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APPLICATION OF HIERARCHICAL HIGHER-ORDER TANGENTIAL VECTOR 
FINITE ELEMENTS IN A HYBRID FEM/MOM METHOD 

 
Hao Wang, ChunLei Guo, and Todd H. Hubing  

Department of Electrical and Computer Engineering 
University of Missouri-Rolla 

Rolla, MO 65409 
 

            ABSTRACT 

Hybrid FEM/MoM methods combine the finite 
element method (FEM) and the method of moments 
(MoM) to model inhomogeneous unbounded 
problems. These two methods are coupled by 
enforcing field continuity on the boundary that 
separates the FEM and MoM regions. Hierarchical 
higher-order tangential vector finite elements 
(TVFE’s) are of practical interest because they can be 
easily combined with low-order elements to improve 
the accuracy of numerical solutions. This paper 
presents a hybrid FEM/MoM formulation applying a 
set of hierarchical TVFE’s developed by Webb and 
Forghani. Higher-order FEM elements are coupled to 
MoM elements based on Rao-Wilton-Glisson (RWG) 
functions. The FEM matrix assembly procedure is 
described in sufficient detail to aid other investigators 
who wish to develop codes employing this technique. 
Three practical electromagnetic problems are 
presented that demonstrate the advantages of the 
higher-order elements.  

                      I. INTRODUCTION 

The hybrid finite-element-method and method-of-
moments (FEM/MoM) can be used to analyze many 
kinds of electromagnetic problems effectively by 
applying FEM to model the fields in regions with 
geometric complexity and using MoM to model 
larger, simpler structures outside this region and to 
provide an accurate radiation boundary condition 
(RBC) to terminate the FEM mesh. Both the MoM 
and FEM are powerful methods, but each of these 
methods has its own advantages and disadvantages. 
MoM handles unbounded problems very effectively 
but is less efficient when complex inhomogeneities 
are present. Inhomogeneities are easily handled by 
the FEM, which requires less computer time and 
storage. However, the FEM is most suitable for 
bounded problems. Hence, hybrid FEM/MoM 
methods that combine MoM and FEM are 
advantageous for treating electromagnetic problems 
involving unbounded, complex structures.  

Conventional hybrid FEM/MoM codes employ linear 
tangential vector finite elements (TVFE’s). These 
elements are commonly referred to as Whitney 

elements defined by Nedelec [1]. Because the 
functions do not impose normal component 
continuity between tetrahedra, they do not produce 
the spurious modes that can be generated by using 
node-based elements [2]. However, these elements 
limit the accuracy of the finite element solution since 
they only support a constant tangential value along 
element edges and a linear field variation inside the 
element (CT/LN). Thus, when electric fields in a 
certain region vary quickly, the number of tetrahedra 
has to be relatively high to obtain reasonable 
accuracy. Higher-order elements that support non-
linear field variations can be used to model rapidly 
varying fields using fewer elements. One set of 
higher-order basis functions for tetrahedra supports a 
linear tangential, quadratic normal (LT/QN) 
representation of the fields. Basis functions of the 
next higher order have a quadratic tangential, cubic 
normal (QT/CuN) representation for the fields. A set 
of TVFE’s is referred to as interpolatory if values 
within the element can be interpolated from node or 
edge values. It is referred to as hierarchical if the 
lower-order basis functions are a subset of the higher 
order basis functions. Webb and Forghani [3], Savage 
and Peterson [4], Graglia et al. [5], and Andersen and 
Volakis [6] have employed LT/QN basis functions. 
The TVFE’s presented in [4] and [5] are interpolatory 
while those presented in [3] and [6] form a 
hierarchical set with the Whitney TVFE. Hierarchical 
sets of TVFE’s allow for selective field expansion 
using different order elements in different regions of 
the computational domain. Hence, for the regions 
where the fields vary slowly, the lowest order 
TVFE’s can be employed, while for the regions 
where the fields vary rapidly, higher-order TVFE’s 
can be employed. This can save memory and CPU 
time without compromising computational accuracy. 
Andersen developed and applied mixed-order 
hierarchical TVFE’s in [7].  

For MoM techniques based on EFIE formulations, 
Nedelec [1] presented a general family of divergence-
conforming functions whose lowest-order member 
was a set of CN/LT basis functions, known as Rao-
Wilton-Glisson (RWG) or triangular rooftop 
functions. These functions are widely used for 
representing surface currents in EFIE formulations. 
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In a hybrid FEM/MoM technique, hierarchical sets of 
TVFE’s are readily coupled to linear MoM boundary 
elements because the coefficients corresponding to 
any higher-order terms on the boundary can be set to 
zero to enforce the continuity of the tangential fields. 

The coefficient matrices generated by FEM/MoM 
codes may have large condition numbers. When 
LT/QN basis functions are used in the FEM, the 
condition numbers of the hybrid matrix generally 
become much larger. Savage [8] showed that 
interpolatory vector basis functions are generally 
better conditioned than hierarchical vector basis 
functions. However, only the condition numbers of 
individual element matrices were studied in [8]. 
Andersen [9] examined the inter-relationships 
between the condition numbers of element and global 
matrices based on various interpolatory and 
hierarchical TVFE’s using a cavity resonator 
example. However because they were solving for the 
eigenvalues of a cavity resonator, the condition 
numbers of the global FEM matrices were not 
considered.   

In this paper, the hybrid FEM/MoM formulation 
using the LT/QN TVFE’s described by Webb and 
Forghani in [3] is developed and applied to different 
electromagnetic problems. Section II presents the 
hybrid FEM/MoM formulation. Section III presents 
the FEM matrix assembly procedure for LT/QN 
TVFE’s. Section IV presents a set of numerical 
results that demonstrates the improved performance 
of the higher-order TVFE in the context of the 3-D 
hybrid FEM/MoM.                         

  II. FORMULATION 

In the hybrid FEM/MoM, an electromagnetic 
problem is divided into an interior equivalent part 
and an exterior equivalent part. The interior part is 
modeled using the FEM and the exterior part is 
modeled using a surface integral equation method-of-
moments technique (MoM). The two equivalent parts 
are coupled by enforcing the continuity of tangential 
fields on the FEM and MoM boundary [10].  

2.1 The Finite Element Method Using Higher -
Order TVFE’s 

FEM can be used to analyze the interior equivalent 
part by solving the weak form of the vector wave 
equation as follows [7]: 

             )(  )(  + ))((  
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where S is the surface enclosing volume V, w(r) is the 
weighting function, and Jint is an impressed source. 
Equation (1) shows that efficient finite-element 
analysis of electromagnetic fields in 3-D regions 
requires computation of two element matrices. These 
two matrices are 
                         (2) ∫ ×∇•×∇=

V jiij dVE ww

                         (3) ∫ •=
V jiij dVF ww

where represents the ith vector basis function and 
V indicates integration over one tetrahedron. The six 
edges and four faces of a tetrahedron are numbered as 
indicated in Table 1 and Figure 1 [4]. 

iw

 
Table 1. Node and edge numbering scheme of a 

tetrahedron 
Edge# Node 1 Node 2  

1 1 2  
2 1 3  
3 1 4  
4 2 3  
5 2 4  
6 3 4  

Face# Node 1 Node 2 Node 3 
1 1 2 3 
2 1 2 4 
3 1 3 4 
4 2 3 4 

 

 
Figure 1. Edge and face definition of a tetrahedron. 

The linear-tangential, quadratic-normal (LT/QN) 
basis functions developed by Webb exist in two 
forms. One is edge-based functions, which are 
associated with tetrahedron edges. The other is face-
based functions, which are associated with 
tetrahedron faces. The two edge-based LT/QN basis 
functions associated with edge i are, 

                        (4) )(we1
1221 kkkkkk LLLLl ∇−∇= 61 ,,=k

            k             (5) )(we2
1221 kkkkkk LLLLl ∇+∇= 61 ,,=

where “e1” represents the first type of edge basis 
function, and “e2” represents the second type of edge 
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basis function.  is the area coordinate associated 
with the node i. It is unity at node i and decays in a 
linear fashion to zero at the other three nodes of the 
cell. l  is the length of edge i.  

iL

i

Figure 2 shows vector plots of the edge-based 
functions in a face of a tetrahedron. The two face-
based elements associated with face i are, 

                i            (6)   
231321

f1
iiiiiii LLLLLL ∇−∇=w 4,1=

                i            (7)                                      
132321

f2
iiiiiii LLLLLL ∇−∇=w 4,1=

where “f1” represents the first type of face basis 
function, and “f2” represents the second type of face 
basis function. Figure 3 shows vector plots of the 
face-based functions on a face of a tetrahedron. It 
shows that the field distributions in f1 elements and 
f2 elements are similar but they rotate in different 
directions.    

 

                1 2

3

    
                             (a)                                                                                                                     (b) 

                1 2

3

 
                              (b) 

 
Figure 2. Plot of the edge based basis functions. 

(a) , (b) w .  e1
iw e2

i

Using these basis functions, the electric field E in the 
interior region can be expanded as the sum of four 
terms,  
          E(r) .  (8)    ∑

=

+++=
vN

k
kkkkkkkk EEEE

1

f2f2f1f1e2e2e1e1 )(  wwww

The basis function  has the following properties: 
kw
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where  is a unit edge vector corresponding to the 
 edge. Hence, the terms associated with “e1” 

elements can be viewed as the main terms that 
describe fields along tetrahedron edges roughly, 
while the terms associated with “e2” elements can be 
viewed as adjustment terms that describe the field’s 
linear variation along tetrahedron edges. 

ke
thk

                          1 2

3

   
                                         (a)     
                                                                        

      1 2

3

 

  Figure 3. Plot of the face based basis functions,  
(a) w , (b) . f1

i
f2
iw

Since CT/LN functions have one unknown per edge, 
they generate 6× 6 local matrices. LT/QN functions 
have two unknowns per edge and two unknowns per 
face so they generate 20 × 20 local matrices. 
Applying the LT/QN basis functions to (1), a global 
FEM matrix can be constructed as follows, 
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
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
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

The unknown coefficients [En] are partitioned into 
four types according to their corresponding basis 
functions and edge functions. The four categories are 
interior edges of “e1” type, which are denoted by the 
subscript i, dielectric boundary edges of type “e1”, 
which are denoted by the subscript d, interior edges 
of type “e2”, and interior faces of type “f”, which are 
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also denoted by the subscript i. The type “f1” and 
type “f2” basis functions have been combined into 
one common “f” type because they are essentially the 
same when they share the same face and rotate along 
the same edge. ,  and are set equal to zero 
on the MoM boundary to enforce the continuity of 
the tangential electric fields. Using this approach, the 
MoM part (employing linear basis functions) does 
not have to be modified to work with FEM elements 
of different order. [Js] is a set of unknown complex 
scalar coefficients for the surface electric current 
densities on the FEM and MoM boundary S. [g

e2
kE f1

kE f2
kE

int] is 
the source term, representing sources located within 
the FEM region. The elements of [A], [BdS], and [gint] 
are given by, 

                ∫ µωµ
×∇•×∇

=
V r

mn j
A

0

(r))w((r))w([ mn  

                                       (12)   dVj r )]()( mn0 rwrw •εωε+

                           
                   B                  (13) ∫ •=

dS
mn dSr)(w)r(f mn

 
( ) dV   
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r0V
m  )(w 1 m

intintint rMJ •







×∇+−= ∫ µµω . (14) 

2.2 The MoM Using EFIE 

The exterior equivalent part can be analyzed using 
the EFIE [8].  

      

) ,(G)([)(= 
2

)(
0

inc rrrrE
rE ′∇′×′−+ ∫ M
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dS)] r′
k

jk ,r( G )r(J  )r,r(G)r(J  000 ∇′′•∇′
η

+′′η
0

0
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Equation (22) can be solved using iterative solvers. 
The preconditioning technique reported in [14] can 
be used to improve the convergence rate and 
accuracy of the iterative solvers. 

The equivalent surface electric current J(r) and 
magnetic current M(r) in (15) can be discretized 
using the Rao-Wilton-Glisson basis function f(r) [9].  

                               J                    (16) ( ) )( =)( n

N

1=n
 n rfr ∑

S

sJ

N                             M                   (17) ( ) )()( n
1=n

 n
e1 rfr ∑=

d

dE

where Ns is the total number of edges on the FEM 
and MoM boundary S, and Nd is the total number of 
edges on the dielectric boundary Sd. E(r) in Equation 
(15) can be expanded using the tetrahedral CT/LN 
basis function w  as follows,              (r)e1

                         E                (18)     ( ) )( =)(
N

1=n

e1
nn

e1 rwr ∑
d

dE

On the surface S, the triangular basis function f(r) 
and the CT/LN basis function  are related by, (r)w e1

                                   w .                   (19) )(ˆ)(e1 rfr ×= n

After multiplying by weighting functions fn(r),    
n=1, ... N, the EFIE in Equation (15) can be 
discretized as follows, 

              [ ][ ] [ ][ ] [ ]ids FEDJC −= e1  .               (20) 

2.3 The Hybridization of FEM and MoM 

Equations (11) and (20) form a coupled and 
determined system. Three different formulations, the 
combined formulation, the inward-looking 
formulation and the outward-looking formulation, 
can be used to solve the coupled system [11], [14]. 
The outward-looking formulation was used for the 
examples in this paper. From (20), 

                              .                (21)    i
ds FCEDCJ 1e11  −− −=

Substituting Equation (21) into Equation (11) yields a 
determined matrix equation, 
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III. ASSEMBLY 

The aim of the assembly procedure in FEM is to 
construct the global matrix (11) by summing the 
element matrix terms for each tetrahedron in the 
mesh while guaranteeing continuity of the tangential 
electric field on the boundary between any two 
tetrahedra. For CT/LN basis functions, the assembly 
procedure is relatively straight-forward. However, for 
LT/QN basis functions, more details have to be 
considered in order to get the correct global matrix. 
This section describes the assembly procedure for 
LT/QN TVFE’s. 

For “e1” elements, Equation (4) and Figure 2(a) 
indicate that the complex scalar  is the projection 
of the electric field onto the k  edge. When the local 
edge vector (as defined in Table 1) is reversed, 
Equation (4) will be reversed at the same time. 
Therefore, to ensure the continuity of the tangential 

e1
kE

th
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electric field across all edges, a unique global edge 
direction must be defined (e.g. always pointing from 
the smaller node number to the larger node number). 
Equation (4) must be multiplied by (-1) if the local 
edge vector does not have the same direction as the 
global edge direction. 

For “e2” elements, the continuity of the tangential 
electric field across all edges must also be satisfied. 
From Figure 2 (b) and Equation (5), it is clear that 
when the local edge vector is reversed, there is no 
change in Equation (5). Therefore Equation (5) 
should not be multiplied by (-1) even when the local 
edge vector does not have the same direction as the 
global edge direction. When a FEM edge is on the 
boundary between FEM and MoM,  associated 
with this edge is set to zero.  

e2
kE

For “f1” and “f2” elements, the continuity of the 
tangential field needs to be enforced across all faces. 
From Figure 3, two local E can be regarded as a 
common global unknown only if they share the same 
face and rotate along the same edge.  When the local 
edge vector, as defined in Table 1, is reversed, 
Equation (6) and Equation (7) will be reversed at the 
same time. Therefore, Equation (6) and Equation (7) 
should be multiplied by (-1) if the local edge vector 
does not have the same direction as the global edge 
direction.  

f
k

As illustrated in Figure 4, there are generally four 
kinds of faces. In (a), the three edges of the face are 
all within the FEM volume. In (b), one or two edges 
of the face are on the FEM/MoM boundary. In (c), 
the three edges of the face are all on the FEM/MoM 
boundary while the area of the face is located in the 
FEM volume. In (d), the three edges and the area of 
the face are all on the FEM and MoM boundary. 
Normally, at the interface between higher-order FEM 
elements and CN/LT MoM elements, the higher-
order terms, , are set to zero. However, for the 
faces of type (a), (b) and (c), the complex scalar E  
rotating along the edge that is located on the 
FEM/MoM boundary, represents fields within the 
FEM volume and cannot be set to zero. Allowing 
these terms to have a non-zero value will not affect 
the coupling between FEM and MoM, since their 
projection on the boundary is equal to zero. For the 
faces of type (d), complex scalars  and 

corresponding to this type must be set to zero.  

f
kE

f
k

f1
kE

f2
kE

IV. NUMERICAL RESULTS 

This section describes three examples illustrating the 
performance of the hybrid FEM/MoM with CT/LN 
and LT/QN FEM basis functions. All matrices were 

solved using a biconjugate gradient stabilized solver 
[11]. A 750-MHz Pentium III computer was used to 
perform the computation. 

 

                
                                 (a)                                                               

               
                                  (b) 

                          
                                  (c)                                                                

                  
                                   (d) 

 
Figure 4. Faces in a tetrahedron. 

4.1 The Scattered Field from a Sphere 

This example models the scattering of an 
electromagnetic plane wave by a dielectric sphere. As 
shown in Figure 5, the radius of the sphere is 0.09 m 
and the relative permittivity is 4.5. The incident wave 
propagates in the 

∧

+ z direction. The wave has 

amplitude and is polarized in the  direction, 0E
∧

x
 
                      E .                 (23) )(

0),,,( zwtj
xeEtzyx β−= e
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  Figure 5. Scattered field from a dielectric sphere. 
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A commercial software package was used to 
discretize the FEM volume with different densities to 
demonstrate the advantages of the proposed higher-
order TVFE’s. The MoM boundary was chosen to 
coincide with the physical boundary of the dielectric 
sphere. The number of MoM basis functions was 
fixed during the whole process. For validation, results 
using the Mie series [15] were compared to the 
FEM/MoM results. In Figure 6, we compare results 
for the three-dimensional bistatic scattering cross 
section at a frequency of 583 MHz. The Mie series 
result is denoted “Mie.” For a mesh with a small 
number of tetrahedra, the result using the CT/LN 
TVFE is denoted “CT/LN TVFE coarse,” and the 
result using the LT/QN TVFE is denoted “LT/QN 
TVFE coarse.” For a mesh with a larger number of 
tetrahedra, the result using the CT/LN TVFE is 
denoted “CT/LN TVFE dense.” 

In Figure 6, the “CT/LN TVFE coarse” result is seen 
to compare fairly well with the exact Mie series result 
when the observation angle is between 100 degrees 
and 180 degrees. When the observation angle is 
below 100 degrees, a 1-dB discrepancy can be seen 
because the mesh is relatively coarse. For the denser 
mesh, the “CT/LN TVFE dense” result shows a 
significant improvement. By keeping the original 
coarse mesh and applying the LT/QN basis functions, 
the “LT/QN TVFE coarse” result agrees with the 
exact result very well. Even compared with the 
“CT/LN TVFE dense” result, the “LT/QN TVFE 
result” is closer to the exact result. Table 2 presents 
relevant parameters for the three results. Improved 
accuracy is obtained with less computer resources 
using LT/QN FEM basis functions.  

