functions) does 
not have to be modified to work with FEM elements 
of different order. [Js] is a set of unknown complex 
scalar coefficients for the surface electric current 
densities on the FEM and MoM boundary S. [g

e2
kE f1

kE f2
kE

int] is 
the source term, representing sources located within 
the FEM region. The elements of [A], [BdS], and [gint] 
are given by, 
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2.2 The MoM Using EFIE 

The exterior equivalent part can be analyzed using 
the EFIE [8].  
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Equation (22) can be solved using iterative solvers. 
The preconditioning technique reported in [14] can 
be used to improve the convergence rate and 
accuracy of the iterative solvers. 

The equivalent surface electric current J(r) and 
magnetic current M(r) in (15) can be discretized 
using the Rao-Wilton-Glisson basis function f(r) [9].  
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where Ns is the total number of edges on the FEM 
and MoM boundary S, and Nd is the total number of 
edges on the dielectric boundary Sd. E(r) in Equation 
(15) can be expanded using the tetrahedral CT/LN 
basis function w  as follows,              (r)e1

                         E                (18)     ( ) )( =)(
N

1=n

e1
nn

e1 rwr ∑
d

dE

On the surface S, the triangular basis function f(r) 
and the CT/LN basis function  are related by, (r)w e1

                                   w .                   (19) )(ˆ)(e1 rfr ×= n

After multiplying by weighting functions fn(r),    
n=1, ... N, the EFIE in Equation (15) can be 
discretized as follows, 

              [ ][ ] [ ][ ] [ ]ids FEDJC −= e1  .               (20) 

2.3 The Hybridization of FEM and MoM 

Equations (11) and (20) form a coupled and 
determined system. Three different formulations, the 
combined formulation, the inward-looking 
formulation and the outward-looking formulation, 
can be used to solve the coupled system [11], [14]. 
The outward-looking formulation was used for the 
examples in this paper. From (20), 

                              .                (21)    i
ds FCEDCJ 1e11  −− −=

Substituting Equation (21) into Equation (11) yields a 
determined matrix equation, 
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III. ASSEMBLY 

The aim of the assembly procedure in FEM is to 
construct the global matrix (11) by summing the 
element matrix terms for each tetrahedron in the 
mesh while guaranteeing continuity of the tangential 
electric field on the boundary between any two 
tetrahedra. For CT/LN basis functions, the assembly 
procedure is relatively straight-forward. However, for 
LT/QN basis functions, more details have to be 
considered in order to get the correct global matrix. 
This section describes the assembly procedure for 
LT/QN TVFE’s. 

For “e1” elements, Equation (4) and Figure 2(a) 
indicate that the complex scalar  is the projection 
of the electric field onto the k  edge. When the local 
edge vector (as defined in Table 1) is reversed, 
Equation (4) will be reversed at the same time. 
Therefore, to ensure the continuity of the tangential 

e1
kE

th
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electric field across all edges, a unique global edge 
direction must be defined (e.g. always pointing from 
the smaller node number to the larger node number). 
Equation (4) must be multiplied by (-1) if the local 
edge vector does not have the same direction as the 
global edge direction. 

For “e2” elements, the continuity of the tangential 
electric field across all edges must also be satisfied. 
From Figure 2 (b) and Equation (5), it is clear that 
when the local edge vector is reversed, there is no 
change in Equation (5). Therefore Equation (5) 
should not be multiplied by (-1) even when the local 
edge vector does not have the same direction as the 
global edge direction. When a FEM edge is on the 
boundary between FEM and MoM,  associated 
with this edge is set to zero.  

e2
kE

For “f1” and “f2” elements, the continuity of the 
tangential field needs to be enforced across all faces. 
From Figure 3, two local E can be regarded as a 
common global unknown only if they share the same 
face and rotate along the same edge.  When the local 
edge vector, as defined in Table 1, is reversed, 
Equation (6) and Equation (7) will be reversed at the 
same time. Therefore, Equation (6) and Equation (7) 
should be multiplied by (-1) if the local edge vector 
does not have the same direction as the global edge 
direction.  

