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Abstract–We report a novel method for accurately com-
puting the modes of an arbitrarily-shaped hollow wave-
guide. Our method uses a point-based (Nyström) dis-
cretization of an integral operator over the waveguide
aperture to compute the modes.

I. Introduction

This paper describes a technique for numerically com-
puting the modes of an arbitrarily-shaped cylindri-
cal waveguide with perfectly-conducting walls and an
isotropic, homogeneous core. The method is different
from standard methods in that we formulate the prob-
lem in terms of the eigenfunctions of an integral operator
over the waveguide aperture and it is unique in that we
employ a high-order, point-based (Nyström) discretiza-
tion to obtain numerical solutions.

The Nyström method is a method for solving inte-
gral equations. In contrast to a method of moments dis-
cretization, a Nyström discretization of a function on a
surface S is simply a tabulation of function values at a
discrete set of points on S. Integrals are approximated
by weighted sums of function evaluations. Specifically,
we approximate the integral of a function f (x) as

Z
dx f (x) '

NX
i=1

ωi f (xi) , (1)

where xi is the i
th abscissa of an N -point, high-order

quadrature rule and ωi is the associated quadrature
weight.
The conventional Nyström method is a simple and ef-

ficient method for solving integral equations with non-
singular kernels. When the integral kernel is singular
(as is generally the case for Green functions), one needs
to introduce local corrections in order to compensate for
the fact that a quadrature rule for regular functions can-
not integrate singular functions with high-order accuracy.
Further details regarding local corrections and their use
in the Nyström method for solving scattering problems
may be found in [1].

The modes of an isotropic, homogeneous-core cylin-
drical waveguide with perfectly conducting walls can be
classified [2] into three categories – transverse magnetic
(TM), transverse electric (TE), and transverse electro-
magnetic (TEM). Modes in each category are related to
the modes of a scalar waveguide problem. The TM (TE)
modes are derivable from the scalar modes of the same
waveguide assuming Dirichlet (Neumann) boundary con-
ditions on its walls. The TEM modes are derivable from
solutions to the 2d Laplace equation on a cross section of
the guide.
The arrangement of the remainder of the paper is as

follows: section II describes how to obtain eigenmodes
and eigenvalues for the scalar waveguide problem with
Dirichlet or Neumann boundary conditions; section III
describes how to solve the 2d Laplace equation inside the
waveguide aperture; section IV describes a method for
computing the vector waveguide modes from the scalar
traveling modes and 2d electrostatic modes; and, finally,
in section V we present some results obtained from a soft-
ware implementation of these methods.

II. Scalar waveguide modes

The scalar waveguide modes un (x) satisfy the 2d scalar
wave equation ¡∇2⊥ + k2 − β2n

¢
un (x) = 0 (2)

inside the waveguide aperture W and the correct bound-
ary conditions on its boundary ∂W . They are also eigen-
functions of the H operator [3] defined as

H (x,x0) ≡
X
n

Zn
ik
un (x)un (x

0) . (3)

In these equations,

Zn =
k

βn
(4)

is the modal impedance, k is the free-space propagation
constant, and βn is the propagation constant for the nth

waveguide mode.
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Using the fact that the modes form a complete and
orthonormal set of real functions on W , one can show
that the function eG defined by

eG (x,x00) ≡ Z
W

ds0 H (x,x0)H (x0,x00) , (5)

is the Green function appropriate to the inside of
the waveguide because it obeys the wave equation¡∇2⊥ + k2¢ eG (x,x00) = −δ(2) (x,x00) inside W and the
correct boundary conditions on ∂W . Furthermore, the
eigenfunctions of the integral operatorZ

W

ds00 eG (x,x00) =X
n

µ
Zn
ik

¶2
un (x)

Z
W

ds0 un (x0)

(6)

are the modes of the waveguide and the eigenvalue cor-
responding to the nth mode un (x) isµ

Zn
ik

¶2
= − 1

β2n
. (7)

Therefore, our procedure for computing the scalar trav-
eling modes of a waveguide will consist of first comput-
ing a discretized representation of the integral opera-
tor

R
W ds

00 eG (x,x00) and then using a numerical eigen-
value routine to determine discretized representations (of
a finite set) of the modes and the corresponding prop-
agation constants. The remainder of this sections de-
scribes a method for obtaining discretized representations
of
R
W ds00 eG (x,x00) with Dirichlet or Neumann boundary

conditions on ∂W .
Start with a solution to the inhomogeneous (trans-

verse) wave equation
¡∇2⊥ + k2¢G (x,x0) = −δ(2) (x,x0).