 

R
ad

ar
 C

ro
ss

 S
ec

tio
n 

(d
B

)

→

β

 
rε

 X e

a 
Z 

 

Y 

     Figure 6. B

     Table 2. Com
FEM Part FEM 

Unkno
wns 

CT/LN 
Coarse 

405 

CT/LN 
Dense 

3266 

LT/QN 
Coarse 

2430 

4.2 Input Imped

This example m
power bus struc
dimensions are 
and bottom pla
(PECs). The die
relative permitt
boundary is ch
boundary of the
location shown i

 

51 mm

Sour

x

y
z

             Figure 7

 

6WANG, GUO, HUBING: HIGHER ORDER TANGETIAL VECTOR FEM/MOM METHOD
MoMi
60 80 100 120 140 160 180
Observation Angle

CT/LN TVFE coarse
LT/QN TVFE coarse
CT/LN TVFE dense

 
istatic RCS of the dielectric sphere 

at 583 MHz.  
 

parison between the results in Fig. 6 

-
MoM 

Unkno-
wns 

Average 
Edge 

Length 
(mm) 

FEM 
Matrix 
Non -
zeros 

Solver 
Time 
(sec) 

346      9.1 2379 28 

346      4.3 18336 275 

346      9.1 51052 213 

ance of a Power Bus Structure  

odels a printed circuit board (PCB) 
ture. As shown in Figure 7, the board 
7.6 cm × 5.1 cm × 1.1 mm. The top 
nes are perfect electric conductors 
lectric between the PEC layers has a 
ivity of 3.81(1-j0.01). The MoM 
osen to coincide with the physical 
 board. A source is identified at the 
n Figure 7.  

76 mm

1.14 mm

ce

Source:  (28,   25, 0) and (28,   25, 1.14)
 

εr = 3.81(1-j0.01)

PEC

 
. A PCB power bus structure. 



 

Unlike the previous example, the fields in this 
configuration are relatively uniform. The electric 
field in the FEM region is vertically oriented and 
constant in the vertical direction. It is not obvious 
that a higher-order FEM element would benefit the 
analysis of this configuration. 

The FEM uses a current filament on tetrahedron 
edges to model sources located within the FEM 
region [16]. A current source along the z-axis can be 
expressed as, 

                                     (24) ∧

−−= zJ )()(int
ff yyxxI δδ

where (xf, yf) specifies its position, I denotes the 
electric current magnitude, and δ(x) is the Dirac delta 
function. The contribution to vector [gint] in Equation 
(24) is simply, 

       g .     (25) { }∫∫∫ −−•=
∧

dxdydzyyxxzI ff )()(int δδw

For an e1 basis function, 

                 IldzIdz
l

LLlI
l

e

ee
e ==

+
= ∫ ∫0 0

1

21
1

e1
intg

l .           (26) 

For an e2 basis function, 

                          0
0

1

21
1

e2
int ∫ =

−
=

l

e

ee
e dz

l
LLlIg .                 (27) 

For f1 and f2 basis functions 

                                   g                                 (28) 0f
int =

since the tangential components of these functions 
along element edges are zero. 

The power bus structure can also be modeled 
analytically as a cavity with two PEC and four 
perfect magnetic conductor (PMC) walls. The 
analytical resonance frequencies are given as follows 
(for µr = 1.0) [17], 

   ... 2, 1, 0,     
2

22

, =





+






= m,n

b
n

a
mcf

r
nm

ππ
επ

    (29) 

where a and b are the length and width of the cavity, 
respectively; m and n are the mode indices; c is the 
speed of light in free space; and εr is the relative 
permittivity of the material in the cavity. For this 
power bus structure, only TMz modes are excited. 
From Equation (29), the TMz (1,0) mode’s resonance 
frequency is 1011.1 MHz and the TMz (2,0) mode’s 
resonance frequency is 2022.3 MHz.  
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(b) TMz (2,0)  

Figure 8. Input impedance of the power bus structure. 

 
In Figure 8, the computed input impedances of the 
power bus structure near these two resonance 
frequencies are compared. For a mesh with a number 
of tetrahedra between that of coarse mesh and dense 
mesh, the result using the CT/LN TVFE is denoted 
“CT/LN middle.” The “LT/QN coarse” and “CT/LN 
coarse” examples employ the same mesh. It can be 
seen from Figure 8 that of the four cases, the “LT/QN 
coarse” results most accurately predict the resonance 
frequencies. Table 3 presents relevant parameters for 
the four cases. Once again the LT/QN coarse mesh 
yields more accurate results with fewer computer 
resources than a dense CT/LN mesh. 
 
Table 3. Comparison between different formulations 
Formulations Unknowns FEM 

non-
zero 

Solver 
time 
(sec) 

CT/LN Coarse 467 4097 0.89 
CT/LN Middle 1162 9940 1.54 
CT/LN Dense 5041 42039 14.3 
LT/QN Coarse 4124 87970 6.8 
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In [9], the inter-relationships between the condition 
numbers of individual elements as well as global 
matrices based on various interpolatory and 
hierarchical TVFE’s were studied using a cavity 
resonator example. It was found that the LT/QN 
TVFE by Andersen and Volakis [7] resulted in better 
conditioned FEM matrices than the TVFE by Webb 
and Forghani. Since resonant structures like this 
power bus can be particularly susceptible to 
numerical error, this structure was also analyzed 
using higher-order elements based on the LT/QN 
elements in [7]. Figure 9 compares the condition 
numbers of the global FEM matrices generated by 
this example based on Andersen’s and Webb’s 
LT/QN basis functions. The term ‘norm’ denotes the 
normalized basis functions described in Appendix A. 
Up to 3 GHz, the LT/QN TVFE in [7] yields slightly 
better conditioned matrices than the TVFE in [5]. 
Normalized vector basis functions yield much 
smaller condition numbers than unnormalized vector 
basis functions. 

   1500100 Frequency (MHz)

Cond
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1012 Andersen    
Webb      
Andersennorm
Webbnorm  

Figure 9. Condition numbers of the global FEM 
matrix based on different LT/QN basis functions. 

 

4.3 Input Impedance of a Microstrip Structure 

Numerical models of printed circuit board (PCB) 
geometries often include at least one microstrip 
structure (i.e. a trace over a plane). When these 
structures are modeled using a finite element 
technique with CT/LN basis elements, it is not 
uncommon to model the space between the trace and 
the plane with a single layer of elements. This 
approach generally yields good results when the trace 
is wide (e.g. the power bus structure) or when far-
field results are calculated. However, for narrow 
traces or when calculating near-field properties (e.g. 
input impedance or crosstalk), a single layer of 
elements may not be adequate [16].  
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  = 4.2ε r

 
    Figure 10. The geometry of a microstrip structure. 
 

Figure 10 shows the geometry of a PCB with a thin 
trace. The trace width is only slightly greater than the 
trace height. The board is made of a dielectric with 

rε =4.2. The trace is excited by a current source at 
one end, and is terminated by a 47-ohm resistor at the 
other end. The MoM boundary is chosen to coincide 
with the physical boundary of the board. 

The FEM code models load impedances  as 
dielectric posts on tetrahedron edges [17]. Those 
posts have a finite conductivity given by  

LZ

                                      
SZ

l

L

=σ                            (30) 

where is its length, and is the cross sectional 
area. If the load is treated as a lumped element, its 
contribution to the finite element matrix is, 

l S

                              

[ ] { } { }
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LL
T

L Z
ldxdydzyyxx
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2
e1e1e1 ))(( =−−•= ∫∫∫ δww

                                                                               (31) 

for the e1 basis function, and, 
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∫

∫∫∫ δww
   

                                                                               (32) 

for the e2 basis function, and, 

                                       [ ] 0f =A                             (33) 

for the f1 and f2 basis functions. The electric field 
lines around the trace are illustrated in Figure 11 
[18]. Since the electric field around the trace varies 
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dramatically, the coarse mesh used to divide the FEM 
volume in the previous power bus example does not 
work here. Figure 11 also shows two meshes for a 
microstrip geometry. The coarse mesh is one element 
tall and the fine mesh is two elements tall. 

Figure 12 shows the measured and calculated results 
for a 47-ohm termination up to 1 GHz. Note that the 
coarse mesh yields a poor result with CT/LN 
elements while the dense mesh results are close to the 
measured results. The LT/QN result with the coarse 
mesh also yields an accurate result. 
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Figure 11. Cross-sectional view of the electric field 
and FEM meshes used to analyze the microstrip 
structure. 
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  Figure 12. Input impedance of microstrip structure  
 

                         VI.  CONCLUSIONS 

This paper presents a hybrid FEM/MoM formulation 
using higher-order (LT/QN) tangential vector finite 
elements. There are several kinds of LT/QN TVFE’s. 
The basis functions developed by Webb and Forghani 
are applied here since they result in simpler 

derivations compared to other hierarchical higher-
order basis functions. The properties of the LT/QN 
basis functions are discussed and compared to 
traditional CT/LN basis functions. Three examples 
demonstrate that higher-order basis functions are 
capable of providing more accurate results with a 
coarser tetrahedral mesh and less computational 
resources. The condition numbers of the global FEM 
matrices derived from a power bus structure on the 
basis of various hierarchical LT/QN basis functions 
are compared. It is confirmed that the TVFE by 
Andersen results in somewhat better conditioned 
matrices than the TVFE by Webb and Forghani. 
Also, normalized vector basis functions are observed 
to result in much smaller condition numbers than 
unnormalized vector basis functions.     

E Field 

H Field 
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    APPENDIX A 
 
FEM analysis requires computation of two matrices. 
These two matrices are, 
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V jiij dVE ww
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C. Andersen’s unnormalized LT/QN TVFE 
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D. Andersen’s normalized LT/QN TVFE 
Edge element  
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Abstract.   The calculation of integrals
containing the free-space Green’s function in
electromagnetic problems is difficult to
perform with great accuracy.   Three
approaches to the calculation are
investigated.   The inadequacy of the
singularity-subtraction method is
demonstrated.   The Duffy transform is shown
to provide good results when the test-point is
on the surface being investigated.   A
Maclaurin series expansion with integration
prior to summation is shown to be efficient
and reliable both on and off the surface under
study.   Solutions, in both Cartesian and
cylindrical coordinate systems, that allow the
calculations to be performed to a pre-defined
level of accuracy are presented.

Introduction.

The magnetic vector potential, or MVP, is an
important quantity that appears in many
electromagnetic problems that involve
evaluation of electric and/or magnetic fields.
For example, it is a component in the
definition of the electric field integral equation,
EFIE [1, p17].   In this context it may exist in
its basic form or it may be subject to
differentiation.   Its use is at its most basic
when used in the solution of Hallen’s integral
equation for a cylindrical dipole.   When used
for solving Pocklington’s integro-differential
equation for the same dipole the second
differential of the MVP must be considered.
Derivatives of the MVP are also derivatives of
the Green’s function contained within the
definition of the MVP.   Because the three-
dimensional Green’s function contains a
singularity, it is preferable to keep the order of

differentiation to a minimum, preferably zero.
When it cannot be kept to zero, then one of
two actions are generally undertaken.   Either
the derivatives must be transferred to the
basis/testing function used in the solution of
the particular EFIE under investigation or one
of the special formulations that have been
developed to accommodate the differentiation
[2] [3] must be considered.   Even when one
examines the evaluation of just the non-
differentiated form of the MVP one has certain
numerical difficulties to face.   These
difficulties are addressed in this report.
Accurate evaluation of the MVP is gaining
importance as the use of higher and higher
order basis functions is considered.   Also, as
we shall see, evaluation of the MVP when the
test-point is located a short distance from the
test surface is a requirement that, while of
interest in many applications, is handled
poorly by current techniques.

As the title of this paper suggests, the over-
riding issue here is one of solution accuracy.
When calculating entries in a matrix, Z , and
then solving the corresponding matrix
equation, ZI V= , Miller [4] has shown that

the solution error, /dI I , is comparable to

the product of the error in the terms in the
matrix and the condition number of the matrix.
For example, if the error of the matrix terms,

/dZ Z , is 610−  and the condition number is
410 , the error of the solution may be no better

than 210−  - if nothing else introduces further
errors.   The resulting accuracy is at the lower
limit of usefulness.   It can be improved by
either reducing the condition number of the

1054-4887 © 2002 ACES
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matrix or by reducing the error in the
calculation of the matrix entries.    This work is
about the latter.

After setting out some basic definitions, this
report will investigate the difficulties
associated with the most widely used
approach to the evaluation of the MVP.   The
second section will examine the use of the
Duffy [5] transform which was originally
conceived to address issues arising in the
evaluation of integrals such as found in the
MVP.   The third section will show how the
MVP can be dealt with in a manner that is not
only rigorous but also efficient.    This will be
followed by a discussion of testing,
concluding with a statement of key findings.

Definitions.

The three-dimensional MVP is defined as:

'

3 ( ') '
4 '

jk r r
e

I J r dv
r rπ

− −

=
−∫ ∫ ∫           (1)

When examining currents on surfaces, this
definition reduces to:

'

2 ( ') '
4 '

jk r r
e

I J r dv
r rπ

− −

=
−∫ ∫           (2)

In the above, r  denotes the position vector to
the test/observation point, and 'r  is the
position vector to the surface under study.
The scalar component(s), sI , of the surface

current will be represented by polynomials, in

u, in the form: 
0

p
i

s i
i

I a u
=

= ∑ .

Machine precision will be referred to often in
this study.   By machine precision we will be
referring to machine epsilon, ε , which is the
gap between 1 and the next larger floating

point number [6, p14].   ( 1)2 pε − −=  where p
is the precision of the machine in bits.
Machine precision is:

10 10log ( ) ( 1)log (2)pε = − −  (3)
Results for Compaq Fortran on an Alpha
processor are shown in Table I.

Relative error, Rel. error, is defined as:

Rel. error = 
approx ref

ref

f f

f

−
.        (4)

reff  will be defined each time that relative

error is discussed.   When evaluating integrals
one frequently compares the result, nf ,

obtained in the most recent evaluation, to the
result, 1nf −  obtained in the prior evaluation.

This is more accurately defined as
convergence rate and:

Convergence Rate 1n n

n

f f

f
−−

=      (5)

Singularity Subtraction.

The free-space Green’s function is defined as

( ) jkRG R e R−=  where R  is the distance
between the source and the observation or
test point.   The mathematical definition of R
is specific to the coordinate system in use and
will be elaborated on later.   For this section of

the report we define 2 2R u δ= + where u
is an independent variable and δ  will assume
various fixed values.   ( )G R  is split into two

parts ( ) ( ) ( )r sG R G R G R= + , where

( )rG R is the non-singular part and ( )sG R is

the singular part [7].   Specifically, we have:

0( ) / 1jkR
rG R e R R−= −         (6a)

0( ) 1sG R R=         (6b)

( )sG R  is developed from a Taylor series

expansion of ( )G R  and when possible it is
evaluated analytically [8].   An example of a
solution in the Cartesian coordinate system is
given in [1, p420].   In the event an analytical
solution is not available, a recent discussion
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f numerical methods is available in [9].   The
ocus in the following is on ( )rG R .

or purposes of this immediate analysis we
xpress ( )rG R  in terms of its real and

maginary components:

( ) (cos( ) 1) sin( )rG R kR R j kR R= − −         (7)

hese two components, when R u=  (i.e.

0δ = ) are plotted in Figure 1.   Both
omponents are finite throughout the range.
owever, the real component is obviously not

smooth’ at 0.0u = .

he results for integrating the real component
f ( )rG R  with Gauss-Legendre quadrature
re plotted in Figure 2a, where d is the same
s δ in the text.   The reference values were
alculated using the series expansion method
escribed later. It is observed that the

ntegration convergence becomes worse as
0δ → , a finding which is  somewhat

nexpected, counter-intuitive and
isconcerting.   A similar observation is

mplied in Figure 2 in [10].

hen evaluating integrals numerically,
articularly close to the source, it is important

o remember that integration rules generally
xhibit an error that is proportional to the
erivatives of the function being integrated.   

-1.5 -0.5 0.5 1.5
u, wavelengths
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0.0
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4.0

6.0

(cos(kIuI) - 1)/IuI
sin(kIuI)/IuI

Figure 1.   Plots of the real and imaginary
parts of G(R) as a function of u.
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In the case of: (cos( ) 1)f kR R= −         (8a)

then 
2

2

df k u

du R

−
≈         (8b)

and
2 3 2 2 2

2 2 33 2

d f k u k

du R R

δ
≈ − −         (8c)

From this last equation we see that as:

0u → , 
2 2

2 2

d f k

du δ
→ −         (8d)

which provides an explanation for the
behavior of the curves in Figure 2a.   To
illustrate that it is, in fact, the presence of the
discontinuity at 0u =  that creates the
problems, the lower limit of integration was

E
t

0.0
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moved from 0 to 0.01u u= = .   The results
of this change are shown in Figure 2b and
clearly demonstrate that the problem has
been significantly mitigated.

For the special case of 0δ = , we find that
although there is a jump in the values of

2

2
, 

df d f

du du
 and higher derivatives when

− + moves from 0  to 0u  they are finite in that
region nevertheless, and so the integration
rules hold for this special case.

For double/triple integrals δ  is introduced into
the inner integral by the outer integral defining
the MVP and thus δ  may become arbitrarily

1 1 1 1 /
2 2 2

0 1 1

0 0 0 0 0 0

 where  and /
x y x y y KKxjkr jkr jkr

cart

e e e
I dxdy dx dy dy dx r x y z K y x

r r r

− − −

= = + = + + =∫ ∫ ∫ ∫ ∫ ∫
Substituting  and y uKx x vy K= =  in the inner integrals, we arrive at:

1 11 1

2 2 2 2 2 2
0 0 0 00 0(1/ ) ( / ) ( / )

x yjkr jkr

cart

e du e dv
I dx dy

u K z Kx v K z K y

− −

= +
+ + + +

∫ ∫ ∫ ∫        (9)

1 1/ 2 / 2 /

0 0 0 0 0 0

2 2 2
0 0

1

 

            where 4 ( )sin ,  K=
2z

z zK Kzjkr jkr jkr
p p p

cyl

e e e
I z d dz d z dz z dz d

r r r

r z a a

π π θ

θ θ θ

π
ρ ρ θ

− − −

= = +

= + ∆ + + ∆

∫ ∫ ∫ ∫ ∫ ∫

Substituting /  and z u K vKzθ θ= =  in the inner integrals we obtain:
/ 2 1

2 2 2
0 0 0 0

( / )

4 ( )( sin / ) ( / )

p jkr

cyl

u K e du
I d

u a a K K

π θ
θ

ρ θ θ ρ θ

−

= +
+ + ∆ + ∆

∫ ∫
1 1

2 2 2
0 0 0 0(1/ ) 4 ( )(sin( ) / ) ( / )

z jkr
p e dv
z dz

K a a vKz Kz Kzρ ρ

−

+ + ∆ + ∆
∫ ∫      (10)

quation Set 1.   The MVP equation, expressed in two different coordinate systems,
ransformed, by the Duffy method, to remove the singularity at the origin.
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Figure 2b.   Effect of n on the integration of
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small, but non-zero, leading to these
problems.   Consequently, when evaluating
the real part of ( )rG R , it would appear that all
quadrature rules, when applied directly, are
doomed to fail as even the simple trapezoid
rule requires that the second derivative of the
integrand be well behaved.   With this
conclusion it is advisable to seek alternative
methods.