f
k

As illustrated in Figure 4, there are generally four 
kinds of faces. In (a), the three edges of the face are 
all within the FEM volume. In (b), one or two edges 
of the face are on the FEM/MoM boundary. In (c), 
the three edges of the face are all on the FEM/MoM 
boundary while the area of the face is located in the 
FEM volume. In (d), the three edges and the area of 
the face are all on the FEM and MoM boundary. 
Normally, at the interface between higher-order FEM 
elements and CN/LT MoM elements, the higher-
order terms, , are set to zero. However, for the 
faces of type (a), (b) and (c), the complex scalar E  
rotating along the edge that is located on the 
FEM/MoM boundary, represents fields within the 
FEM volume and cannot be set to zero. Allowing 
these terms to have a non-zero value will not affect 
the coupling between FEM and MoM, since their 
projection on the boundary is equal to zero. For the 
faces of type (d), complex scalars  and 

corresponding to this type must be set to zero.  

f
kE

f
k

f1
kE

f2
kE

IV. NUMERICAL RESULTS 

This section describes three examples illustrating the 
performance of the hybrid FEM/MoM with CT/LN 
and LT/QN FEM basis functions. All matrices were 

solved using a biconjugate gradient stabilized solver 
[11]. A 750-MHz Pentium III computer was used to 
perform the computation. 

 

                
                                 (a)                                                               

               
                                  (b) 

                          
                                  (c)                                                                

                  
                                   (d) 

 
Figure 4. Faces in a tetrahedron. 

4.1 The Scattered Field from a Sphere 

This example models the scattering of an 
electromagnetic plane wave by a dielectric sphere. As 
shown in Figure 5, the radius of the sphere is 0.09 m 
and the relative permittivity is 4.5. The incident wave 
propagates in the 

∧

+ z direction. The wave has 

amplitude and is polarized in the  direction, 0E
∧

x
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  Figure 5. Scattered field from a dielectric sphere. 
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A commercial software package was used to 
discretize the FEM volume with different densities to 
demonstrate the advantages of the proposed higher-
order TVFE’s. The MoM boundary was chosen to 
coincide with the physical boundary of the dielectric 
sphere. The number of MoM basis functions was 
fixed during the whole process. For validation, results 
using the Mie series [15] were compared to the 
FEM/MoM results. In Figure 6, we compare results 
for the three-dimensional bistatic scattering cross 
section at a frequency of 583 MHz. The Mie series 
result is denoted “Mie.” For a mesh with a small 
number of tetrahedra, the result using the CT/LN 
TVFE is denoted “CT/LN TVFE coarse,” and the 
result using the LT/QN TVFE is denoted “LT/QN 
TVFE coarse.” For a mesh with a larger number of 
tetrahedra, the result using the CT/LN TVFE is 
denoted “CT/LN TVFE dense.” 

In Figure 6, the “CT/LN TVFE coarse” result is seen 
to compare fairly well with the exact Mie series result 
when the observation angle is between 100 degrees 
and 180 degrees. When the observation angle is 
below 100 degrees, a 1-dB discrepancy can be seen 
because the mesh is relatively coarse. For the denser 
mesh, the “CT/LN TVFE dense” result shows a 
significant improvement. By keeping the original 
coarse mesh and applying the LT/QN basis functions, 
the “LT/QN TVFE coarse” result agrees with the 
exact result very well. Even compared with the 
“CT/LN TVFE dense” result, the “LT/QN TVFE 
result” is closer to the exact result. Table 2 presents 
relevant parameters for the three results. Improved 
accuracy is obtained with less computer resources 
using LT/QN FEM basis functions.  
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     Figure 6. Bistatic RCS of the dielectric sphere 
at 583 MHz.  

 
     Table 2. Comparison between the results in Fig. 6 

FEM Part FEM 
Unkno-

wns 

MoM 
Unkno-

wns 

Average 
Edge 

Length 
(mm) 

FEM 
Matrix 
Non -
zeros 

Solver 
Time 
(sec) 

CT/LN 
Coarse 

405 346      9.1 2379 28 

CT/LN 
Dense 

3266 346      4.3 18336 275 

LT/QN 
Coarse 

2430 346      9.1 51052 213 

4.2 Input Impedance of a Power Bus Structure  

This example models a printed circuit board (PCB) 
power bus structure. As shown in Figure 7, the board 
dimensions are 7.6 cm × 5.1 cm × 1.1 mm. The top 
and bottom planes are perfect electric conductors 
(PECs). The dielectric between the PEC layers has a 
relative permittivity of 3.81(1-j0.01). The MoM 
boundary is chosen to coincide with the physical 
boundary of the board. A source is identified at the 
location shown in Figure 7.  