We will use

G (x,x0) = −1
4
Y0 (k |x− x0|) , (8)

where Y0 is the second kind Bessel function of order zero.
To this solution we can always add solutions F (x,x0) to
the homogeneous wave equation

¡∇2⊥ + k2¢F (x,x0) = 0.
Our objective is to find a solution F that makeseG (x,x0) = G (x,x0) + F (x,x0) (9)

obey the boundary conditions on ∂W . Unlike the Green
function for 2d scattering in an unbounded region, this
Green function is real valued.

A. Dirichlet Case

Since we care only about eG inside W , we can arrange
any distribution of charges σ outside of W to make eG
obey the boundary conditions on ∂W . The simplest so-
lution is to put them on an artificial boundary Γ that is
outside ∂W by an infinitesimal distance. Then

F (x,x0) ≡
Z
Γ

dl00 G (x,x00) σ (x00,x0) (10)

obeys¡∇2⊥ + k2¢F (x,x0)
=

Z
Γ

dl00
¡∇2⊥ + k2¢G (x,x00) σ (x00,x0) = 0 (11)

since
¡∇2⊥ + k2¢G (x,x00) = 0 for all x ∈W and x00 ∈ Γ.

Taking the limit as Γ→ ∂W we get

eG (x,x0) = G (x,x0) + Z
∂W

dl00 G (x,x00)σ (x00,x0) .

(12)

A simple interpretation of this equation is as follows:
σ (x00 ∈ ∂W,x0 ∈W ) is the charge distribution induced
on the walls of the waveguide by a unit charge at x0 ∈W ;
the total potential at x ∈ ∂W is the sum of the potential
from the original unit charge, namely G (x,x0), and the
potential produced by the induced charge distribution on
the waveguide walls, namelyZ

∂W

dl00 G (x,x00) σ (x00,x0) . (13)

In the Dirichlet case, the total potential must vanish
everywhere on ∂W . To enforce this condition, we will
demand that the inner product of the potential on ∂W
with each function fk (x ∈ ∂W ) from a suitable set of
testing functions must vanish, i.e.,

0 =

Z
∂W

dl fk (x)G (x,x
0)

+

Z
∂W

dl fk (x)

Z
∂W

dl00 G (x,x00)σ (x00,x0) (14)

for every point x0 ∈W .
We can write this condition in matrix form as

0 = f∂WΩ∂W
¡
G∂W,W +G∂W,∂WΩ∂WΣ∂W,W

¢
(15)

where Σ∂W,W represents the discretized form of σ and
G∂W,∂W and G∂W,W are discretized representations of
the kernel G with local corrections [1]. Ω∂W is a diagonal
matrix of quadrature weights for integrals over ∂W . [In
general, our notation involving W and ∂W superscripts
is meant to indicate the domain(s) of the coordinate vari-
able(s). For diagonal quadrature weight matrices Ω, only
one superscript is used for notational compactness with
the understanding that the two domains are always the
same.] Since f∂W is arbitrary, the solution to (15) is

Σ∂W,W = − ¡G∂W,∂WΩ∂W
¢−1

G∂W,W , (16)

which means that the discretized form of
R
W ds00 eG (x,x00)

is

GW,WΩW −GW,∂W ¡G∂W,∂W
¢−1

G∂W,WΩW . (17)
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B. Neumann Case

As in the Dirichlet case, we arrange sources on Γ in
just the right amount to make the total potential obey
the boundary conditions on ∂W . In the Neumann case,
however, a dipole distribution µ has some advantages over
a charge distribution1.
The potential at any point x ∈W due to a dipole dis-

tribution µ on Γ is

F (x,x0) =
Z
Γ

dl00 (be00 ·∇00G (x,x00))µ (x00,x0) , (18)

where be00 is the unit normal to ∂W at x00 in the plane of,
but pointing away from, W . For the same reason as be-
fore, F obeys the homogeneous wave equation whenever
x ∈W . The edge normal derivative of F at x ∈Γ is

be ·∇F (x,x0) = (be ·∇)Z
Γ

dl00 (be00 ·∇00G (x,x00))µ (x00,x0) .
(19)