Singularity Removal by Transformation.

In 1982, Duffy [5] proposed a method that,
through a change of variable, causes the
removal of  the singularity in the integrand of
two and three dimensional integrals.   His
method is presented here first with a constant
current, for simplicity, in the Cartesian
coordinate system.   Currents of polynomial
form pu , are included with the discussion of
the cylindrical coordinate system.

The formalism for each of the two coordinate
systems is shown in Equation Set 1.   It allows
for the test/observer point to be offset from
the surface – by amount 0z  in the Cartesian

system and 0ρ∆  in the cylindrical system.

When the offset is zero, the formulae in the
Cartesian system clearly show that the
singularity has been removed.   Furthermore,
in this case, the denominator in the  integrand
is not dependant on the variable associated
with the outer loop other than through the
value of K , which is fixed.   Consequently,
the derivatives of the integrand are all well
behaved and one can expect that quadrature
integration will work well, and indeed it does.  

Precision ε Outer
Integral

Inner
Integral

Single 1.2E-07 7 7
Double 2.3D-16 7 13
Quad 2.0D-34 13 37

Table I.   The number of terms required in
one of the double integrals for a square
domain using the Duffy transform.

For example, using Gauss-Legendre for both
the inner and outer integrals, the numbers of
terms necessary for computing the double
integral, to a precision of 2ε , on a flat surface
are shown in Table 1.   The dimensions of the
cell were 0.0 0.1,   0.0 0.1x y≤ ≤ ≤ ≤ .
Because of symmetry in this example, the
numbers of terms, required in the two double
integrals, are the same.   All the integrals
terminate when the convergence rate falls
below the precision level, 2ε .   

When examining a cylindrical case we look at
a cell width of 0.1 wavelengths on a cylinder
of radius 0.007 wavelengths.   In addition,
polynomial representations of the current, to
the degree p, are incorporated.   Again, the
examination takes place on the surface, so
that 0 0ρ∆ = .   For this case we track the

number of terms in the outer(out) and
inner(in) integrals for the two transformed
double integrals.   We identify these as u-out,
u-in, v-out and v-in.   The results, calculated in
double precision to a  precision level of 2ε ,
are shown in Table II.   They indicate no
dependence between the degree, p, and the
number of terms.

p u-out u-in v-out v-in Total
0 11 36 8 10 476
1 9 38 9 10 432
2 10 36 10 9 450
3 13 34 9 10 532
4 12 29 10 9 438
5 11 29 10 9 409
Table II.   The number of terms required in
each of the integrals for the cylindrical
surface using the Duffy transform.

The good performance of the Duffy transform
when the offset is zero does not follow
through when the offset is some finite value.
This is revealed when the data of Table III is
examined.   This table shows the total number
of iterations needed by the integrals as a
function of the value of the offset, 0ρ∆ .   The

dimensions on a cylindrical surface are the
same as used in Table II.   A value of 0p =
was used.
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The Green’s function is rarely evaluated on a
stand-alone basis; rather it is evaluated in
conjunctions with a representation of the
current on the surface being studied.   We will
adopt the polynomial summation defined
earlier.   The integrals of interest are: 

2

1

Re

cos( )
u

p

u

kR
G u du

R
= ∫       (16a)
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ffset Duffy G-L

.0 476 N/A

.0001 12280 4356

.001 4504 1860

.01 1370 952

.1 311 143

able III.   The effect of the offset value on
or comparative purposes Table III also
ows the results when the MVP is integrated

irectly.   This is possible when the offset is
ite.   We conclude that for test/observation

oints off the surface, the Duffy transform is
nacceptably inefficient.   Nevertheless, when
e test/observation point is on the surface
e transform offers a method that provides

gorous convergence in the integrals
ssociated with the MVP.

 Series Expansion for ( )G R .

he Maclaurin expansion for the real and
aginary components of the Green’s function

re:

2 4 3os( ) 1 2! 4!..kR R R k R k R= − + (11a)

3 2 5 4in( ) 3! 5!...kR R k k R k R= − +   (11b)

he method proposed integrates the
xpansions in (11a) and (11b), term by term,
ntil the ratio of the last term evaluated to the
rgest term evaluated is less than machine-
recision.   In this way it is possible to
evelop analytical terms for the inner integral.
he terms for the expansion in (11a) are
own in the series (12a)–(12d) and the
rms for the expansion of (11b) are shown in
3a)–(13d). Each of these integrals is exact
r a given value of δ .   The formulae are
own with a lower limit of 0.0u = , but this

 done for convenience only.

2

1

Im

sin( )
u

p

u

kR
G u du

R
= ∫       (16b)

The case of 0p =  has already been
presented in equations (12) and (13).   The
case for 1p =  is shown in equation (14) and

for 2p ≥  the relevant equation is (15).   This
last equation is applicable to the
computations of both ReG  and ImG .   Thus,

once the terms for 0p =  and 1p =  have
been evaluated, the evaluations for higher
values of p  are straightforward.

The Series Expansion, Integration and
Summation, SEIS, process described above
was tested in several ways.   The first test
revisits the calculations performed for use in
Figure 2a.    We examine the effect of varying
δ  on the number of terms required to achieve
convergence in the summations of the series.
The results of such calculations on ReG  for

0p = , shown in Figure 3, demonstrate that

the value of δ  has little impact in this context
and thus we conclude that a major goal of the
present work has been achieved.

The second series of tests performed
involved the inclusion of basis functions as
discussed earlier.   Shown below, in Equation
Set III, are analytical expressions for some
inner integrals.   Using these expressions, the
accuracy of the present method can be
examined for the inner integral when p is odd.
As a practical note, the calculation of these
inner integrals (17) to high accuracy required
the use of extremely high precision software.
That used here was developed by Bailey [11].

he number of integration terms for the
ylindrical surface using the Duffy transform
nd Gauss-Legendre applied directly to the
ouble integral.



The results for ReG  appear in Figure 4.

Results for ImG  and ReG are not visually

distinguishable and hence only the results
for ReG  are shown.   The plots clearly

show that, at most, 5, 8, or 14 terms, for
single, double or quad precision
respectively, are needed in the series
expansion for this integration range.   The
plots also clearly show that the relative

error is not dependant on p, the exponent
in the basis function used to represent the
current.   The results presented in Figure
5, for the even values of p, are referenced
with respect to their own machine
precision limited values.   Their behavior
is similar to the results for odd values of p,
which are referenced to analytical values.

2 2

0

log( ) log( )
b du

b b
R

δ δ= + + −∫   (12a)

2 2 2

0 0

1
 where 

2

b b

b b

du
Rdu bR R b

R
δ δ

 
= + = + 

 
∫ ∫   (12b)

3 3 2

0 0

1
3

4

b b

bR du bR Rduδ
 

= + 
 

∫ ∫   (12c)

M

2 1 2 1 2 2 3

0 0

1
(2 1)  where 1

2

b b
m m m

bR du bR m R du m
m

δ− − − 
= + − ≥ 

 
∫ ∫   (12d)

0

b

du b=∫   (13a)

3
2 2 2 2

0 0

( )
3

b b b
R du u du bδ δ= + = +∫ ∫   (13b)

5 3
4 2 2 2 2

0 0

( ) 2
5 3

b b b b
R du u du bδ δ= + = + +∫ ∫   (13c)

M
2 1 2 2 1

2 2 2 2

0 0

( ) ........
2 1 2(2 1)

b b n n
n n nb n b

R du u du b
n n

δ
δ δ

+ −

= + = + +
+ −∫ ∫   (13d)

When 1p =
22

1 1

1
1  where 0

1

u uu m
m

u u u

R
uR du m

m

=+
−

=

= ≤
+∫     (14)

When 2p ≥ , a recurrence formula can be derived which takes the form:
2 2

2

1
1 1

1 2 2 21
( 1)  where 1

1

u u
u up m p m p m

u u
u u

u R du u R p u R du m
p m

δ
=− + −

=

 
= − − − ≤ 

+ +   
∫ ∫   (15)

Equation Set II.   The basic equations for the term-by-term integration of a Maclaurin
series expansion of the Green’s function and its product with a polynomial.
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Figure 3.   Convergence curves for the

real component of the Green's function

for different values of d.
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Application to the Magnetic Vector
Potential.

The application of the above procedure to
double integrals is straightforward.   The inner
integral is computed as above and then a
quadrature integration formula is applied to
the outer integral.

Cartesian coordinates.   A double integral of
interest is given by:

2 2

1

0( )
y x jkR

p
Cart

y x

e
I dy x x dx

R

−

= −∫ ∫  where

2 2 2
0 0 0( ) ( )R x x y y z= − + − + .

The surface is in the x-y plane and the test
point is at 0 0 0( , , )x y z .   In terms of the inner

integral we replace 0( )x x−  by u ,
2 2

0 0(( ) )y y z− +  by 2δ  and adjust the

integration limits appropriately.

Cylindrical coordinates.   Here, the double
integral is given by: 

2

1

2

0

0

2 2 2
0 0 0

1
( )  where 

2

( ) ( ) 4 ( )sin

z jkR
p

cyl

z

e
I d z z dz R

R

z z a a

π

φ
π

ρ ρ φ

−

= − =

− + ∆ + + ∆

∫ ∫

The surface is that of a cylinder of radius a,
and with 0 aρ∆ ≥ −  the test point is at

0 0( ,0, )a zρ+ ∆ .   In this instance
2 2 2

0 0( ) 4 ( )sina aδ ρ ρ φ= ∆ + + ∆  and

0( )u z z= −  and again the limits of

integration are appropriately adjusted.

The results for the calculation of the MVP for
a section of a cylindrical dipole with values of

0.007a λ=  and 0.0 0.1z≤ ≤  are shown
in Figures 6a and 6b.   Two quadrature
methods were investigated – the Gauss-
Legendre method and the Linlog method [12].
The reason for choosing the latter method is
that the series containing even p always
contains log terms in its real component.
Linlog was designed specifically to integrate
functions that contain polynomials and
logarithmic terms.

Both sets of calculations were performed in
quad precision.   The reference values were
calculated using 42 terms with the respective
quadrature methods.   The superiority of the
Linlog approach, when applied for even
powers of p, is clearly visible.   The relative
error is seen to reach a level of approximately
–21.4 and then remains constant.   The nodes
and weights, as originally reported, are only
known to 20 digits, hence the observation is
hardly surprising.   This, then, is the bound on

Consider 
2

1

2 2 where 
u p jkR

p

u

u e
I du R u

R
δ

−

= = +∫ .   With the substitution 
udu

dR
R

=

we get 1p jkR
pI u e dR− −= ∫ .   When p  is odd, this integral can be solved analytically.

For example:
2

1

1;   
ujkR

p

u

je
p I

k

−

= =   (17a)

2

1

2 3
23;   2 2

u

jkR
p

u

j j j
p I e u R

k k k
−

       = = − +       
         

  (17b)

2

1

2 3
4 2 2 25;   4 ( 3 ) 6 6

u
jkR

p

u

je j j j
p I u u R R R

k k k k
δ

−         = = − + − + −       
           

  (17c)

Equation Set III.   Examples of analytical solutions for the integral for odd p.
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Figure 6a.  Performance of two integration methods on the 

real and imaginary parts of the magnetic vector potential

on the surface of a cylindrical dipole, for even values of p.
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Figure 6b.  Performance of two integration methods on the

real and imaginary parts of the magnetic vector potential

on the surface of a cylindrical dipole, for odd values of p.
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the accuracy to which this particular MVP can
be calculated using today’s tools.

It remains to examine the effect of the offset
value as was done for the Duffy transform
and reported in Table III.   Again the work is
done in double precision and is for 0p = .
The ensuing results are shown in Table IV.
Compared with the results in Table III, it is
clear that the value of the offset has little
effect on the number of terms needed to
achieve a relative accuracy equal to the
machine precision.

Offset Outer Series Total
0.0 14 8 112
0.1 17 9 153

0.01 23 7 161
0.001 24 8 192

0.0001 24 7 168
Table IV.   The effect of the offset values on
the number of integration terms for the
cylindrical surface using the term-by-term
integration of a Maclaurin series.

Comparison Between Duffy and SEIS.

The efficiency of the calculation of the MVP
by the two methods – the Duffy transform and
the  SEIS method – was investigated for the
cylindrical case already discussed.   In the
case of the Duffy transform the number of
function evaluations of both inner integrals
was counted.   In the case of the SEIS the
count was the product of the number of nodes
in the outer integral and the number of terms
in the series expansion.   The results are
shown in Figure 7.   The reference line is
located at πa.   It appears that both methods
are most efficient when the aspect ratio of the
cell under consideration is approximately 1:1.
The Duffy transform is particularly susceptible
to this phenomenon.   In the case of the SEIS
approach, at the high end of the z range, the
number increases as the value of z increases
– due to the need for more terms in the series
expansion.   At the low end of the range, the
number of terms needed in the series
expansion falls off – but the number of nodes
needed in the Linlog integration increases.
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ey Findings

) It was shown that conventional
umerical methods give misleading results
hen integrating the Green’s function.
onsider the results of Figure 2a.   When

0.0001=  the relative error changes very
ttle as the number of integration terms is
creased until very large numbers of terms
re employed.   The slow improvement in the
rror curve would normally be interpreted as
onvergence – leading to an inaccurate
valuation.   It was shown that this behavior is
 direct consequence of the derivatives in the
eighborhood of 0u = . 

) The results presented in Figures 2a
nd 6 emphatically illustrate the poor
erformance of Gauss-Legendre methods for
valuating the real component of any of the
tegrals studied.   This finding is applicable to
ll quadrature methods that are applied
irectly to this class of problem.
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3) The Duffy transform provides a
reliable method for computing the MVP when
the test point is on the surface.   As
implemented here, it is not suitable for use
when the test point is off the surface.   It has
the advantage that the integrals can be
evaluated using standard integration
techniques such as Gauss-Legendre.

4) The use of a Maclaurin expansion of
the Green’s function, followed by term by term
integration and careful summation provides a
stable means for calculating both the real and
imaginary components of the function.   The
method is efficient and can be used both on
and off the surface being examined.

5) Analytical solutions for the integral of
the Green’s function and its product with
polynomial representations, of odd degree, of
the surface current have been presented.
These solutions provide a method for
evaluating both the convergence and the
accuracy of the series-expansion-integration-
summation approach. 

6) The analytical results presented for
current representations of odd degree would
appear to offer an accurate and efficient
approach to the evaluation of those integrals.
However, it was found that rounding errors
seriously degraded the accuracy of such
calculations when the range of integration
was small and such an approach should be
avoided unless high precision software is
employed.

7) The algorithm used for the outer
integral, when using the series expansion-
integration-summation approach must
recognize the presence of the logarithmic
terms in the series expansion when p  is
even.   This means using the Linlog method
[12] for this particular integration.

Final Remarks

The calculation of integrals associated with
the magnetic vector potential has been
examined in depth.   The integration of the
Green’s function should not be attempted with

quadrature methods, unless some suitable
transformation to remove the singularity has
been undertaken.   An example of the latter is
the transform due to Duffy, and this is quite
suitable when the test point is on the surface.
For all-round performance, it is proposed that
the inner integral, that includes the Green’s
function, be evaluated by means of the
integration of each term of a Maclaurin
expansion.   The outer integral can then be
evaluated using the Linlog rule.   In all cases,
the integration can be taken to the precision
of the machine/compiler (single, double or
extended/quad), except that the Linlog
nodes/weights currently limit the relative error
to approximately 20 digits.   The integration of
the Maclaurin series prior to summation
provides a method that is efficient and
accurate.
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Addendum:   Procedural Considerations.

In order to assure the best possible accuracy
when evaluating series such as those in
equations (12) - (15), several “good practice”
issues need to be followed.
1) Terms that are to be added need to be
stored separately from those that are to be
subtracted.   Thus the values associated with
the upper limit in an integration formula must
be separated from those associated with the
lower limit of integration.   A similar separation
should be maintained when implementing the
Maclaurin series, noting that this involves the
additional complication of a series with
alternating signs.
2) When evaluating the terms associated with
the real part of the overall integral, negative
values may occur due to the presence of the
log term.   These should be identified and
stored appropriately.
3) Terms should be added by starting with the
smallest and proceeding to the largest.   To

this end, the two sets of terms need to be
sorted in ascending order prior to summation.
4) There is considerable repetition in the
components from one term to the next.   This
observation can be exploited to create a fast,
resource-conserving algorithm.
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ABSTRACT: An efficient implementation of the 
Generalized Ray Expansion (GRE) method for 
computing the scattering of three-dimensional (3-D) 
arbitrarily shaped deep cavities is studied in this 
paper. Efficiency is being sought from two aspects: 
ray racing in discrete cavities and reflection from 
individual patches. An improved algorithm for 
detecting intersections between a ray and triangular 
patches has been proposed, which is about 2.83 
times faster than the traditional algorithm. Also, 
sectional algorithm and Wavefront Advancing and 
Candidate Narrowing (WACN) algorithm for 
tracing rays inside 3-D cavities are proposed to 
boost efficiency. As to reflection from individual 
patches, different local cavity reconstruction 
methods are being tested and interpolative 
triangular patches are found to be an efficient 
choice. Finally, several numerical examples further 
demonstrate the versatility and validity of our 
approach. 
 

I.    INTRODUCTION 
 

Electromagnetic scattering from arbitrarily shaped 
deep cavities is of great importance in radar cross 
section (RCS) estimation of modern jet aircraft [1]-[8]. 
Because these targets are usually composed of two 
different parts, i.e., an electrically large, smooth varying 
air duct and a relatively short, geometrically complex 
termination, methods suitable for one part generally 
become unsuitable or even fail for the other part. Due to 
this discrepancy, hybrid methods are often used instead 
to solve for different parts [8]. In this article, we shall 
focus on efficient computation of the electrically large, 
smooth varying air duct. The methods involved 
generally include differential equation-based methods 
[7], integral equation-based methods, waveguide modal 
analysis and high frequency asymptotic methods [3]. 
Differential equation- and integral equation-based 
methods are accurate while much less efficient for deep 
cavity problems due to the prohibitive amount of 
memory and CPU requirements. Furthermore, 
differential equation-based methods suffer from 
numerical dispersion error for electrically large 

problems and their applications to deep cavity 
scattering are limited. Waveguide modal analysis also 
provides accurate results [3], [4], but the exact 
waveguide eigenmodes have only been found for 
simple cross sections. These methods are most often 
used to give reference solutions. 