 

51 mm

76 mm

1.14 mm

Source

x

y
z

Source:  (28,   25, 0) and (28,   25, 1.14)
 

εr = 3.81(1-j0.01)

PEC

 
             Figure 7. A PCB power bus structure. 
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Unlike the previous example, the fields in this 
configuration are relatively uniform. The electric 
field in the FEM region is vertically oriented and 
constant in the vertical direction. It is not obvious 
that a higher-order FEM element would benefit the 
analysis of this configuration. 

The FEM uses a current filament on tetrahedron 
edges to model sources located within the FEM 
region [16]. A current source along the z-axis can be 
expressed as, 

                                     (24) ∧

−−= zJ )()(int
ff yyxxI δδ

where (xf, yf) specifies its position, I denotes the 
electric current magnitude, and δ(x) is the Dirac delta 
function. The contribution to vector [gint] in Equation 
(24) is simply, 
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For f1 and f2 basis functions 

                                   g                                 (28) 0f
int =

since the tangential components of these functions 
along element edges are zero. 

The power bus structure can also be modeled 
analytically as a cavity with two PEC and four 
perfect magnetic conductor (PMC) walls. The 
analytical resonance frequencies are given as follows 
(for µr = 1.0) [17], 
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where a and b are the length and width of the cavity, 
respectively; m and n are the mode indices; c is the 
speed of light in free space; and εr is the relative 
permittivity of the material in the cavity. For this 
power bus structure, only TMz modes are excited. 
From Equation (29), the TMz (1,0) mode’s resonance 
frequency is 1011.1 MHz and the TMz (2,0) mode’s 
resonance frequency is 2022.3 MHz.  

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
23.5

23.6

23.7

23.8

23.9

24

24.1

24.2

CT/LN coarse

CT/LN middle     
CT/LN dense

2010 2015 2020 2025 2030 2035 2040
0

50

100

150

200

 

 

  |Zin|
(Ohm)

Frequency (MHz)

LT/QN coarse    

1011.1 MHz

 
(a) TMz (1,0) mode 

 

  

  |Zin|
(Ohm)

Frequency (MHz)

CT/LN coarse

CT/LN middle     
CT/LN dense
LT/QN coarse    

2022.3

 
(b) TMz (2,0)  

Figure 8. Input impedance of the power bus structure. 

 
In Figure 8, the computed input impedances of the 
power bus structure near these two resonance 
frequencies are compared. For a mesh with a number 
of tetrahedra between that of coarse mesh and dense 
mesh, the result using the CT/LN TVFE is denoted 
“CT/LN middle.” The “LT/QN coarse” and “CT/LN 
coarse” examples employ the same mesh. It can be 
seen from Figure 8 that of the four cases, the “LT/QN 
coarse” results most accurately predict the resonance 
frequencies. Table 3 presents relevant parameters for 
the four cases. Once again the LT/QN coarse mesh 
yields more accurate results with fewer computer 
resources than a dense CT/LN mesh. 
 
Table 3. Comparison between different formulations 
Formulations Unknowns FEM 

non-
zero 

Solver 
time 
(sec) 

CT/LN Coarse 467 4097 0.89 
CT/LN Middle 1162 9940 1.54 
CT/LN Dense 5041 42039 14.3 
LT/QN Coarse 4124 87970 6.8 
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In [9], the inter-relationships between the condition 
numbers of individual elements as well as global 
matrices based on various interpolatory and 
hierarchical TVFE’s were studied using a cavity 
resonator example. It was found that the LT/QN 
TVFE by Andersen and Volakis [7] resulted in better 
conditioned FEM matrices than the TVFE by Webb 
and Forghani. Since resonant structures like this 
power bus can be particularly susceptible to 
numerical error, this structure was also analyzed 
using higher-order elements based on the LT/QN 
elements in [7]. Figure 9 compares the condition 
numbers of the global FEM matrices generated by 
this example based on Andersen’s and Webb’s 
LT/QN basis functions. The term ‘norm’ denotes the 
normalized basis functions described in Appendix A. 
Up to 3 GHz, the LT/QN TVFE in [7] yields slightly 
better conditioned matrices than the TVFE in [5]. 
Normalized vector basis functions yield much 
smaller condition numbers than unnormalized vector 
basis functions. 
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Figure 9. Condition numbers of the global FEM 
matrix based on different LT/QN basis functions. 