The normal derivative of a dipole layer potential is con-
tinuous across the boundary so we can take the limit
Γ→ ∂W , replacing Γ by ∂W in the above expression.
In the Neumann case, the edge normal derivative of

the total potential must vanish everywhere on ∂W . We
will demand that the inner product of the edge normal
derivative of the potential on ∂W with each function from
a suitable set of testing functions must vanish. In other
words, for each testing function fk (x ∈ ∂W ), we require
that

0 =

Z
∂W

dl fk (x) (be ·∇G (x,x0)) +Z
∂W

dl fk (x) (be ·∇) Z
∂W

dl00 (be00 ·∇00G (x,x00))µ (x00,x0)
(20)

for every point x0 ∈W .
We can write this in matrix form as

0 = f∂WΩ∂W
³
(be ·∇G)∂W,W +

[(be ·∇) (be00 ·∇00G)]∂W,∂W Ω∂WM∂W,W
´

(21)

where M∂W,W represents the discretized form of µ,
and [(be ·∇) (be00 ·∇00G)]∂W,∂W and (be ·∇G)∂W,W are dis-
cretized representations of the corresponding edge normal

1The problem with using a charge distribution in the Neumann
case is that it diverges at acute angle corners, such as in a square
waveguide. A 1d quadrature rule designed to integrate regular func-
tions will not be high order for such a charge distribution. For wave-
guide apertures with smooth edges, such as a circular guide, this
is not a problem and using a charge distribution may well better
since the integral operator is second kind.
When using a charge distribution σ for the Neumann case, beware

of the fact that the limit of
R
Γ
dl00 (be ·∇G (x,x00)) σ (x00,x0) as

Γ→ ∂W is 1
2
σ (x,x0) +

R
∂W

dl00 (be ·∇G (x,x00))σ (x00,x0) .

derivative operators with local corrections. ΩW and Ω∂W

are diagonal matrices of quadrature weights for integrals
over W and ∂W , respectively. The solution to (21) is

M∂W,W

= −
³
[(be ·∇) (be00 ·∇00G)]∂W,∂W Ω∂W´−1 (be ·∇G)∂W,W ,

(22)

which means that the discretized form of
R
W
ds00 eG (x,x00)

in the Neumann case is

GW,WΩW − (be ·∇G)∂W,W³
[(be ·∇) (be00 ·∇00G)]∂W,∂W´−1 (be ·∇G)∂W,W ΩW . (23)

III. Solving Laplace’s equation in W

When the waveguide aperture is multiply-connected,
there exist non-trivial solutions to the 2d Laplace equa-
tion inW . Such solutions correspond to the TEM modes
in the waveguide.
What follows is a procedure for computing the solution

to the 2d Laplace equation inW for an arbitrary potential
distribution on the boundaries. The same procedure has
an obvious extension to 3d which could be used to solve
electrostatic problems inside multiply-connected cavities.
For a given boundary value function b (x ∈∂W ), we

desire to find a function ψ (x ∈W ) that satisfies
ψ (x) = b (x) for x ∈∂W , and (24)

∇2ψ (x) = 0 for x ∈W. (25)

The solution for ψ (x) can be written as a 2d single-layer
potential with an unknown source distribution

ψ (x) =

Z
∂W

dl0 log |x− x0|σ (x0) . (26)

This potential automatically satisfies the second condi-
tion above because ∇2 log |x− x0| = 0 for x ∈W and
x0∈∂W . The single-layer potential density σ (x0) is deter-
mined by the condition that ψ (x) = b (x) on the bound-
ary, i.e., Z

∂W

dl0 log |x− x0|σ (x0) = b (x) . (27)

If L∂W,∂W and LW,∂W are the discretized representa-
tions of log |x− x0| (with local corrections) for x ∈ ∂W
and x ∈ W , respectively, and ΨW , Σ∂W , and B∂W are
the discretized representations of ψ (x), σ (x) and b (x),
respectively, then

L∂W,∂WΩ∂WΣ∂W = B∂W , (28)

and the solution for ΨW becomes

ΨW = LW,∂WΩ∂WΣ∂W = LW,∂W
¡
L∂W,∂W

¢−1
B∂W .