Because of the smooth varying property of the air 
duct required by aerodynamics, ray and beam 
techniques are usually used for high frequency 
asymptotic methods. The early version was the 
Shooting and Bouncing Ray (SBR) method which 
utilizes Geometric Optics (GO) for ray tracing and 
Aperture Integration (AI) or Reciprocal Integral (RI) 
for far field computations [1]-[4], [6]. The major 
problem with the SBR method is that it does not 
consider higher order effects -especially the field 
diffracted into the cavity by the rim of the open end. 
Thus it generally provides an envelope but not details 
of the scattering pattern. Gaussian Beam (GB) is 
another approach which instead traces Gaussian beams 
[3], [5]. Since the Gaussian beam is caustic free by its 
nature and because it considers fields diffracted into the 
cavity from the open end, it has much better accuracy 
than the SBR method. But the beam distortion after a 
few reflections generally prevents this method from 
deep cavity problems. The GRE method could be 
thought of as a combination of SBR and GB methods in 
some sense [3]. Based on the sub-aperture expansion 
techniques of the GB method, the GRE method traces 
GO rays instead of Gaussian beams to improve the 
beam distortion problem. Since the GRE method 
includes the interior diffraction by the edge of the open 
end, it is also more accurate than the SBR method. 

The usage of the GRE method is limited by the 
necessity of tracing massive amounts of rays. This is in 
turn related to the modeling of a cavity. For simple 
geometry, analytical functions could be used thus ray 
tracing is obviously not a problem. For realistic large 
and arbitrarily shaped cavities, modeling a cavity with 
ordered 3-D discrete points, which could either be the 
results of physical measurements or generated by CAD 
software, is of great versatility and generality. 

When applying GRE methods to such realistic 3-D 
discrete cavities, two essential issues need to be 
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considered. The fist issue is fast ray tracing algorithms 
in 3-D discrete cavities. This topic is rarely documented 
because most 3-D ray tracing algorithms are designed 
for 3-D bodies. We shall solve this problem from two 
aspects: fastening the intersection test of a ray and a 
triangular patch and reducing the total number of such 
test needed. An improved intersection test algorithm is 
proposed for the first aspect and two other algorithms, a 
sectional algorithm for general cavities and a WACN 
algorithm for convex cavities, are proposed for the 
second aspect. The second issue is local cavity 
reconstruction. There are quite a few choices ranging 
from simple triangular patches to complex Hermitian 
bicubic patches. We shall study the accuracy of using 
different reconstruction methods for reflection 
computation. We found that an interpolative triangular 
patch, which is simple to implement and highly 
accurate, was the best choice. 

This article is organized as follows: Section II briefly 
introduces the GRE method. Section III discusses the 
efficiency issues. Section IV provides numerical 
examples. Finally, some conclusions are drawn in 
Section V. 
 

II.     GRE METHOD 
 
In the GRE method, the open end of the cavity is 

divided into multiple sub-apertures. The electric field 
radiated by the n-th sub-aperture is determined by far 
zone Kirchhoff approximation with the cavity wall 
absent. Cone-shaped angular grids of ray-tube are 
launched from the center of each sub-aperture to 
represent the spherical wave entering into the cavity. 
By assuming a local plane wave at the open end and 
using Physical Optics (PO) to obtain the equivalent 
electric and magnetic currents, the electric field of the 
p-th ray-tube of the n-th sub-aperture is expressed as 
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where k is the wave number, p

n
p

n
p

n rrr ˆ= and p
nr̂  is the 

unit vector representing the direction of the p-th ray-
tube, nr ′ represents the location of an equivalent source 

on the sub-aperture, ns′ˆ is the unit surface normal 

pointing inwards the cavity, and( )rE and ( )rH  

represent the incident electric and magnetic field 
respectively. The integration is over the sub-aperture. 
Note that the far zone radiating field is decomposed 

into the product of a spherical wave and a vector far 
zone pattern. Portions of the spherical wave could be 
individually traced as GO rays. Incident field 
information is only contained in the vector far zone 

pattern ),ˆ( i
p

nn ErF . Ray tracing and the calculation of 

),ˆ( i
p

nn ErF are independent. Thus the GRE method 

could generate the result at any incident angle in the 
effective angular range (10o − 15o narrower than the 
largest ray tracing angle) with just one ray tracing. 
Also, ray tracing is time consuming rather than memory 
consuming. The independency of each ray tracing 
makes it very suitable to utilize distributed computer 
systems because there are virtually no communications 
between different processes and load balancing is easy 
to handle. 

The total transmitted field could be written as 

        ∑∑
= =

=
N

n

p
n

P

p

p
n rErE

1 1

)()(                      (2) 

To evaluate ),ˆ( i
p

nn ErF , we first express the incident 

field as 

)'()'( nieni rEprE =                         (3) 

0/)'()'()'( ZrEkrHprH niinihni ×==  

where pe
and ph

represent the directions of the incident 

electric and magnetic field respectively and Z0  is the 

free space wave impedance. Establishing a local 
coordinate system, sayΓ′ , originating at the center of a 
sub-aperture and in whichxê , yê are any two orthogonal 

unit vectors tangential to the sub-aperture, and in which 

zê points into the cavity, ),ˆ( i
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where p
nθ and p

nφ represent the elevation and azimuth 

angles of the axis of the p-th ray-tube of the n-th sub-
aperture, measured in the local coordinate system Γ′ , 

exp  and 
eyp  are the components of 

ep in Γ′ and similar 

for 
hxp  and 

hyp . The exact form of ),ˆ( i
p

n ErI  relies on 

the shape of the sub-aperture (see Ref. [3]). 
Rays are bounced back and forth inside the cavity. 

After each reflection, the magnitude is determined by 
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where ri is the location of the i-th reflection, 

s r ri i= − −1 , [DF]i-1 is the divergence factor at the (i-

1)-th reflection location, [R] is the reflection matrix of 
the cavity wall which could be written in the PEC case 
as 
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where superscripts r and i denote the reflected and 
incident wave respectively, and where ┴^ and // 
represent the perpendicular and parallel polarization. 
When a cavity is coated with materials, the impedance 
boundary condition could be used casually instead of 
the PEC boundary condition. Easy manipulation of 
boundary conditions is another advantage of ray-based 
techniques over other methods. The divergency factor is 
determined by s and the principal radii of the curvature 

of the wavefront, say R1 and R2, at 1−ir  
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Note that the reflection field is singular if the i-th 

reflection is located at the caustics, i.e., 1Rs −=  

or 2Rs −= . The caustic problem is inherent to all GO-

based techniques. When it occurs, we chose to abandon 
the ray being traced for efficiency considerations. 

Rays could exit from either the front end or the rear 
end. In the first case, the far zone scattering field is 
determined by the AI method. In the second case, RI 
could be used to calculate the far field contribution of a 
ray tube directly without tracing it back. Without wall 
losses, the cross section area of the reflected ray-cube, 
say S, could be determined via energy conservation by 

S E S E0 0

2 2=                                  (9) 

where 0S  is the initial beam solid angle of the ray-tube. 

 
III.    EFFICIENCY IMPROVEMENTS 

 
The major thrust of the GRE method is to trace 

massive amounts of ray-tubes inside an arbitrarily 
shaped cavity. Usually, 105 - 106 rays are expected; 
however, if the axial length of the cavity is about 100λ, 
this number could reach 107 - 108. Therefore, ray 
tracing efficiency is of paramount importance.  

Ray tracing is essentially a computer graphics topic. 
In our context, its efficiency is determined rather by the 
accuracy of scattering field computation than by the 
quality of graphic displaying. We can further divide the 
ray tracing problem into two weakly coupled problems: 
determination of the reflection position and 

computation of the reflected field. In general, when we 
calculate a GO ray reflection, we need to reconstruct 
the local cavity from those discrete points surrounding 
the reflection point. For a fixed set of discrete points, if 
their is a better way to reconstruct the local surface so 
that the resultant reflection calculation is more accurate, 
we can use less discrete points to model the cavity. The 
efficiency of determining the reflection position in a 
discrete cavity is essentially dominated by the number 
of discrete points being used to describe the cavity. 
Thus these two problems are weakly coupled in this 
sense. In general, we can improve the overall efficiency 
by working on each problem individually. 

 
A.    Ray Tracing  

Ray tracing involves finding the reflection of a ray-
tube. During each ray tracing, triangular patches were 
used to determine the reflection position, though in 
some cases as a preliminary step. Basic ray tracing 
algorithms include two procedures: 1) Determination of 
possible intersections of a ray and all triangular patches; 
2) Sorting the distance between the current position and 
all possible intersections. The shortest distance 
corresponds to the actual reflection. We attempt to 
improve the efficiency of each procedure in the 
following. 

 
A.1    Determine Intersections 

The traditional way to determine a possible 
intersection starts from calculating the intersection of a 
ray and the plane where a triangular patch is located 
[9]. Considering a ray originating at (x0 , y0 , z0) and 
shooting towards (kx , ky , kz), the ray function is written 
as                         

00001 )(,)( yzzkyxzzkx z +−=+−=  

with zx kkk /1 = and zy kkk /2 = . This requires two 

multiplications and four summations (we do not 
consider those operations solely related to the ray 
function because they are performed only once for a ray 
but not for all triangular patches being tested.). The 
plane function of a triangular patch, written as 

0=+++ dczbyax , could be determined by the 

coordinates of its three vertices by solving a set of 
inhomogeneous linear equations, which requires 36 
multiplications/divisions and 20 summations. The 
solution of the intersection needs additional seven 
multiplications/divisions and six summations. Next, the 
intersection is tested to determine whether it is inside 
the triangular patch or not. We adopt the following 
scheme: 1) Three vectors were constructed by 
connecting three vertices to the intersection. This 
requires nine summations. 2) All cross products 
between any two of the three vectors were gathered. 
This requires 18 multiplications and nine summations. 
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3) All dot products of any two vectors obtained in step 
two were obtained. This requires nine multiplications 
and six summations. If the intersection is inside the 
triangular patch, all cross products must be in the same 
direction if being calculated with a certain circulation 
order. Otherwise, their must be one cross product with a 
sign different from the others. In fact, if we find that 
two dot products have different signs, we can reach a 
conclusion immediately. This step requires 27 
multiplications and 24 summations in the worst case. 
Thus in the traditional method, totally 72 
multiplications/divisions and 64 summations are needed 
in the worst case (136 flops). 
 

 
Fig. 1. Comparison of traditional and proposed intersection 

determination approaches. 
 

The key to efficiency improvements is to bring 3-D 
operations to two-dimensional (2-D) operations. To do 
so, we first project the three vertices of a triangular 
patch onto the x-y plane of another coordinate system 
originating at (x0, y0, z0) and whose z-axis coincides 
with the direction of the ray. This requires 18 
multiplications and 21 summations. Then all cross 
products between any two of three 2-D vectors obtained 
in the first step are calculated. If the intersection is 
inside the triangular patch, all three cross products must 
be of the same sign when being calculated with a 
certain circulation order. Otherwise, their must be one 
cross product with a sign different from the others. This 
step requires six multiplications and three summations. 
Therefore, the proposed scheme requires a total of 24 
multiplications and 24 summations (48 flops). 
Compared with the traditional approach, this algorithm 
needs 35% less flops and hence is 2.83 times faster. 
Moreover, this algorithm is more accurate and robust 
because it does not involve any division operation. 

 
A.2    Ray Tracing In Cavities 

As has already been pointed out, the heart of any ray 
tracing algorithm is sorting and the key to efficiency 
improvements is exploiting data coherence [9], [10]. An 
efficient algorithm is typically achieved by avoiding 
expensive intersection computation as much as possible 
and by sorting the least possible amount of intersections 
or no such sorting at all. If all 3-D discrete points are 

given without any coherence, it would be hard to 
improve the efficiency. 

Let us assume that all discrete points are given in m 
consecutive cuts along the z-axis and let us call them z-
cut. Discrete points in one z-cut form a polygon (z-
polygon) and those in adjacent cuts form a section of 
the cavity when connected. The whole cavity is formed 
by (m -1) such sections, e.g. Fig.5 and Fig.6. With this 
model, we can search for the next reflection section by 
section from where the current reflection is and along 
either positive or negative z-directions, depending on 
the direction of the ray. In this manner, the first 
intersection must be the actual reflection and no sorting 
is needed at all. We call this method the sectional 
algorithm. 

In fact, 3-D discrete points are either specified by 
physical measurement or generated by CAD software. 
It would be natural to require them to be generated in 
the above manner. For those models which are different 
and can not be regenerated, we may run a pre-
processing program to reform them. In the following, 
we shall assume that such a model is always available. 

The sectional algorithm totally avoids sorting, but the 
number of intersection computations could still be 
large. We can further improve the performance for 
convex cavities with the following Wavefront 
Advancing and Candidate Narrowing (WACN) 
algorithm. This algorithm starts from computing the 
intersection of a ray and a z-cut and determining 
whether the intersection is inside the z-polygon. If the 
intersection is out of the current z-polygon but is inside 
the previous z-polygon, it must be reflected by the 
section formed by these two z-polygons. To test 
whether an intersection is inside a z-polygon, we need 
to specify a gauge point for each z-polygon. To 
understand the role of gauge points, we notice that any 
2-D line (formed by adjacent vertices of a z-polygon) 
divides a 2-D space (or hyper plane) into two half-
spaces. When all points in one half-space are 
substituted into the line equation, the results must bear 
the same sign [10]. If the line equation is adjusted such 
that any point from the interior of the polygon yields a 
positive (or negative) sign when being substituted into 
the line equation, we can determine whether an 
intersection is inside a z-polygon or not. A gauge point 
serves this purpose and it could be any point inside a z-
polygon. A 2-D line equation 0=+++ dczbyax  

could be solved by the coordinates of its two vertices 
with six multiplications/divisions and three 
summations. The gauging and the determination 
procedures totally require four multiplications and four 
summations. Thus for one possible triangular patch, ten 
multiplications/divisions and seven summations (17 
flops) are required. This is about 35% of the proposed 
intersection tests needed. Since the current wavefront 
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advances consecutively, we call it Wavefront 
Advancing. 

x’

y’

y’

x’

candidate points

previous z-cut

intersection

candidate points

current z-cut

intersection

 
Fig. 2. The local coordinate systems and candidate points that 

the candidate triangular patch must contain. 
 
If a reflection is about to happen in a section, the 

candidate triangular patches which are possible for 
actual reflection could be further narrowed down. This 
is accomplished through the following steps: 1) In the 
previous z-cut (where the intersection is inside the z-
polygon), construct a Cartesian coordinate system 
whose x’-axis is the projection of the ray on the z-cut 
and whose y’-axis is perpendicular to the x’-axis. 2) 
Transform all vertices of the z-polygon to this new 
coordinate system and only compute their y’ 

components. 3) Check the signs of all y’ components 
consecutively. If two adjacent y’ components are of 
opposite sign, record their indices. 4) Calculate the x’ 

components of the two pairs of points obtained in step 
three. The candidate triangular patch must contain the 
pair of points which both have positive x’ components. 
5) Repeat steps one to three for the current z-cut (where 
the intersection is out of the z-polygon). 6) Calculate 
the x’ components of the two pairs of points obtained in 
step five. The candidate triangular patch must contain 
the pair of points closest to the x’ -axis. After the above 
steps, only those triangular patch (not necessarily two 
patches) containing the two pairs of points in the 
current and previous z-cuts are possible for the actual 
reflection. The candidate triangular patches are 
narrowed down and we call this step Candidate 
Narrowing. Note that obtaining either the x’ 
components or the y’ components only requires two 
multiplications and one summation, thus expensive 
intersection tests are replaced by these simple 
operations. 
 
B.    Elementary Reflection 

In this subsection, the effect of using different cavity 
reconstruction methods for computing the reflection 
will be discussed. 
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Fig. 3. Convergence of simple triangular patches for σθθ  of 

3λ´x  9λlcircular waveguide. 
 

 
Fig. 4.  σφφ  of 10 λ lx´10 λ lcircular waveguide calculated 

by using different reconstruction methods. 
 
B.1    Simple Triangular Patch 

In this approach, each triangular patch is considered 
as a simple plane. Since the principal radii are infinite, 
the caustic problem does not exit. In general, more 
triangular patches should be used if better accuracy is 
required. To study the convergency, we calculate the θθ 
polarized mono-static RCS of a circular waveguide. 
The waveguide is of 3λ in diameter and 9λ in length. 
Different numbers of triangular patches per section, 
which are in turn represented by the number of discrete 
points per circle, is being used. The results are shown in 
Fig.3. We observe that when only 36 points per circle 
(72 patches per section) are used, there are significant 
errors for all angles. As the number of patches is 
increased, the performance improves and 180 points per 
circle yields errors within 3dB/ λ2 compared with 360 
points per circle. Fig.4 shows the φφ polarized mono-
static RCS of a circular waveguide of 10λ in diameter 
and 10λ in length. 180 points per circle are used for 
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reconstruction by simple triangular patches. Ray tracing 
is confined within 45o and the effective angle is up to 
30o - 35o

 according to theory [3]. It is observed that the 
results agree with those obtained by Modal analysis 
well up to 35o. 

Using more triangular patches makes ray tracing less 
efficient. In the following, we shall explore other 
possibilities with better performances. 
 
B.2    Coons Patch 

Since the inaccuracy with simple triangular patches is 
caused by the assumption of infinite principal radii, it is 
natural to consider using surfaces with curvature. Here 
we choose Coons patch. The Coons patch belongs to 
the family of Hermitian bicubic parametric patches. It 
only uses the information on its four corners to 
determine the parameters. To further introduce this 
method, let us denote a Coons patch with two 
parameters (u, v) as R(u, v) = {x(u, v), y(u, v),  z(u, v)}, 
with 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. If uv is used as an 
abbreviation for R(u, v), then 00, 01, 10, 11 represent 
the four corners respectively; 00u, 01u, 10u, 11u, 00v, 
01v, 10v, 11v represent the first order tangential 
derivatives at each corner; and 00uv, 01uv, 10uv, 11uv 

represent the second order tangential derivatives at each 
corner, which are also called twists. A Coons patch is 
then expressed as 

TT vvvHMHuuuuv )1,,,(][][][)1,,,( 2323 ⋅⋅⋅⋅=
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Other options for bicubic surfaces include Bézier 
surface and B-spline surface. They differ from Coons 
patch primarily by the meaning of [M] and the form of 
[H]. Since they are more often used in interactive 
graphic design, we shall not consider them here. 

The great advantage of the Coons patch (as with 
other Hermitian patches) is that when two adjacent 
Coons patches are constructed separately, the first order 
continuity (C1 continuity) across the patch edges is 
guaranteed. Thus we can construct a Coons patch 
whenever needed without considering the global C1 
continuity. Compared with triangle patches, which are 

of C0 continuity, C1 continuity is preferred in computer 
graphics because of more realistic results. 

On the other hand, the Coons patch is a cubic 
function of each of its parameter u and v. This property 
causes unnecessary surface twists and it is 
disadvantageous when being used to calculate the 
reflection and the divergence factor [DF]i. Fig.4 shows 
the φφ polarized mono-static RCS of a 10λ x´10λ l 
circular waveguide calculated by using Coons patches 
with 36 points per circle. We observe that except for the 
main lobe, the results roughly deviate from the 
reference values the most. 

To find the exact reflection position, we need to solve 
a set of linear and non-linear equations including Eq. 
(10) and the ray function. If the Newton iterative 
method is used, three to four iterations should be 
expected with good initial guesses and appropriate 
accuracy control. This procedure consumes more CPU 
time than the computation of the reflection field itself. 
 