 

4.3 Input Impedance of a Microstrip Structure 

Numerical models of printed circuit board (PCB) 
geometries often include at least one microstrip 
structure (i.e. a trace over a plane). When these 
structures are modeled using a finite element 
technique with CT/LN basis elements, it is not 
uncommon to model the space between the trace and 
the plane with a single layer of elements. This 
approach generally yields good results when the trace 
is wide (e.g. the power bus structure) or when far-
field results are calculated. However, for narrow 
traces or when calculating near-field properties (e.g. 
input impedance or crosstalk), a single layer of 
elements may not be adequate [16].  
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    Figure 10. The geometry of a microstrip structure. 
 

Figure 10 shows the geometry of a PCB with a thin 
trace. The trace width is only slightly greater than the 
trace height. The board is made of a dielectric with 

rε =4.2. The trace is excited by a current source at 
one end, and is terminated by a 47-ohm resistor at the 
other end. The MoM boundary is chosen to coincide 
with the physical boundary of the board. 

The FEM code models load impedances  as 
dielectric posts on tetrahedron edges [17]. Those 
posts have a finite conductivity given by  

LZ

                                      
SZ

l

L

=σ                            (30) 

where is its length, and is the cross sectional 
area. If the load is treated as a lumped element, its 
contribution to the finite element matrix is, 

l S

                              

[ ] { } { }
L

LL
T

L Z
ldxdydzyyxx

SZ
lA

2
e1e1e1 ))(( =−−•= ∫∫∫ δww

                                                                               (31) 

for the e1 basis function, and, 
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)(
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2
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21
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∫

∫∫∫ δww
   

                                                                               (32) 

for the e2 basis function, and, 

                                       [ ] 0f =A                             (33) 

for the f1 and f2 basis functions. The electric field 
lines around the trace are illustrated in Figure 11 
[18]. Since the electric field around the trace varies 
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dramatically, the coarse mesh used to divide the FEM 
volume in the previous power bus example does not 
work here. Figure 11 also shows two meshes for a 
microstrip geometry. The coarse mesh is one element 
tall and the fine mesh is two elements tall. 

Figure 12 shows the measured and calculated results 
for a 47-ohm termination up to 1 GHz. Note that the 
coarse mesh yields a poor result with CT/LN 
elements while the dense mesh results are close to the 
measured results. The LT/QN result with the coarse 
mesh also yields an accurate result. 
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Figure 11. Cross-sectional view of the electric field 
and FEM meshes used to analyze the microstrip 
structure. 
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  Figure 12. Input impedance of microstrip structure  
 

                         VI.  CONCLUSIONS 

This paper presents a hybrid FEM/MoM formulation 
using higher-order (LT/QN) tangential vector finite 
elements. There are several kinds of LT/QN TVFE’s. 
The basis functions developed by Webb and Forghani 
are applied here since they result in simpler 

derivations compared to other hierarchical higher-
order basis functions. The properties of the LT/QN 
basis functions are discussed and compared to 
traditional CT/LN basis functions. Three examples 
demonstrate that higher-order basis functions are 
capable of providing more accurate results with a 
coarser tetrahedral mesh and less computational 
resources. The condition numbers of the global FEM 
matrices derived from a power bus structure on the 
basis of various hierarchical LT/QN basis functions 
are compared. It is confirmed that the TVFE by 
Andersen results in somewhat better conditioned 
matrices than the TVFE by Webb and Forghani. 
Also, normalized vector basis functions are observed 
to result in much smaller condition numbers than 
unnormalized vector basis functions.     
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    APPENDIX A 
 
FEM analysis requires computation of two matrices. 
These two matrices are, 

                                       (A1) ∫ ×∇•×∇=
V jiij dVE ww

                            .                     (A2) ∫ •=
V jiij dVF ww

 
A. CT/LN TVFE 
                         )( 1221i iiiii LLLLl ∇−∇=w .              (A3) 
 
B. Webb’s unnormalized LT/QN TVFE 
Edge element 
                        w                 (A4)    )( 1221

e1
iiiiii LLLLl ∇−∇=

               i         (A5) )( 1221
e2

iiiiii LLLLl ∇+∇=w 6,1=
Face element  
                                   (A6) 

231321
f1

iiiiiii LLLLLL ∇−∇=w
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132321
2
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f
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B. Webb’s normalized LT/QN TVFE 
Edge element  
                         w                   (A8) 

1221
e1
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            w     i              (A9) 

1221
e2

iiiii LLLL ∇+∇= 6,1=
Face element     
                    w              (A10) 
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f1
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               i     (A11) 

132321
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C. Andersen’s unnormalized LT/QN TVFE 
Edge element      
                                      (A12) )( 1221

e1
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D. Andersen’s normalized LT/QN TVFE 
Edge element  
                                         (A16) 
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