(29)
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To get TEM modes, W must be multiply connected,
i.e.,

∂W = ∂W1 ∪ ∂W2 . . . ∪ ∂Wn (30)

where the ∂Wi are unconnected boundaries and n ≥ 2.
There is a TEM mode corresponding to each of the n− 1
independent boundary functions described by

bik (x) = 0 for all k except k = i (31)

bii (x) = 1 (32)

for i = 1, 2, . . . , n− 1.
IV. Vector waveguide modes

The transverse electric components of the TM, TE,
and TEM vector waveguide modes are derivable from the
scalar waveguide modes according to

uTMn (x) =
∇ϕnp
k2 − β2n

(33)

uTEn (x) =
bn×∇ψnp
k2 − β2n

(34)

uTEMn (x) ∝ ∇ζn, (35)

where ϕn, ψn, and ζn are the scalar Dirichlet, Neumann,
and Laplace modes, respectively. The transverse mag-
netic component [2] is

H⊥ = ±Z−1n bn×E⊥, (36)

where

Zn =

r
µ

²
×


βn
k for n ∈ TM modes
1 for n ∈ TEM modes
k
βn

for n ∈ TE modes
(37)

is the modal impedance and ² and µ are the dielectric
constant and magnetic permeability, respectively.
We need discretized representations of the surface gra-

dient to effect the transformation from scalar modes to
vector modes given above. This section shows how to
represent the surface gradient operator (on an arbitrary
surface) in matrix form. Left multiplying a matrix repre-
senting a scalar surface function by the matrix represent-
ing the surface gradient produces a discretized represen-
tation of the surface gradient of the scalar function.
First consider the linear derivative operator. In the

spirit of the high-order Nyström method, we will de-
mand that the discretized derivative operator return ex-
act results at a particular set of sample points for each
function in a set of suitable functions. In other words,
if we are given a set of points xj on a curve C, then
∆ij = ∆ (xi, xj) is a high-order discretized representa-
tion of the differential operator d

dx at xi on C if it is the

solution to the linear systemX
j

∆ (xi, xj) fk (xj) =
dfk (xi)

dx
. (38)

for suitable testing functions fk (x).
We can also make a connection with the Nyström

method by re-expressing the derivative as an integral op-
erator and applying the standard procedure [1] for com-
puting local corrections. If we write the linear derivative
of f (x) on the curve C as

df (x)

dx
=
d

dx

Z
C

dx0 δ (x− x0) f (x0) , (39)

then the discretized representation of the differential op-
erator d

dx on C is obtained by solving the linear systemX
j

ωj e∆ (xi, xj) fk (xj)
=

·
d

dx

Z
C

dx0 δ (x− x0) fk (x0)
¸
x=xi

=
dfk (xi)

dx
(40)

for e∆ (xi, xj) using suitable testing functions fk (x).

Clearly, e∆ and ∆ are related by e∆Ω = ∆. The only
difference between this linear system and the local cor-
rection linear system in [1] is that computing the right
hand side of (40) only requires evaluating derivatives of
the testing functions at the sample points instead of eval-
uating inner products of the kernel with testing functions.
We have encountered operators similar to this in scat-

tering problems before. The hypersingular operators
(n ·∇) R ds0 ¡n0·∇0¢G (x, x0) and (n×∇) R ds0 ¡n0×∇0¢
G (x, x0), which appear in boundary integral formulations
of scalar and electromagnetic scattering, respectively, are
pseudo-differential operators. Like these operators, the
discretized gradient operator must be used with extreme
caution (and avoided whenever possible) because it tends
to amplify rather than attenuate numerical “noise”.
Now consider surface derivative operators. Let bt1 (x)

and bt2 (x) be independent unit tangent vectors on the
surface S. By analogy with the linear derivative opera-
tor, we obtain a locally corrected matrix representation
∆µ (xi,xj) of the surface gradient operator btµ · ∇ on S
by solving the linear systemX

j

∆µ (xi,xj) fk (xj) = btµ (xi) ·∇fk (xi) (41)

with µ = 1, 2 using suitable testing functions fk (x). If
these testing functions afford a high-order approximation
to a scalar function ψ (x) on S, then the vector ∆µΨ

represents a high-order approximation to btµ (x) ·∇ψ (x),
with (∆µ)ij ≡ ∆µ (xi,xj) and Ψi ≡ ψ (xi) .