B.3    Interpolative Triangular Patch 

In this approach, the reflection position is determined 
by treating a triangular patch as a simple plane. To 
compute the reflection direction and the divergence 
factor [DF]i, the triangular patch is assumed to have 
curvature. Its first and second order derivatives at the 
reflection position are obtained by linear interpolation 
of those at the vertices. Compared with the Coons 
patch, this approach not only eliminates surface twists, 
but also simplifies the calculation of the reflection. 

Fig.4 also depicts the φφ polarized mono-static RCS 
of a 10λ x 10λ circular waveguide calculated by using 
interpolative triangular patches with 36 points per 
circle. As can be seen, the results are much better than 
those for Coons patches with the same amount of points 
per circle and agree with the reference values the best 
(within effective angle 35o). Compared with that of 
simple triangular patches, the consideration of 
curvature improves the accuracy to higher degree at 
large angles (20o above) than at small angles. Bearing 
in mind that the improvements are obtained by using 
20% discrete points, as in the case of simple triangular 
patches, we consider this as our best choice. 

 
IV.    NUMERICAL EXAMPLES 

 
Besides the example shown in Fig.4 as a verification 

of our approach, we further show some more 
realistically shaped examples to demonstrate the 
versatility. The first example is a PEC cavity with a 
slanted front end. The cavity is formed by six sections. 
The first section is a slanted aperture of 10λ  in length. 
The angle between the normal to the aperture, i.e.n̂ , 
and the z-axis, is 45o. The angle between the plane, in 
which n̂ and the z-axis are located, and the x-axis is 0o. 
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The second section is 10λ in length and its cross section 
is a square with side lengths of 10λ. The third section is 
a 6.7λ transition region where the cross section changes 
from a square with a side length of 10λ to a circle of 
10λ in diameter. The fourth section is 8.3λ in length and 
its cross section is a circle of 10λ in diameter. The fifth 
section is another transition region of 8.3λ in length and 
its cross section changes from a circle of 10λ in 
diameter to a circle of 8λlin diameter. The final section 
is of 6.7λ in length and its cross section is a circle of 8λ 
in diameter. The geometry is shown in Fig.5 with 
adjusted axial ratios. The side view is shown in Fig.7 
with real axial ratios. All figures are in the unit of 
wavelength. 
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Fig. 5. Cavity with slanted front end. 
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Fig. 6. Cavity with axial lofting. 

 
For comparison, we built another model with a 

normal front end. The only difference is that the first 
section has the same cross section as the second section, 
i.e. the front end is perpendicular to the z-axis. Both 
cavities are terminated with simple PEC plates. 

We use interpolative triangular patches to reconstruct 
the cavity with 72 points per cross section and WACN 
algorithm for ray tracing. Fig.9 and Fig.10 show that 
both θθ and φφ polarized RCS at φ = 0o. θ takes a 

positive sign when an observation has a positive x 
coordinate and negative sign otherwise. As we see, the 
main lobes of σθθ and σφφ  of the cavity with normal 
front end do not occur at the normal incidence but at 
some larger angles. When the front end becomes 
slanted, the main lobe is close to the normal incidence 
but shifts slightly towards negative θ direction. 
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Fig. 7. Side view of the cavity with slanted front end. 

 
Note that the results for the cavity with normal front 

end are not exactly symmetrical. This is due to the low 
grid density (eight points per λ) being used in aperture 
integration. The results converge slowly to symmetrical 
forms if grid density becomes denser. Without 
exception, all aperture integration in this section will be 
performed with the above grid density. 

The second example is a concave cavity with axial 
lofting as shown in Fig.6 with adjusted axial ratios. A 
side view with real axial ratios is depicted in Fig.8. The 
axis is described by the following function with z as a 
parameter 

))100/cos((2,0 λπλ zyx −==  

Each cross section is formed by two parts. The shorter 
one is an arc of a circle of 5λ in radius. The longer one 

is described by a curve )cossin3(5 2 ψψλλ +−  with 

4π/3£≤ φ ≤ 8π/3. Both are centered at the axis. The 
cavity is also terminated by a PEC plate. 
We use interpolative triangular patches to reconstruct 
the cavity with 24 points per arc, and sectional 
algorithm for ray tracing. Fig.11 and Fig.12 reveal that 
the RCS of θθ and φφ polarization at φ = 0o and φ = 
90o. At φ = 0o, θ takes a positive sign when an 
observation has a positive x coordinate and a negative 
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sign otherwise. A similar convention holds at φ = 90o. 
The RCS at φ = 0o has main lobes at normal incidence. 
The weak asymmetry is also caused by insufficient grid 
density in aperture integration. At φ = 90o, the main 
lobes of both polarization shift toward the negative q 
direction. This corresponds to the direction where the 
termination could be illuminated directly. Note that 
there are actually two main lobes for the θθ  
polarization and its scattering is much stronger than that 
of the φφ polarization. 
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Fig. 8. Side view of the cavity with axial lofting. 
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Fig. 9. Comparison of σθθ  at φ = 0o of cavities with slanted 

and normal aperture. 
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Fig. 10. Comparison of σφφ  at φ = 0o of cavities with slanted 

and normal aperture. 
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Fig. 11. σθθ and σφφ at φ = 0o of the cavity with axial lofting. 
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Fig. 12. σθθ and σφφ at φ = 90o of the cavity with axial lofting. 
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V.    CONCLUSION 

 
 In this article, we have discussed several efficiency 

considerations of the GRE method for computing 
electromagnetic scattering from 3-D arbitrarily shaped 
deep cavities. An improved algorithm for testing the 
intersection of a ray and a triangular patch is proposed, 
which is 2.83 times faster than the traditional approach. 
Two efficient algorithms for ray tracing in 3-D discrete 
cavities - the sectional algorithm and the WACN 
algorithm - are also proposed. The WACN algorithm 
further boosts the efficiency by 2.83 times for convex 
cavities. The effects of using different reconstruction 
methods are explored. Numerical examples further 
show the validity and versatility of our approaches. 
Future work should address the implementation of these 
approaches on distributed computer systems. 
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Abstract: 
We discuss and demonstrate by measurements and 
computations the relation between electromagnetic 
bandgap surfaces (EBG) used to realize artificial 
magnetic conductors and the so-called soft and hard 
surfaces in electromagnetics, with respect to their STOP 
and GO characteristics for surface waves. We show 
how the main characteristics of such surfaces can be 
modeled by using ideal surfaces representing perfect 
magnetic conductors (PMC) and PEC/PMC strip grids. 
Unfortunately, commercial codes do not allow such 
modeling for general shapes of the surfaces. 
 

1. Introduction to EBGs, AMCs and soft 
and hard surfaces 
 
In the last few years, there has been much research on 
using periodic structures to make new materials for 
application in the design of antennas and microwave 
components. Such materials are most often referred to 
as photonic bandgap structures (PBG), electromagnetic 
bandgap structures (EBG), or electromagnetic crystals. 
In some of this work, the main concern is the surface 
characteristics of the periodic structures, in the sense 
that the goal is to obtain a high surface impedance [1], 
or to remove surface waves from a dielectric substrate. 
This latter characteristic is herein referred to as a 
STOP-characteristic.  A high impedance surface 
represents an artificial magnetic conductor (AMC). 
AMCs have the characteristic that electric current 
sources such as dipoles can be located at the surface 
and still radiate well. Thereby very low profile antennas 
can be realized [2].  Other applications of AMCs are to 
realize waveguides that can support TEM waves [3], 
which in this paper is referred to as a GO-characteristic. 
Actually, the waves should be regarded as quasi-TEM 

waves, as they only appear at the frequency where the 
surface impedance is infinite. 

 
A classical relative to the above-mentioned surfaces is 
the transversely corrugated surface. These types of 
surfaces were originally been used as chokes to reduce 
coupling, see e.g. the recent papers  [4] and [5], and in 
corrugated horn antennas that have found so many 
applications in large reflector antennas. In 1987 the 
relation between the corrugated surfaces and the so-
called soft and hard surface described in diffraction 
theory and acoustics was discovered (in acoustics the 
soft and hard surfaces are actually soft and hard to 
touch). In terms of the boundary conditions of the 
fields, an edge in a transversely corrugated surface 
should be analyzed as an edge in a soft surface by using 
the soft diffraction coefficient, both in E-plane and H-
plane (STOP-characteristics in both planes). In 
comparison, for a normal smooth conductor the edge is 
soft in H-plane and hard in E-plane. This fact was used 
to define soft and hard surfaces in electromagnetics [6]-
[7] in terms of surface impedances and the boundary 
conditions in E- and H- planes. In short, the soft and 
hard surfaces are anisotropic. The soft surface behaves 
like a perfect electric conductor (PEC) in H-plane and 
as a perfect magnetic conductor (PMC) in E-plane, and 
visa versa for the hard surface, see Figure 1. The 
preferred illustration of an ideal soft-hard surface today 
is a PEC/PMC strip grid with zero strip period, or in 
other words, a surface with electric and magnetic 
conductivity in one (and the same) direction only, see 
Figure 2a. Note that the surfaces in the figure are color-
coded with blue meaning PEC and gold meaning PMC. 
The PEC/PMC strip grid represents a hard surface when 
the strips are oriented in the same direction as the wave 
propagates (longitudinal strips), and a soft surface when 
they are oriented orthogonal to this direction (transverse 
strips). The concept of soft and hard surfaces has later 
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been generalized to arbitrary orthogonal PEC/PMC 
anisotropy [8]-[9], but this will not be treated here.  
 

 

 
 
GO surfaces: Enhances propagation of waves along. 
STOP surface: Stops propagation of waves along. 
PEC = Perfect Electric Conductor 
PMC = Perfect Magnetic Conductor 
AMC = Artificial Magnetic Conductor 
PBG = Photonic Bandgap Material 
EBG = Electromagnetic Bandgap Material 
EMXtals = Electromagnetic Crystals. 
 
Figure 1. Characteristics of different types of surfaces 
with respect to propagation of surface waves for 
different polarizations (top), and explanation of 
abbreviations (bottom). Note that we here use the term 
surface waves in an extended sense, so that they even 
include grazing waves along a PEC surface (behaving 
like guided surface waves at cut-off). 
 
 

 
 
Figure 2a. PEC/PMC strip representations of ideal soft 
and hard surfaces. The red and green wave-shaped 
arrows represent the direction of propagation of the 
waves that makes the PEC/PMC strip surface soft and 
hard, respectively. 

 
 
Figure 2b. Three  modern realizations in terms of metal 
strips on grounded dielectric substrates. The upper case 
consists of close and narrow metal strips, in which case 
the thickness of the dielectric layer determines the fre-
quency at which the surface is soft or hard. The lower 
case consists of wide metal strips, in which case the 
strip width determines the soft/hard frequency. The 
performance is considerably improved if the strip is 
grounded with metal posts or vias, as shown. In the 
middle case the metal posts or vias are located along 
one edge of the strips, in order to reduce the width to 
half. The effective permittivity in the formula is for the 
transverse strips (soft case) given by reff εε =

1−

 for the 

lower two geometries. For the hard case and the upper 
soft case they are given by = reff εε . 

 
 
2. EBG realizations of soft and hard 
surfaces 
 
The original realizations of the soft and hard surfaces, 
which were initially proposed and studied, were 
transverse corrugations (soft), dielectric-filled 
longitudinal corrugations (hard), and dielectric 
substrates with transverse (soft) or longitudinal (hard) 
metal strips.  These realizations give a thick surface 
compared to common EBGs, because the 
thickness effh ελ 4= , where effε  is defined in the 

caption of Figure 2b. However, new and much thinner 
EBG-inspired realizations are readily available as 
shown in Figure 3, even if the detailed performance has 
not yet been investigated. The AMCs work also without 
metal posts , but the performance is reduced. In the 
same way the strip-loaded soft and hard surfaces work 
without metal posts or vias, but the performance is 
much better with them. The strip-loaded soft and hard 
surfaces suffer from severe problems with strip modes 
that are effectively killed with close metal connections 
to the ground such as posts or vias. 
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3. Applications of STOP Surfaces 
 
An important application of EBGs and AMCs today is 
to reduce the sidelobes in E-plane (STOP-
characteristic) for aperture [12] and microstrip antennas 
[11]. The principle of operation is readily explained in 
terms of the table in Figure 1. From this table it is also 
clear that a soft surface will provide sidelobe reduction 
(STOP-characteristic) of antennas in any plane and for 
any polarization, such as the cases treated in [13]. 
Different realizations of soft surfaces for sidelobe 
reduction are studied in [14]. Recent papers also 
propose metal strips in combination with an AMC 
(making it a soft surface) to reduce coupling [15].   

 
 

4. Application of GO surfaces (quasi-TEM 
waveguide and hard horn) 

 
Another application of AMCs and EBGs is, as already 
mentioned, TEM waveguides [3]. By using a PMC on 
the E-plane walls, a rectangular waveguide can support 
a TEM wave. Actually, if all the waveguide walls are 
made of a hard surface the TEM performance is better, 
because a TEM wave of any polarization can propagate 
in such a hard waveguide of arbitrary cross section. 
This was described already in the original papers on 
soft and hard surfaces. The first simulation of the field 
solution in a hard quasi-TEM waveguide was done by a 
FDTD code in [16]. The simulations were done both for 
realizations in terms of corrugations and strips, and the 
latter case included also a study of an homogenized 
asymptotic model for the strip grid [17]. Two simulated 
cases are shown in Figure 2.  We see the uniform field 
distribution over the cross section and evanescent fringe 
fields around the strips (Figure 2a). In practice, the 
TEM waves of these ideal guides can only be present at 
the center frequency where the surfaces have close to 
ideal performance. Still, their bandwidth is sufficient to 
be attractive for use in cluster-fed multi-beam antennas 
for Ka band multimedia satellites. They are also studied 
at several places for use in quasi-optical grid amplifiers 
in the millimeter wave region (see e.g. [21]). Some 
attempts to realize hard horns with uniform aperture 
distribution were made more than 10 years ago, but at 
that time the numerical techniques were not developed 
sufficiently to control of the performance. Today, it is 
possible to analyze hard horns very accurately with 
commercial software based on FEM or FDTD 
approaches. The horns can be analyzed more time-
efficiently by the special mode matching technique 
used in [22]-[23]. This makes use of asymptotic strip 
and corrugation boundary conditions [17] to simplify 
the analytical modal expansion in each cylindrical 
section (see Figure 4).  

Hard surfaces can also be used to let waves GO past or 
through obstructions without generating blockage [24], 
and to let them GO along a metal cylinder [25]. 

 
 

 
 

Figure 3a. Geometry (upper) and computed H-field 
distribution (lower) in dual-polarized quasi-TEM hard 
waveguide realized by strip-loaded dielectric substrate. 
This case has been computed by using the asymptotic 
strip boundary condition [17]. 
 

 
 

Figure 3b. Geometry (upper) and computed H-field 
distribution (lower) in dual-polarized quasi-TEM hard 
waveguide realized by modeling each metal strip of 
finite thickness. The computations have been done by 
FDTD as explained in [16].  
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Figure 4. Hard horn geometry approximated as 
cascaded sections of cylindrical corrugated sections, 
for analysis by mode matching and generalized 
scattering matrices [23]. The fields in each corrugated 
cylindrical section is expanded in modes by making use 
of the asymptotic corrugation boundary condition [17]. 
A similar mode matching approach has been developed 
for strip-loaded hard horns.  
 
 
5. About EM modelling of complex surfaces 
 
The needs for future research on EM modelling in 
connection with AMCs and soft and hard surfaces can 
be divided in four categories:  
 
A. Studies based on ideal surface models.  
Existing literature does not contain any theoretical 
studies of characteristics of ideal PMCs or soft and hard 
surfaces, such as e.g. waveguide solutions and Green’s 
functions. This would be desirable in order to foresee 
possible applications. Some Green’s functions are 
available in [26] focusing mainly on studies of surface 
waves. Commercial codes can often model infinite 
plane PMCs, but finite PMCs and PEC/PMC strip 
models are not included. Sometimes the latter can be 
modelled approximately by locating PEC strips on an 
infinite AMC surface. 
 
B. Studies based on homogenized boundary cond.  
The major performance of a surface in different 
applications can most effectively be found if the 
periodicity of the surface can be removed by 
homogenization of the boundary condition. The 
asymptotic strip and corrugation boundary conditions in 
[17] are examples of homogenized boundary 
conditions. They have already been used in [16], [18]-
[20], [23] and [26]. The homogenized strip and 
corrugation boundary conditions can also be used to 
derive analytical solutions of realized soft and hard 
waveguides, such as the circular strip-loaded guide in 
[27]. They have been used in FEM software [28], and 
they have been implemented in algorithms and software 
based on plane wave, cylindrical mode and spherical 
mode analysis of, respectively, planar, circular 
cylindrical and spherical multilayer structures [29]. 

They have also been implemented in software based on 
the moment method for cylindrical structures of 
arbitrary cross section, such as e.g. [30]. Commercial 
codes can normally not make use of homogenized 
boundary conditions. The impedance boundary 
condition is also a homogenized boundary condition 
that is applied to such surfaces [31]. However, it is not 
very convenient when modelling soft and hard surfaces 
because it will vary with angle of incidence. The 
asymptotic boundary conditions are much more 
accurate.  
 
C. Studies based on exact modeling.  
The exact modeling of the surfaces in all details is 
always desirable, but it can rarely be done due to the 
computational effort involved. The segment size often 
becomes too small to accurately model periodicity and 
thereby the computation time and memory becomes 
larger than for smooth surfaces. 

D. Ray techniques. 
The computational effort with FEM, FDTD and 
moment method for large structures can be reduced by 
using ray techniques. These will not be mentioned here, 
except referring to one of the papers in this area [32]. 
 
 
6. Experimental illustration of relation 
between AMC-type EBGs and soft and 
hard surfaces 
 
In this section, we will illustrate the relation between 
AMCs and soft and hard surfaces by taking an AMC 
and transforming it to a soft/hard surface by using metal 
tape in the form of narrow strips, see Figure 5. The 
EBG surface was obtained from Ericsson AB. Some 
previous work on it was presented in [33]. It consists of 
two patch layers of Sievenpiper mushroom type [1] for 
900 MHz applications. All the patches on both layers 
are connected to the metal ground plane by metal posts. 
We choose to measure coupling for both horizontal 
(HOR) and vertical (VER) polarizations between two 
quarterwave vertical monopoles and two horizontal 
parallel halfwave dipoles, respectively. The results in 
Figures 5c and 5d show the coupling after we have 
corrected for the mismatch of the two antennas by using 
the following formula: 
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The formula represents the coupling that would be 
measured if we match both antennas and neglect 
multiple interactions between them (i.e. coupling to the 
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Figure 5a. Photo of the dual-layer mushroom-type 
AMC of Sievenpiper type. 
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Figure 5c. Measured net transmissions between two 
vertical quarterwave monopoles on 4 different surfaces: 
The metal plate, the original AMC, the strip-loaded 
hard AMC (shown in Figure 5b), and the strip-loaded 
soft AMC. 
 

 
Figure 5d. Measured net transmission between two 
horizontal halfwave dipoles located 9mm above the 4 
different surfaces.  

 
 

Figure 5b. Two monopoles on the dual-layer 
mushroom-type AMC in Figure 5a that has been 
transformed to a hard surface by providing it with 
longitudinal metal strips made from Aluminum tape. If 
the strips are taped to the surface in the opposite 
transverse direction, the surface becomes soft. 
 
 
 
neighboring dipole and back again). This is satisfied if 
the distance between them is sufficiently large. We 
refer to (1) as the net coupling.  The two antennas were 
mounted at a fixed distance, and four different cases 
were measured: metal ground plane of same size as the 
EBG (corresponding to a PEC), the original EBG 
surface working as an AMC, the EBG with longitudinal 
metal strips on it (corresponding to a hard surface, see 
Figure 5b), and the EBG with transverse metal strips on 
it (corresponding to a soft surface). The measured 
results show that both the AMC and the soft surface 
have a clear bandgap (i.e. STOP band) for VER 
polarization.  For HOR polarization, there is a STOP 
band below 900 MHz, but a GO band above.  Thus, the 
EBG surface acts as an AMC around 900 MHz for VER 
polarization, and it transforms gradually into STOP one 
at that frequency for HOR polarization. The PEC 
STOPs the waves for HOR polarization and lets them 
GO for VER polarization. The soft surface effectively 
stops the waves for both VER and HOR polarization, 
whereas the hard surface lets them GO. The STOP 
characteristics of the soft surface are not as good for 
VER polarization as for the AMC case, but this may be 
better if actual anisotropic soft EBGs of the kind shown 
in Figure 2b are realized.  It seems to be possible to use 
the original EBG as a STOP surface for both HOR and 
VER polarization slightly below 900 MHz, due to some 
frequency shift between the AMC performances for the 
two polarizations. The GO characteristics of the hard 
surface are very clearly present for both polarizations. 
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7. Numerical results for ideal surfaces 
(PEC, PMC, soft and hard surfaces) 

 
We have also computed the net coupling between VER 
monopoles and HOR dipoles located on the different 
corresponding ideal surfaces. For this we have used 
three different moment method codes, one commercial 
code WIPL-D [34] and two in-house codes. The latter 
are WireMoM [35] and G2DMULT [30].  
 
1. The commercial code models the actual finite metal 
surfaces as an ideal PEC, and the currents on both the 
ground plane and the wires are solved for using the 
entire domain basis functions. The PMC modeling 
assumes an infinite ground plane. Soft and hard 
surfaces were modeled by locating metal strips on the 
PMC. 
 
2. The WireMoM program calculates the current 
distribution on any wire antenna by using subsectional 
basis functions. The PEC and PMC ground planes are 
included by imaging. 
 
3. G2DMULT uses a spectrum of two-dimensional 
solutions solved by the moment method to determine 
the coupling between antennas with a given cosine-
shaped current distribution. It can handle all kind of 
ground planes: PEC, PMC, soft and hard. The finite 
widths of the different ground planes are included, 
which are assumed infinitely long. 
 
The measured and computed results are shown in the 
Tables 1 and 2. Some values are missing in the tables 
because the codes could not be used, or the results were 
unreasonable. In particular, it was difficult to calculate 
horizontal dipoles located close to a PEC and a soft 
surface, and vertical monopoles on a PMC. The reasons 
are that the PEC and soft surface short-circuits HOR 
electric currents and make their impedances close to 
zero, and the impedances approach infinity for vertical 
monopoles on a PMC. The presented computed values 
correspond well to the measurements although we 
cannot of course predict the frequency variations due to 
the actual surfaces with such ideal models, but the 
major STOP and GO characteristics are well predicted. 
 
 
8.   Conclusion 
 
We have demonstrated the relation between PBG 
surfaces of AMC-type and the soft and hard surfaces 
regarding their STOP and GO characteristics with 
respect to surface waves. We have also shown that there 
is a large need for being able to model finite and 
arbitrarily shaped ideal PMCs and soft and hard 

surfaces by commercial codes, but first the numerical 
techniques must be further developed to enable such 
code extensions. 
 
 
Table 1. Measured net coupling levels in dB between 
wire antennas on different surfaces (ground planes) for 
an antenna spacing of 1.26λ in a frequency band of 
about 50 MHz around 900 MHz. VER means vertical, 
HOR means horizontal, h is height over ground. The 
STOP cases with low coupling are marked with bold. 
(Soft and hard are made by strips on AMC). 
 

 VER monopoles HOR dipoles HOR dipoles 
 E-plane H-plane, h=0 H-plane, h=λ/4 

Metal -21 -28 to -40 -22 to -35 
AMC -43 to -26 -30 to -10 -20 to -11 
Soft -32 to -23 -32 to -45 -22 to -35 
Hard -5 to -14 -10 to -17 -11 to -15 

 
 
Table 2. Computed net coupling levels in dB between 
wire antennas on different infinite ideal surfaces for an 
antenna spacing of 1.26λ at 900 MHz. The different 
results are obtained by using different codes based on 
the moment method.  VER means vertical, HOR means 
horizontal, h is the height over ground and x represents 
missing data. The STOP cases with low coupling are 
marked with bold. (Soft and hard are made by 
PEC/PMC strips). 
 
 VER monopoles HOR dipoles HOR dipoles
 E-plane H-plane, h=0 H-plane, h=λ/4
PEC -22, -20 X, -30,X -26, -26, -26 
PMC X, -30 -20, -20, -21 -14, -13, -14 
Soft -29, X X, -30, X -26, -23, X 
Hard -10,X -10,X, X -13, X, X 

 
Codes
Used

 
G2DMULT, 
Wire Mom 

 

 
G2DMULT, 

WIPL-D, 
Wire Mom 

 
G2DMULT, 

WIPL-D, 
Wire Mom 
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Theoretical and Experimental Investigations of the
Surge Response of a Vertical Conductor

Md. Osman Goni, Hideomi Takahashi

Abstract— This paper describes the theoretical, simula-
tion and experimental investigations of the surge response
of a vertical conductor, including the effects of ground sur-
face and without ground surface. One of the authors of
this paper derived the formula of the surge impedance in
case with ground surface and without ground surface. In
this research, these theoretical formulas are examined by
the simulation analysis of the vertical conductor using the
Numerical Electromagnetic Code (NEC-2) as well as the
experimental basis. The arrangement of the current lead
wire in the vertical conductor model to be analyzed here
is verified with the simulation result of the equivalent cir-
cuit model by the Electromagnetic Transients Program
(EMTP).

Keywords— EMTP, Lightning surge, Numerical electro-
magnetic field analysis, Tower surge impedance, Vertical
conductor.

I. INTRODUCTION

PREDICTION of lightning surges is very impor-
tant for the design of electric power systems and

telecommunication systems. In particular, tower surge
impedance is an important factor in analysis of the light-
ning performance of transmission lines. Therefore, a
number of experimental and theoretical studies on tower
surge impedance have been carried out [1]–[11].

The first theoretical formulation of tower surge
impedance was proposed by Jordan [1]. The tower was
approximated as a vertical cylinder having a height equal
to that of the tower, and a radius equal to the mean
equivalent radius of the tower. Theoretical formulations
of tower surge impedance based on the electromagnetic
field theory were proposed by Lundholm et al. [2], Wag-
ner and Hileman [3], Sargent and Darveniza [4] and Oku-
mura and Kijima [5], considering effects of the vector po-
tential generated by the injection current into the tower
only.

Another experimental value for actual transmission
towers was reported by Kawai [6]. He used a direct
method to measure tower surge impedance. His experi-
mental results showed that the tower response to a ver-
tical current is different from the response to a horizon-
tal current. Scale-model measurements were reported by
Chisholm [7], [8] and Wahab et al. [9]. These measure-
ments results showed that the tower surge impedance is
strongly influenced by the angle of current injection.

Recently, theoretical work was reported by Ishii and
Baba [10]. They estimated the surge response of a tower
by numerical electromagnetic field analysis. The calcu-
lated results were compared with the field test results
[11]. The analysis showed that surge response and surge
impedance of the tower depend on the arrangement of

the current lead wire.
One of the authors derived the formula of surge

impedance with ground surface: Z = 60·{ln(2
√

2h/r0)−
1.983} (Ω) and without ground surface: Z = 60 ·
{ln(2

√
2h/r0)− 1.540} (Ω) [12]. The theoretical formula

of surge impedance with the ground surface is very close
to the well known experimental formula of Hara et al.
[13]. In this paper, we investigate the surge impedance of
the vertical conductor on the basis of experimental and
simulation analysis. These analysis results agree satis-
factorily with the theoretical values.

II. METHOD OF ANALYSIS

For the present analysis, the Numerical Electromag-
netic Code (NEC-2) is employed. It is a widely used
three-dimensional electromagnetic modeling code based
on the method of moments [14] in the frequency domain,
and is particularly effective in analyzing the electromag-
netic response of antennas or of other metallic structures
composed of thin wires. A vertical conductor system
needs to be decomposed into thin wire elements, and the
position, orientation and the radius of each element con-
stitute the input data, along with the description of the
source and frequencies to be analyzed. In the analysis,
all the elements in the systems are treated as perfect
conductors. To solve the time-varying electromagnetic
response, Fourier transform and inverse Fourier trans-
form are used.

The validity of the computed results when NEC-2 is
applied to the analysis of surge response of a vertical con-
ductor has been verified by comparing with experimental
results. In the simulation and experimental analysis, a
reduced-scale model is chosen in order to make the ex-
periment simple and flexible. However, it is not possible
to achieve the same accuracy as with the full-scale model,
especially in simulating the direct method, since the ge-
ometrical size of the measuring devices is large relative
to the whole system.

In the lightning surge analysis with Electromagnetic
Transients Program (EMTP), the vertical conductor
model has been represented by an equivalent circuit of
the transmission-line type since it can be easily inter-
faced with EMTP. Then, the basic parameters are its
surge impedance, the travelling wave propagation veloc-
ity, and the attenuation and deformation characteristics
of the travelling wave. Of these, the attenuation and
deformation characteristics of the travelling wave deter-
mine the reflected wave from the base of vertical conduc-
tor; that is, the wave tail after its peak in the vertical
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conductor’s potential-rise waveform.

III. THEORETICAL FORMULA OF SURGE
IMPEDANCES

One of the author’s theory is able to apply widely in
case of ground surface and without ground surface. Sup-
pose that the surge electric current invades to the verti-
cal conductor whose height is h and radius is r0. Then
the surge current wave is reflected at the ground of the
perfect conductor and returns to the top of the vertical
conductor.

Introducing the electric current reflectivity β = 1 and
the magnetic field reflectivity γ(γi, γr) = 0, the theoret-
ical formula of surge impedance which is very close to
the well known experimental formula [13] is obtained as
follows;

Z = 60 · (ln(
h

2r0
) − 1

4
)

= 60 · (ln(
2
√

2h

r0
) − 1.983) (1)

However, if it is considered that β = γi = γr = 1, it
became

V (t) =
cµ0I0

2π

(
ln

(ct + 2r0)
2r0

− ct

2(ct + r0)

)

The above equation can be modified by substituting
ct = 2h and assuming h � r0 as follows;

Z = 60 · (ln(
h

r0
) − 1

2
)

= 60 · (ln(
2
√

2h

r0
) − 1.540) (2)

On the other hand, if there is no ground, the following
formula is induced [15].

V (t) =
∫ ct

0

(−Ei · dl)

=
cµ0I0

2π

(
ln

(ct + 2r0)
2r0

− ct

2(ct + r0)

)

Substituting ct = 2h and assuming h � r0 in the
above equation, we get

Z = 60 · (ln(
h

r0
) − 1

2
)

= 60 · (ln(
2
√

2h

r0
) − 1.540) (3)

This formula given by (3) is the same as (2).
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Fig. 1. Arrangement of the vertical conductor system.

TABLE I

Specifications Of Measuring Equipment

Equipment Frequency Sensitivity
Current Tektronix 25kHz∼ 5mV/mA ± 3%
sensor CT-1 1GHz into 50Ω load.
Voltage Tektronix DC∼ 10:1
sensor P6243 1GHz
Power Tektronix 40∼ ± 5VDC
supply 1103 440Hz ± 2%

Recording HP54616B DC∼ 2Gsa/s,
equipment 500MHz 8 bit word

Pulse HP8131A DC∼ 100mV∼
Generator 500MHz 5Vpp into 50 ohm

IV. EXPERIMENTAL AND SIMULATION
ANALYSIS OF SURGE IMPEDANCE

Fig. 1 shows the reduce-scale model of the vertical con-
ductor system for the simulation analysis. The arrange-
ment of the current lead wire connected to the top of the
vertical conductor with the existence of the ground sur-
face and without ground surface are indicated in Fig. 1(a)
and 1(b) respectively. Whereas, Fig. 1(b) is also the case
of the lightning phenomena caused by the return stroke
[16]. The other type of the lightning phenomena caused
by a downward travelling current wave can also be ex-
amined. For the simulation of this situation, a pulse
current generator needs to be placed remotely above the
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Fig. 2. Experimental results of voltage and current considering
with ground surface.

channel. However, the computed waveforms for this case
of current injection, a current wave travelling down the
current lead wire, are similar to those of return stroke
type.

The experimental arrangement of the vertical conduc-
tor system with the existence of ground surface is a little
different from the simulation arrangement and is indi-
cated in Fig. 5 of [15]. However, the experimental ar-
rangement without ground surface is similar to Fig. 1(b).
A voltage measuring wire of 200 cm in length is placed
perpendicular to the current lead wire and is connected
to the top of the vertical conductor which is 60 cm in
height and radius of 0.05 cm. The ends of the horizon-
tal voltage measuring wire in both cases are stretched
down and connected to the ground through matching re-
sistance. This termination condition does not affect the
phenomena at the vertical conductor within 17.33 ns.

A step current pulse generator having pulse voltage
of 5 V in magnitude, rise-time of 1 ns and pulse width
of 40 ns is installed as indicated in both cases which
is meant to incorporate the influence of the induction
from the lightning channel hitting the vertical conduc-
tor. For the simulation analysis, and to save the com-
putation time, the conductors of the system are divided
into 10 cm segments. To evaluate the voltage of the top
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(b) Computed current waveforms.

Fig. 3. Computed waveforms of voltage at the top and currents
in the various parts of the vertical conductor in case with ground
surface.

of a structure, 10 kΩ resistance was inserted between the
top of the structure and the end of the voltage measur-
ing wire. The voltage at the top of vertical conductor
is measured by a voltage probe with high resistance and
low capacitance(1MΩ and ¡1pF). The injection current
is measured by current transformer. The specifications
of the measuring equipment are shown in Table I. The
waveform of current flowing through the vertical conduc-
tor is also obtained from the experiment and simulation
analysis. The system of structures under those analysis
was postulated to be on the perfectly conducting ground.
Then we calculate the surge impedance which is defined
by the ratio of the instantaneous values of the voltage to
the current at the moment of voltage peak.

As the pulse applied to the current lead wire according
to Fig. 1(b), the current starts flowing through the ver-
tical conductor instantly. However, for the arrangement
of Fig. 1(a), the current through the vertical conductor is
delayed by the round-trip time of the travelling wave in
the conductor. While in both cases, the reflection wave
from the ground reaches the top of the vertical conductor
at t = 2h/c, where c is the velocity of light. And that
is why the maximum potential of the vertical conductor
will occur at time t = 2h/c.

A. With Ground Surface

Considering with Fig. 1(a), we want to find the volt-
ages and currents experimentally and with the simula-
tion by the NEC-2. Fig. 2 shows the experimental re-
sults of the voltage and current with the ground sur-
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Fig. 5. Experimental results of voltage and current considering
with no ground surface.

face. Fig. 3 shows the simulation results by the NEC-
2. In Fig. 3(a), the influence of the reflected wave from
the ground reaches the top of the conductor is observed
at t = 2h/c = 4 ns exactly which means that the
travelling wave is propagating at the velocity of light.
Fig. 3(b) shows the computed waveforms of current flow-
ing through the vertical conductor as indicated by the
mark ‘CT’ in Fig. 1(a). As the pulse generator is placed
300 cm from the vertical conductor, the current through
the vertical conductor is being delayed approximately 10
ns. The waveforms start rising after 10 ns which can be
noticed from Fig. 3. The existence of the ground surface
can be observed in Fig. 3(b), where the field produced
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Fig. 6. Computed waveforms of voltage at the top and currents in
the various parts of the vertical conductor in case with no ground
surface.
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Fig. 7. Surge impedances of the vertical conductor at 0 < t ≤ 2h/c
with no ground surface.

by the current injected horizontally induce current of
small magnitude before the actual surge current flowing
through the vertical conductor. These simulation results
of currents in Fig. 3(b) obtained by the NEC-2 exactly
coincide with the experimental results [15]. Then, we
compare the theoretical value of the surge impedance
considering the ground surface given by the (1) with the
simulation and experimental results of that. Fig. 4 shows
that the vertical conductor surge impedances. The theo-
retical values of surge impedance calculated by using (1)
is just after the surge electric current reaches the ground
and produce reflected current wave. As we need to know
surge impedance at t = 2h/c = 4 ns. In these results,
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Fig. 8. Equivalent circuits of the vertical conductor models.

theoretical, computed and experimental values of surge
impedances are approaching closely at t ≈ 2h/c.

B. Without Ground Surface

Fig. 5 shows the experimental results of the voltage
across the voltage measuring wire and currents through
upper and lower parts of the vertical conductor in the ab-
sence of ground surface. The simulation results of volt-
age at the top of the vertical conductor and currents
through different parts of it are shown in Fig. 6. How-
ever, in this case of analysis, the waveforms of current
through the vertical conductor are somewhat different
from Fig. 3(b) at the starting region because of absence
of the ground surface. Also, the current starts flowing
instantly through the vertical conductor without being
delayed. Finally, the theoretical, computed and mea-
sured values of surge impedances are shown in Fig. 7.
Here also we see that the values of surge impedances
approach closely at t ≈ 2h/c.

V. VERTICAL CONDUCTOR MODELS FOR
EMTP ANALYSIS

The Electromagnetic Transients Program (EMTP) is
probably the most widely-used power system transients
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Fig. 9. Simulation results of voltages and currents by the EMTP
at 0 < t ≤ 2h/c.
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Fig. 10. Simulation results of surge impedances by the EMTP at
0 < t ≤ 2h/c.

simulation programs in the world today. In this sec-
tion, the EMTP simulations based on the circuit the-
ory were perfomed for the vertical conductor model with
ground and without ground surface. In the circuit model,
the line was represented by a distributed R-L-C circuit
with the skin effect being neglected. The NEC-2 cannot
exactly model the structures of actual towers or verti-
cal conductors, and in addition it cannot directly inter-
faced with the EMTP. For the EMTP simulations, there-
fore, it is practical to employ an equivalent circuit of the
transmission-line type for representing the vertical con-
ductor system. In developing the model or in determin-
ing its parameters, characteristics stated in the preceding
sections should be taken into consideration. In this sec-
tion, vertical conductor models used so far are reviewed
with emphasis on their performance in reproduction of
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measured waveforms of current through the vertical con-
ductor and voltage at the top of it. The surge impedance
is then calculated from the ratio of the maximum poten-
tial at the conductor top to the current through it at the
time of voltage peak. Fig. 8 shows the equivalent circuit
representation for the vertical conductor system consid-
ering with the existence of ground surface and without
ground surface. The dimensions of these circuit models
are the same as considered for the simulation and experi-
mental model systems of Fig. 1. The voltage sensors and
the current sensors indicated in Fig. 8 represent the mea-
suring points. The surge impedances of the distributed
line are used as the input data for the EMTP analysis,
and are of different values depending on the height of
the conductors. As the analysis with EMTP, it can be
easily handled to the horizontal conductor but cannot
be handled just as it is to the perpendicular conductor.
Therefore, to solve the problem, the perpendicular con-
ductor can be divided into the horizontal conductors as
it makes a center level at the axis in each conductor.

Fig. 9 shows the simulation results of voltages and cur-
rents with the existence of ground surface and without
the ground surface by the EMTP analysis for the equiv-
alent circuit representation of Fig. 8. The solid lines of
Fig. 9 correspond to circuit representation of Fig. 8(b)
and the chain lines for the Fig. 8(a). The starting time of
current flowing through the vertical conductor depends
on the position of the pulse generator. As the pulse is in-
jected at 300 cm from the vertical conductor with ground
surface as in Fig. 8(a), the currents start flowing after 10
ns of currents through it in case with no ground surface.
The occurrence of the reflection can also be observed in
Fig. 9. Then the EMTP results of the surge impedances
of the vertical conductor with ground surface and with-
out ground surface are shown in Fig. 10.

TABLE II

Surge Impedances of the Vertical Conductor at t ≈ 2h/c

With ground Without ground
Theoretical 368 395
Computed 373 402
Measured 366 406
EMTP 375 403

Theoretical, experimental and computed by the NEC-
2 and EMTP results can be summarized in the Table
II at t = 2h/c so as to make quantitative evaluation.
The surge impedance for the ground surface is naturally
much lower than without ground surface that can also
be realized by the (1) and (2). The theoretical values
of surge impedance agree well with the computed and
experimental values.

VI. CONCLUSIONS

The theoretical values of surge impedances are verified
by comparing the computed and experimental results on
simple structures. The difference is less than about 5%,
which is within the accuracy maintained in the analysis.
Also, the travelling wave propagates at nearly the veloc-
ity of light. The surge characteristics have some influence
on the type of the lightning current with the presence of
ground surface and without the ground surface. The
difference comes from the different electromagnetic field
around the vertical conductor influenced mainly by the
electric fields associated with the currents propagating
the vertical conductor and current lead wire. Also the
restriction of the size of the perfectly conducting ground
plane and the effect of the voltage probes might cause
small difference in the experimental results of voltage
and current waveforms.
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ABSTRACT 

 
At present multi-GHz operating frequencies, the elec-
trical properties of high-end, multilevel IC intercon-
nects must be described with Maxwell’s equations. 
We have developed an entirely new floating random-
walk (RW) algorithm to solve the 2D time-harmonic 
Maxwell-Helmholtz equation. The algorithm requires 
no numerical mesh, thus consuming a minimum of 
computational memory—even in complicated prob-
lem domains, such as those encountered in IC inter-
connects. The major theoretical challenge of deriving 
an analytical Green’s functions in arbitrary heteroge-
neous problem domains has been successfully re-
solved by means of an accurate approximation: itera-
tive perturbation theory. Initial numerical verification 
of the algorithm has been achieved for the case of a 
“skin-effect” problem within a uniform circular con-
ductor cross section, and also for a heterogeneous 
“split-conductor” problem, where one segment of a 
square domain is conducting material, while the other 
segment is insulating. As an example of electrical 
parameter extraction using this algorithm, we have 
extracted the frequency-dependent impedance of the 
uniform circular cross-section previously mentioned. 
Excellent agreement has been obtained between the 
analytical and RW solutions, supporting the theoreti-
cal formulation presented here. 
 
Index Terms—Floating random-walk, Helmholtz 
equation, Maxwell equations, perturbation theory, 
skin effect, IC interconnect. 
 

I.  INTRODUCTION 

 
Advances in digital IC technology have resulted in 
multi-GHz operation frequencies. At such frequen-
cies, circuit designers must account for electromag-
netic phenomena that are difficult to calculate. They 
include skin-effect loss, frequency-dependent induc-
tance and capacitance, slow-wave substrate coupling, 
distributed transmission-line propagation and high-
frequency radiation. Our principal objective here is to 
invent a new numerical algorithm capable of effi-
ciently describing these increasingly significant elec-
tromagnetic phenomena. Our hope is to establish a 
new approach for the modeling and design of com-
plex, multilevel IC-interconnects.  
 
Traditional numerical methods for solving electro-
magnetic problems, unfortunately, require a discreti-
zation mesh. Mesh size and the resultant difficulty of 
solution become somewhat unmanageable in compli-
cated 3D problem domains. The random walk (RW) 
algorithm [1] that we present here does not employ a 
mesh. In essence, the algorithm executes a Monte 
Carlo integration [2] of an infinite series of multi-
dimensional integrals by means of RWs through the 
problem domain. These integrals contain “surface” 
and “volume” Green’s function kernels. Note, impor-
tantly, the RW method is inherently parallel, requir-
ing minimal inter-processor communication. 
 
A large portion of the traditional RW literature treats 
the Helmholtz equation in homogeneous problem 
domains [3]. This is principally because of the ab-
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sence of an exact analytical Green’s function in arbi-
trary heterogeneous domains [4]. The RW algorithm 
we present in this work, on the other hand is applica-
ble to heterogeneous problem domains—essential for 
IC-interconnect modeling. 
 
The primary objective of this work is the detailed 
theoretical formulation of a novel floating RW algo-
rithm based on iterative perturbation theory. In Sec-
tion II, we develop a vector-potential formulation of 
the 2D Maxwell-Helmholtz equation, suitable for 
skin-effect analysis. A derivation of the relevant 
Green’s functions for the 2D Maxwell-Helmholtz 
equation using iterative perturbation theory is given 
in Section III.  In Section IV, we apply the Green’s 
functions defined in Section III to define a specific 
floating RW algorithm. Section V presents the results 
of a numerical 2D skin-effect problem analysis 
within a circular conductor cross section, including 
the frequency-dependence impedance per unit length 
for the circular cross section at different frequencies. 
This section also contains the results for a heteroge-
neous “split-conductor” problem, where one segment 
of a square cross section is electrically conducting, 
while the other is insulating. For each one of these 
problems, comparison with an exact, analytical solu-
tion is provided. Lastly, Section VI summarizes our 
work and indicates possible future directions.   
 

II.  PROBLEM FORMULATION 

 
Consider a 2D solid-conductor cross section in the xy 
plane, where we impress a z-directed current density 
at the conductor surface. We define a corresponding 
current-density phasor Jz in the harmonic steady state. 
We, furthermore, neglect any free-charge density as 
an approximation. Time-harmonic Maxwell’s equa-
tions require that the electric-field phasor within the 
conductor cross section satisfy the scalar Helmholtz 
equation [5]: 
 

                         .022 =−∇ zz EE γ                        (1) 

 

Above, 22222 // yx ∂∂∂∂ +=∇ ; ),( yxEE zz = ; 

σωµεωµγ 0
2

0
2 i+−= ; ω, µ0, ε and σ are operation 

frequency, free-space magnetic permeability, permit-
tivity and conductivity, respectively. At the conduc-
tor surface, the impressed current density expresses 
itself as a boundary condition in electric field by 
means of the Ohm’s Law constitutive relation:  

                                  .
σ

z
z

J
E =                              (2) 

 
Equations (1) and (2) essentially describe the so-
called 2D “skin-effect problem” in our conductor. 
Electric field, or equivalently, current density, will 
vary within the conductor as a function of frequency 
and material parameters, subject to an applied surface 
boundary condition. We choose now to reformulate 
the problem, using vector potential zz yxA eA ˆ),(= , 

with BA =×∇  in the Coulomb gauge 0=⋅∇ A [6]. 
This formulation is useful in a future 3D extension of 
this work, because it conveniently decouples field 
components in the governing equations. 
 
Equations (1) and (2), in the vector-potential formu-
lation, generate a “forced” Maxwell-Helmholtz sys-
tem: 
 

,0
22

z
AA zz ∂

∂ϕσµγ −=−∇              (3) 

                      ,
z

AiJ zz ∂
∂ϕσσω −−=                     (4) 

 
where, at the conductor surface, 
 

                                   .0=zA                                  (5) 

 
The quantity –iσωAz above is the so-called “eddy-
current density”. In deriving (3) and (4) from Max-
well’s equations, we observe that for no free-charge 
density, the scalar potential function ϕ is frequency 
independent and it is completely decoupled from 
vector potential Az.  
 
In addition, as ∂ϕ/∂z generally depends solely on x 
and y, and not ω; it must, as well, satisfy (4) in the dc 
limit ω → 0. Accordingly, z∂σ∂ϕ /−  can be identi-

fied as the dc current density phasor. It should be 
noted, that though this phasor has a non-constant 
harmonic temporal variation exp(iωt) for any ω ≠ 0, 
its spatial dependence remains identical to that at dc.  
 
We require, as well, correspondence with surface 
condition (2). We must be careful, therefore, to im-
press a surface current density in (2) consistent with 
(4) and (5). In other words, we define an ideal source 
as one that excites our conductor cross section ac-
cording to (4) and (5). An ideal source maintains the 
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dc current-density phasor spatial dependence at the 
conductor surface, with the proviso that the phasor 
temporal dependence is of the form exp(iωt). 
 

III. ITERATIVE PERTURBATION THORY 
BASED GREEN’S FUNCTION 

 
The Green’s function equation corresponding to the 
2D Maxwell-Helmholtz equation (3) is  
 

,)(22
orr −=−∇ δγ GG                     (6) 

                        
where )|( orrGG =  is the Green’s function at (x, y) 

position coordinate r due to a 2D Dirac delta-
function source at ro. Equation (6) does not, gener-
ally, have an analytical solution for  arbitrary γ(r). 
We will derive, nonetheless, using iterative perturba-
tion theory [7], an approximate expression for G on 
the circular domain, with arbitrary radius R, shown in 
Fig. 1. This Green’s function will allow us to later 
develop a novel RW algorithm for the solving 2D 
skin-effect equation (3). The Green’s function G is 
assumed to be zero on the boundary of the circular 
domain, as the problems under consideration are 
Dirichlet [8] problems.  
 

 
Figure 1: A circle of arbitrary radius R over which the 
Green’s function in (6) is estimated.  
 
 
Let us define the zeroth-order approximation G(0) for 
G as the solution to (6) with γ = 0. Therefore, 
 

).(2 )0(
orr −=∇ δG                     (7) 

 
Above, r (ρ, θ) is the point where the zeroth-order 
approximation is calculated given a delta function 
centered at ro (ρo, θo). 

Using (6) for iteration, we can then generate a first-
order approximation G(1) in terms of G(0): 
 

.)( )0(2)1(2 GG γδ +−=∇ orr                  (8) 

 
The solution to Poisson equation (7) is well known; it 
has the form, in polar coordinates [9] 
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Now, we are in a position to evaluate )1(G  from (8). 

Using the expression for ,)0(G and with the right side 
of (8) as the Poisson source term, we find an expres-
sion for the first-order approximation to (6) given by 
[10] 
 

  

).|()|( )( 

)|(

)|()(2)(

)|()0()|(

)0()0(22

)0(

)0(

2)1(

o

o

oo

o

rrrrr

rr

rrrrr

rrrr

SSS
S

S

SSS

S
S

S

GGrd

G

G

GrdG

γ

γδ

∫∫

+=





 +−

= ∫∫

(10) 

 

Note that )1(G given by (10), is an approximate ex-
pression for G as given by (6). The integration vari-
able in (10) represents an infinitesimal area element 
on the circular-domain surface S in Fig. 1. Note, as 
mentioned earlier, homogeneous Dirichlet conditions 
have been employed in obtaining (9) and (10). 
 
We next use this approximate Green’s function G(1) to 
develop a general solution to skin-effect equation (3) 
within our circular domain in Fig. 1. Two integral 
terms arise—a line integral about the domain circum-
ference C which takes into account the effect of 
boundary conditions, and a surface integral through-
out the domain S itself, which takes into account the 
effect of the source term, and the vector-potential at 
the center of the circular domain is given by [11] 
 

S: 

C: ρ =R 
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Substituting (10) in (11) and after some mathematical 
manipulation, we obtain, for Az at the domain center 
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where 
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and 
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For simplicity, above, we take γ2 to be piecewise con-
stant with respective values γq in θ -quadrants q = 1, 
2, 3, and 4. The quantities within square brackets in 
(12) are 2D versions, respectively, of surface and 
volume Green’s functions encountered in 3D prob-
lem domains. These Green’s functions consist of two 
auxiliary functions Wq and Fq defined in (13) and 
(14). The functions represent perturbative corrections 
arising from the γ2Az term in the original Maxwell-
Helmholtz equation (3). In (13) and (14), η and ξ are 

variables of integration. η  takes values between 0 

and R, while θ  assumes values between 2/)1( π−q  

to 2/πq  for a particular quadrant. Equations (12)–

(14) are the starting point for defining a RW algo-
rithm for solving (3) in 2D domains with arbitrary 
piecewise-constant spatial variation in γ; subject to 
arbitrary Dirichlet boundary conditions.  
 
The total current, I, through the cross section can be 
calculated by integrating the current density given in 
(4) over the problem domain (ds being an infinitesi-
mal area unit) and can be written as 
 

                         

.




 −−= ∫∫ z
AidsI z

S ∂
∂ϕσσω          (15)                         

 
The integral expression for vector potential from (12) 
is substituted in (15) to obtain a multi-dimensional 
integral expression for total current through the con-
ductor surface.  
 
The internal impedance per unit length is defined 
as[12] 
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              (16)    

 
At this point, the crucial thing to note is that for esti-
mating frequency-dependent impedance, we need not 
estimate field or vector potential at a large number of 
points within the problem domain, or for that matter, 
at any point within the problem domain. The problem 
of impedance extraction is reduced to estimating the 
overall multi-dimensional integral expression for 
current obtained from (15) within the FRW frame-
work to be described in the next section, and then 
using (16) to evaluate the internal impedance per unit 
length. 
 

IV.  THE FLOATING  RW ALGORITHM 

As mentioned earlier, the floating RW algorithm is a 
Monte Carlo evaluation of an infinite series of multi-
dimensional integrals. The kernels of these integrals 
consist of products of surface and volume Green’s 
functions. In this section, we describe the floating 
RW algorithm in detail in context of the skin-effect 
problem in a circular cross section. As shown in Fig. 
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2, we define RWs to start at a point, where we need 

to estimate zA in (3).  

 
Figure 2: A schematic diagram of a circular cross section is 
shown. One-, two- and a three- hop  RWs are represented.  
 
The RWs propagate as “hops” of different sizes from 
circle centers to circumferences, consistent with a 
statistical interpretation [1] of (12). Maximally sized 
circles, subject to limitations imposed by iterative 
perturbation theory, are used with hop-location prob-
ability rules again consistent with (12).  
 
We define, with each hop, a numerical weight factor 
derived from (12). The product of these weight fac-
tors over a walk, multiplied by the solution at the 
problem boundary—where the walk must termi-
nate—gives a statistical estimate for zA  at the RW 

starting point. All this, again, is entirely consistent 
with a statistical interpretation of (12). We can thus 
obtain an accurate statistical estimate for zA  by av-

eraging over a statistically large number of RWs. 
Mathematically, we can write such an estimate 
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where N is the number of walks and )(n
zA  is the nth-

walk estimate. Referring, again, to Fig. (2), we see 
examples of three representative RWs: a one-hop, a 
two-hop, and a three-hop walk. The contributions 
from these three RWs can be written as 
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Above, CK  represents the weight factor associated 

with the “surface” Green’s function, the θ-
integral term in (12). The function SK  represents the 

weight factor associated with the “volume” Green’s 
function, the (ρ,θ)-integral term in (11). Assuming 
the hops are uniformly distributed in (ρ,θ), these 
weight factors have the form, from (12),  
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For estimating the frequency-dependent impedance 
per unit length as given in (16) a similar exercise is 
carried out using a statistical interpretation of (15). 
For heterogeneous problems, there are a couple of 
differences. First of all, the maximum hop size, 
which is decided by the validity of iterative perturba-
tion theory, is different for different medium. In this 
paper, the maximum hop size is estimated to be the 
minimum of two numbers. First, we allow the first-
order correction in the expression for the volumetric 
Green’s function given in (12) to be equal to ten per-
cent of the zeroth-order approximation and calculate 
a maximum hop size under this assumption. A similar 
process is carried out for the surface Green’s function 
term in (12) and a maximum hop size is calculated 
under this assumption. The maximum hop size for 
our RW algorithm is the smaller of these two num-
bers. Secondly, the random hops are restricted by 
material interfaces in heterogeneous problems. 

A (n)

r1

r1

r1

r2

r3

r2
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We close this section with a pseudo-code listing that 
defines our floating RW algorithm for estimating 
vector-potential. 
 

—Floating Random-Walk Algorithm Pseudo-
Code— 

 
1) Choose the point where zA need be esti-

mated; call it AZ. 

2) Evaluate ='δ the maximum hop size as de-
termined by validity of perturbation theory, 
according to the procedure described previ-
ously in this section. 

3) ∆ = a pre-defined small number. 
4) NMAX = a pre-defined large integer. 
5) N = 0. 
6) TOTAL_SUM = 0. 
7) SUM = 0. 
8) Evaluate the maximal radius that contacts 

the closest problem-domain boundary, with-
out passing through it; call it RMAX. 

9) RAD = MIN (RMAX, 'δ ). 
10) Draw a circle of radius RAD. 
11) Hop to a point on the circumference in con-

formity with a uniform probability distribu-
tion in θ. 

12) Evaluate the exact weight factor KC from 
(13) and (19); call it KC. 

13) Evaluate the exact weight factor KS from 
(14) and (20); call it KS. 

14) KC (zeroth hop) = 1; INCREMENT = KC 
(previous hop) * KS (present hop). 

15) SUM = SUM + INCREMENT. 
16) IF (a boundary is not reached) THEN (re-

peat steps 8 –15). 
17) IF (a boundary is reached) THEN (termi-

nate walk; N = N + 1; SUM_TOTAL = 
SUM_TOTAL + SUM). 

18) IF (N < NMAX) THEN (repeat Steps 7–17). 
19) IF (N ≥  NMAX) THEN (AZ = 

SUM_TOTAL / NMAX). 
20) Evaluate exact, analytical solu-

tion AZ(exact) .  

21) ERROR = AZ(exact)AZ − . 

22) IF (ERROR > ∆) THEN (NMAX = NMAX 
* 1.2; repeat steps 5 –21). 

23) IF (ERROR ≤ ∆) THEN (AZ = estimated 
value of Az). 

 
 

V.  VERIFICATION WITH THE HELP OF 
BENCHMARK PROBLEMS 

 
The principal objective of this work is to formulate 
and to define a novel RW algorithm for 2D Maxwell-
Helmholtz equation solution. We have benchmarked 
our formulation against two known solutions. As said 
earlier, the first problem is a single circular cross 
section, where an alternating current of single fre-
quency is impressed. Using the algorithm developed 
earlier, we estimate the current density profile across 
the cross section as well as the internal impedance. 
The analytical solution for the current density along a 
uniform, circular-conductor cross section of radius R 
is [12]  
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where 0J  is the zeroth-order Bessel function. The 

variable ρ here denotes radial coordinate from the 
conductor center. For this circular cross section, an 
analytical expression for the internal impedance per 
unit length as defined in (16) is given by [12] 
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As mentioned earlier, the second problem solved is a 
heterogeneous “split-conductor” problem, where a 
square domain is divided into two unequal rectangu-
lar domains of insulating and conducting material, as 
shown in Fig. (3).  

 
Figure 3: 2D, split-conductor problem, the geometry. 
 

ρ =1.8  µΩ ⋅ cm

ε r = 2.7

x

f =1GHz

10 µm

2 µm
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The insulating region is represented in light gray, 
while the conducting region is represented in dark 
gray. The boundary regions, where the z-component 
of the vector potential is known, are represented in 
black. The boundary conditions are chosen such that 

0=zA  in the top, bottom and right boundary re-

gions, while )/sin( LyAz π=  in the left boundary 

region (L being the length of the side of the square) 
where the origin coincides with the left and bottom 
corner. Assuming the continuity of the solution and 
its derivative at the material interface (L0 being the 
length of the dielectric), the analytical solution to this 
heterogeneous problem is given by [13] 
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The constants in (23) are given in (24) and (25) as: 
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We coded the algorithm in MATLAB 5.0™, using a 
400-MHz Apple PowerBook G3™ development plat-
form. The resistivity for conducting material is given 
by cm8.1 −Ω= µρ  and relative permittivity of di-

electric material is given by .7.2=rε  The radius of 

the circular cross section is given by R = 5µm while 
for the split-conductor problem, the dimensions of 
the square cross section is given by 

m.10m10 µµ × The respective dimensions of the in-

sulating and the conducting materials in the split-
conductor problems are shown in Fig. (3). The oper-
ating frequency f = ω/2π = 1GHz corresponds to a 
skin depth δs = 2.1µm and a wavelength of 

m.108.1 5 µ× The propagation-constant squared (γ2) 

is equal to 4.386×1011i/m2 within the conductor and 
equal to —1185.431197m-2 within the dielectric at 1 
GHz. Based on these numbers and the criterion given 
in Section IV, the maximum radius of hops inside 
conducting material is m,95.0 µ  and the maximum 

radii of hops within the dielectric material is 

m,4108.1 µ× which is about twice the dimensions of 

a chip (based on a 1 cm×1cm chip). Thus we see that 
this perturbation theory based approach has the po-
tential to allow meaningful interconnect analysis. 
 
Figures (4) and (5) show the magnitude ratio and 
phase lag, respectively, of the skin-effect current den-
sity phasor. A total of 20,000 RWs were performed 
per solution point. The figures show excellent agree-
ment between the analytical and RW solutions. The 
mean absolute error between exact and RW solutions 
was 0.001 for magnitude and 0.012rad for phase. 
 
                           |Jz(ω)/Jz(0)| 

 

 

 

 

 

 

 

                                ρ(µm) 

Figure 4: 2D skin-effect problem in a homogeneous  
circular conductor cross section, relative magnitude.   
Problem radius R = 5µm and ω = 1GHz. 
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                     arg[Jz(ω)/Jz(0)] (rad) 

 

 

 

 

 

 

 

                                  ρ(µm) 

Figure 5: 2D skin-effect problem in a homogeneous circu-
lar conductor cross section, phase lag. Problem radius R = 
5µm and ω = 1GHz. 
 
As expected, the total current density is maximum 
and equal to the dc value at the boundary, and 
reaches its minimum at the center of the cross sec-
tion. The characteristic skin-depth decay scale is well 
in evidence in Fig. (4). In addition, the expected 
maximum phase lag occurs at ρ = 0 in Fig. (5). Table 
(1) summarizes the results for the skin-effect prob-
lem, while Table (2) shows the results for the fre-
quency-dependent self impedance of a cross section 
of radius 1.0 µm at frequencies of 1 GHz, 5 GHz and 
10 GHz. As expected, both the frequency-dependent 
inductance and frequency dependent inductance in-
creases with frequency. For extracting impedance, a 
total of only 1,000 RWs were performed per points. It 
can be seen from Table (2), that the error in the esti-
mate of frequency-dependent resistance and inductive 
impedance is around 1 percent in all three cases. Ta-
ble (3) summarizes the results for the heterogeneous 
problem, while Figures (6) and (7) illustrates the re-
sults for the same. Again, excellent conformity was 
obtained between the analytical and RW solutions. 
 

  Re(Az) 

 

 

 

 

 

 

 

Figure 6: 2D, split-conductor problem, the real part of the 
solution.  
 

 

Im(Az) 

Figure 7: 2D, split-conductor problem, the imaginary part 
of the solution.  
 
 
Frequency 
(GHz) 

Random 
Walks 
Per So-
lution 
Point 

Mean Abso-
lute Error 
For Relative 
Magnitude  

Mean Abso-
lute Error 
For Relative 
Phase 

1 20000 0.001 
on a solution 
range  

).0.142.0( −  

0.012 
on a solution 
range 

).09.1( −−  

 
Table 1: Numerical results for the 2D skin-effect problem 
in a circular conducting cross section. 
 
Frequency 

(GHz) 

Time  

(Sec-

onds) 

Ana-

lytical  

Result 

(Ω/m) 

RW 

Result 

(Ω/m) 

Error 

(Ω/m) 

1 20 5735  

+ 

314i 

5738 

+ 

312i 

3 

 - 

 2i 

5 30 5870 

+ 

1552i 

5917 

+ 

1534i 

47 

 - 

18i 

10 45 6262 

+ 

2997i 

6315 

+ 

2962i 

53 

 - 

35i 

 
Table 2: Numerical results for the frequency-dependent 
self-impedance of a conducting circular cross section. 
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Frequency 
(GHz) 

Random 
Walks 
Per So-
lution 
Point 

Mean Ab-
solute Error 
for the Real 
Part of the 
Solution 
 

Mean Abso-
lute Error for 
the Imaginary 
Part of the 
Solution 

1 2500 0.005 
 
Solution 
range: 
 

.0.1

02.0

−
−

 

0.005 
 
Solution 
Range: 
 

.0.0

17.0

−
−

 

 
Table 3: Numerical results for the “split-conductor” hetero-
geneous benchmark problem. 
 
 
We will finish our discussion in this section by mak-
ing a few comments on the accuracy of the solution, 
time and memory requirement. We have already ob-
served the close agreement of the RW results with 
that of known analytical solutions. The accuracy of 
the solution of the solution can be enhanced by sim-
ply increasing the number of RWs as the error is pro-

portional to ,/1 N  N being the number of RWs. 

This particular fact is a direct consequence of Central 
Limit Theorem [14]. The memory requirements for 
this technique are low as this approach does not re-
quire any numerical meshing. The time requirements 
of this algorithm can be further reduced by the use of  
variance-reduction techniques [2] and by paralleliza-
tion.  We plan to investigate all these issues in detail 
after we have applied our algorithm to more compli-
cated structures.  
 

VI.  CONCLUSION 

 
We have presented the theoretical basis of a novel 
floating RW algorithm for solving the 2D Maxwell-
Helmholtz equation. The algorithm employs iterative 
perturbation theory. We have, as well, verified the 
algorithm’s integrity by applying it to a homogeneous 
and a heterogeneous problem, possessing analytical 
solutions. The applicability to heterogeneous prob-
lems is a significant improvement on existing RW 
algorithms, an application we wish to explore further 
in our future work. Our algorithm can be readily ex-
tended to multi-conductor systems in full 3D. In this 
work, we have further demonstrated that this algo-

rithm can be used to extract electrical parameters 
such as frequency-dependent impedance. We believe 
that with additional development, the algorithm may 
prove useful for electromagnetic analysis of complex, 
multilevel IC-interconnect structures.  
 
Importantly, the algorithm is fully parallel. Thus, we 
expect significant performance acceleration in any 
future parallel software or hardware implementation. 
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Abstract: It is usually ignored that 
the transmission line parameters 
extracted by conventional transmission 
line equations are variable with the 
internal impedance of excitation source 
and the loading of the line.  To obtain 
the correct parameters, the match for 
both excitation and loading has to be 
applied.  Problem is that exact matches 
for some extreme cases are not easy to 
realize.  To solve this problem, in this 
paper, generalized transmission-line 
equations are implemented to the 
transmission-line parameter extraction 
with the cooperation of full-wave solver 
Zeland IE3D. The parameters extracted 
by the generalized transmission line 
equations are invariant to both excitation 
and loading. Except for this, the local 
radiation parameters generated from the 
transmission line discontinuities can 
also be found. 

 
Keywords: generalized transmission 
line equation, parameters extraction, and 
invariance. 
    
 

I. INTRODUCTION 
 

 For a simply shaped uniform 
transmission-line, its per-unit-length 
parameters are easily found by 
analytical formula and the 
transmission-line equations can be used 

to solve the line’s problem with arbitrary 
excitation and load. For a complicatedly 
shaped non-uniform transmission-line, 
however, its per-unit-length parameters 
are hard to be determined by analytical 
formula, and have to be extracted by 
numerical methods. When the 
conventional transmission-line 
equations are used to extract line’s 
per-unit-length parameters, what we 
find is that the extracted parameters vary 
with the excitation internal impedance 
and the line load. The reason for this is 
that the derivation of the conventional 
transmission-line equations is based on 
the assumption of an infinite line or 
non-reflection that is equivalent to the 
matching conditions for both excitation 
and load. In other words, the extracted 
parameters are incorrect if the matching 
condition for both excitation and load is 
not satisfied. It should be emphasized 
that the matched condition has been 
used in finding correct equation 
coefficients only. After the parameters 
(equation coefficients) are determined, 
the equations can be used to solve the 
line’s problem with arbitrary excitation 
and load. Unfortunately, the exact 
matches for some extreme cases, such as 
a dipole antenna, are hard to be obtained. 
To solve this problem, in this paper, 
generalized transmission-line equations 
are implemented to the transmission-line 
parameter extraction. Since the 
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derivation of the generalized 
transmission-line equations is based on 
the assumption of the finite rather than 
infinite line, the parameters extracted by 
the generalized transmission-line 
equations are invariance to both 
excitation and load. In comparison with 
the derivation of the conventional 
transmission-line equations, the 
generalized transmission-line equations 
have introduced two new terms, the 
dependent voltage source Vα and 
dependent current source Iβ , which are 
interpreted as the local radiation sources. 
Here, V and I stand for the voltage and 
current at each discrete segment of the 
transmission-line, while α  and β  are 
the coefficients of V and I , 
respectively. In order to extract the line 
parameters by using the generalized 
transmission line equations, two pairs of 
voltage and current solutions along the 
line have to be used. By means of the 
MoM commercial software like Zeland 
IE3D, Sonnet, and Ensemble, the two 
pairs of solutions for two different loads 
can be obtained. Thus, the parameters 
can be found by substituting these two 
pairs of solutions into the generalized 
transmission line equations. The 
parameters extracted by the generalized 
equations are invariant to both internal 
source impedance and loads. To show 
the invariance of the extracted 
parameters to the excitation and load, in 
this paper, two numerical examples of 
microstrip line structures are given. 
Except for this, the local radiation 
effects from the discontinuities can also 
be obtained when the generalized 
equations are applied to non-uniform 
transmission line structures.  

 
 
 

 

II. IMPLEMENTATION OF 
GENERALIZED EQUATIONS 

INTO PARAMETER EXTRACTION 
 

 As is well known, the following 
conventional transmission line equations 
have been derived from Kirchhoff’s 
laws on a basis of an infinite-length line 
and TEM mode assumption [2] 

( )
( ) ( )

( )
( ) ( )

dV z
Z z I z

dz
dI z

Y z V z
dz

= − ⋅

= − ⋅
       (1) 

where Z j L Rω= +  and 
GCjY += ω are per-unit-length series 

impedance and shunt admittance, 
respectively. To let the equations be used, 
the per-unit-length line parameters 
L , R , C and G  (i.e., coefficients of 
the equations) must be found by using 
either analytical formula or numerically 
extracted technique. In the past years, 
almost all literatures resorted to directly 
solving Maxwell’s equations to find the 
parameters under static and quasi-static 
field assumption [2] – [5]. However, 
when equations (1) are used in the 
parameter extraction, one of things, 
which is easily ignored, is that the 
extracted parameters are directly 
dependant on internal impedance and 
line’s load impedance. In other words, to 
obtain correct parameters, both 
excitation and loading matches have to 
be imposed so that the assumption of the 
infinite line can be satisfied. The 
problem is that exact matches at both 
ends of the line are not easy to realize 
because the characteristic impedance of 
the line is unknown. To solve this 
problem, the following generalized 
transmission line equations derived from 
a finite line [6] 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

dV
Z l I l l V l

dl
dI

Y l V l l I l
dl

α

β

= − +

= − +
    (2) 

 
are implemented. For a lossless line, the 
distributed parameters )(lZ  and )(lY  
can be written as )(lLjω  and )(lCjω , 
and the corresponding definitions are 
exactly like those in the conventional 
transmission-line equations. 
 

 Comparing the conventional 
transmission-line equations (1), the 
generalized equations introduce two 
new parameters )(lα  and )(lβ , which 
can be interpreted as the coefficients of 
dependent voltage source and dependent 
current source in circuit theory, or be 
interpreted as the coefficients of local 
radiations between discontinuities of 
neighboring segments in field theory. 
When the transmission-line is a uniform 
structure, the values of )(lα and )(lβ are 
to be zero so that the generalized 
equations have the same formulations as 
the conventional uniform line equations. 
At first glance, the generalized 
equations seem to be more complex than 
the conventional equations because 
there are four parameters to be extracted 
at each discrete segment. In fact, as 
stated above, the two additional 
parameters make the extracted 
parameters be invariant to line’s 
excitation and load so that the correct 
line’s parameters can easily extracted. 
Since there are four line parameters 

)(lZ , )(lY , )(lα  and )(lβ  at each 
discrete segment in generalized 
equations (2), we need to use two pairs 
of the distributed voltage and current 
solutions along the transmission-line to 
determine the line four parameters. Now 
most full-wave solver tools like Zeland 

IE3D, Sonnet, and Ensemble can be 
used for this purpose.  

 
 

III. NUMERICAL EXAMPLES 
 

 To show how to implement the 
generalized equations to the line 
parameter extraction, the following two 
examples are presented. One is a 
finite-length uniform microstrip line. 
Another is a microstrip bend with two 
arms. For these two structures, the 
relative dielectric constant rε  of the 
substrate is 9.8, the height h between the 
metal strip and ground is 0.635mm, the 
thickness t of the metal strip is 2 mµ , 
and the width w of the metal strip is 
0.6mm. For simplicity, the metal are 
supposed to be lossless. The full-wave 
simulation tool, Zeland IE3D Software 
[7], is used to compute the distributed 
voltages and currents along the 
microstrip structures.   
   For the first example, the line 
parameters L(l), C(l), )(lα  and 

)(lβ for three cases are extracted by the 
generalized transmission line equations. 
The first case is for short and open loads 
(A1). The second case is for the loads 
with complex numbers of 20+20j and 
100+100j (B1). The third case is for the 
complex number internal impedance of 
20+20j and 100+100j for excitation 
source (C1). The internal source 
impedances for the first two cases are 
50 Ω , and terminated load for the last 
case is 50Ω . All of the parameters L(l), 
C(l), )(lα  and )(lβ  along the 
uniform microstrip line found by the 
equations (2) are shown in Figures 1-4, 
respectively. It can be seen that the 
extracted parameters are almost the 
same for the three cases. This implies 
that the line parameters extracted by the 
generalized equations are invariant to 
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Fig. 1 Comparison of inductance obtained from 

generalized equations and traditional 

equations at 1GHz. 
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Fig. 2 Comparison of capacitance obtained from 

generalized equations and traditional 

equations at 1GHz. 
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Fig. 3 Distributions of alpha obtained from 

generalized equations at 1GHz. 
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Fig. 4 Distributions of beta obtained from 

generalized equations at 1GHz. 
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both internal source impedance and 
termination loads. While the same cases 
are applied to the conventional 
equations (1) (corresponding to cases 
A2, B2 and C2), the extracted L(l) and 
C(l) are variant with both excitation and 
load except for the excitation and load 
matching conditions (case F), as show in 
Figs. 1 and 2. In other words, the values 
of L(l) and C(l) extracted by the 
conventional equations (1) at matching 

conditions (case F) are of a good 
agreement with those extracted by 
generalized equations (2) and calculated 
by analytical formulae [3], but the 
values of L(l) and C(l) extracted by the 
conventional equations (1) at 
mismatching conditions are at a  great 
difference from those extracted with 
generalized equations (2). In addition, 
we find that the local radiation 
coefficients )(lα  and )(lβ , as shown 
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in Fig. 3 and Fig. 4, are near to zero 
except for in the vicinity of both line 
ends. The non-zero )(lα  and )(lβ  in 
the vicinity of both line ends are 
reasonable because the line ends for a 
finite-length transmission line itself just 
are discontinuous places of the line. For 
second example, the microstrip bend is 
not uniform structure, so the 

conventional transmission line equations 
could not be directly applied to it. 
However, the generalized equations can 
be directly used. Two cases are 
calculated for this bend structure. Both 
cases have the excitation source of 50Ω . 
The first case is for short and open loads 
(A1). The second case is for 20+20j and 
100+100j loads (B1).  

  

Fig. 5 Comparison of inductance obtained 

from generalized equations with 

different loads at 1GHz. 
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generalized equations with different loads 
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The line parameters L(l), C(l), )(lα  
and )(lβ  are extracted by the 
generalized equations (2). Figures 5-8 
show the results of L(l), C(l), )(lα  and 

)(lβ  along the whole bend structure. 
For the second case, the line 
characteristic impedance is far away 
from that of traveling waves. However, 
like the first example, the two cases of 
parameters are also invariant to the port 
conditions. In addition, the 
characteristics of the bend discontinuity 
can be also obtained, as shown in Fig. 7 
and Fig. 8, where the larger values of 

)(lα  and )(lβ appear around the 
corner of bend while near-zero values 
occur at the flat part of two arms.  

 
 

IV. CONCLUSION 
 

 In this paper, the generalized 
transmission-line equations are 
implemented to extract the transmission 
line parameters by means of numerical 
simulation tools like Zeland IE3D 
Software. The distinguished property for 
the general equations is that the 
extracted line parameters are invariant to 
both internal source impedance and 
terminated loads. Besides, the local 
radiation effects from line 
discontinuities can also be obtained 
during the process of the parameter 
extraction. 
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