The matrix representation of bn×∇ is obtained by re-
placing btµ (xi) ·∇ with btµ (xi) · (bn×∇) in (41).
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TABLE I

Computed and Exact Eigenvalues (βm,n/k) for a 1.1λ x

0.75λ Waveguide Satisfying Dirichlet Boundary Conditions

4 x 4 6 x 6 8 x 8 Exact m n
0.592201 0.590741 0.590716 0.590715 1 1
0.512091i 0.520366i 0.520471i 0.520472i 2 1
0.969128i 0.991772i 0.992159i 0.992164i 1 2
1.219852i 1.159101i 1.142176i 1.141906i 3 1
1.629548i 1.265721i 1.266571i 1.266580i 2 2
1.997986i 1.574208i 1.624191i 1.623971i 3 2
2.080501i 1.637739i 1.648007i 1.658382i 4 1
2.309772i 1.817060i 1.791106i 1.790701i 1 4
2.546563i 1.929628i 1.956519i 1.956130i 2 4
2.694088i 1.981966i 2.010146i 2.020783i 4 2
3.010537i 2.237905i 2.204944i 2.147029i 5 1
3.114740i 2.385630i 2.279746i 2.204428i 3 3
3.321089i 2.444649i 2.497769i 2.437841i 5 2
3.469637i 2.503110i 2.501035i 2.511132i 4 3
3.642493i 2.696163i 2.537604i 2.513508i 1 4
3.744043i 2.836216i 2.560426i 2.633924i 2 4

V. Results

We implemented these techniques in software to com-
pute the modes of arbitrarily-shaped, closed waveguides.
Our code requires two inputs. The first is a description
of the waveguide aperture. The aperture is described in
terms of one or more quadrilateral or triangular patches.
The mesh always covered the planar waveguide aperture
exactly in order to preserve the ability to achieve high-
order convergence in the solution. We locate discretiza-
tion points on each of these patches according to a high-
order 2d quadrature rule. Discretization points on the
boundary are located according to a 1d quadrature rule
of the same order. The number of such points is deter-
mined by the second input, the order of the quadrature
rule. This value also determines the maximum order of
the testing functions used to compute local corrections.
The output of the code consists of numerically computed
eigenmodes and eigenvalues.
We have tested the code by using it to compute modes

of several waveguides with simple cross sections. Sample
results for two waveguides are presented in this section.
The first is a rectangular waveguide, a problem for which
analytical solutions are available. We compare computed
propagation constants (eigenvalues) to analytical results.
The second problem is a rectangular waveguide contain-
ing two square conductors. Such a waveguide has two
TEM modes in addition to its TM and TE modes. We
list computed propagation constants and plot the low-
est modes. Similar results have been obtained on other
waveguide shapes including circular waveguide, circular
coaxial waveguide, and rectangular waveguide with sep-
tum.

TABLE II

Computed and Exact Eigenvalues (βm,n/k) for a 1.1λ x

0.75λ Waveguide Satisfying Neumann Boundary Conditions

4 x 4 6 x 6 8 x 8 Exact m n
0.889957 0.890835 0.890726 0.890724 1 0
0.745280 0.745429 0.745358 0.745356 0 1
0.587578 0.590805 0.590715 0.590715 1 1
0.443112 0.412701 0.416826 0.416598 2 0
0.507053i 0.527063i 0.520106i 0.520472i 2 1
0.758857i 0.883037i 0.881869i 0.881917i 0 2
0.919138i 0.922549i 0.925573i 0.927094i 3 0
0.928154i 0.994163i 0.992079i 0.992164i 1 2
1.028942i 1.141903i 1.139574i 1.141906i 3 1
1.288202i 1.271016i 1.266358i 1.266580i 2 2
1.470524i 1.623864i 1.536828i 1.518482i 4 0
1.574991i 1.713198i 1.622186i 1.623971i 3 2
1.606358i 1.739490i 1.681116i 1.658382i 4 1
1.769745i 1.772999i 1.731271i 1.732051i 0 3
1.894675i 1.857114i 1.789719i 1.790701i 1 3

1.932489i 1.955014i 1.956130i 2 3

Tables I and II list eigenvalues for an a x b rectangu-
lar waveguide with a = 1.1λ and b = 0.75λ. For com-
putational purposes the waveguide aperture was defined
by a single rectangular patch. The first column of each
table gives the eigenvalues computed using a 16-point,
high-order quadrature rule, namely a product rule con-
structed from two 1d Gauss-Legendre rules each using 4
points. The second and third columns give the 16 low-
est eigenvalues computed using high-order product rules
involving 36 and 64 points, respectively.
The fourth column gives the exact values of the 16 low-

est eigenvalues. The analytical solutions [2] for a rectan-
gular waveguide are well known. The modes satisfying
Dirichlet boundary conditions take the form

ϕmn (x, y) = sin
¡
mπ xa

¢
sin
¡
nπ yb

¢
for m,n = 1, 2, 3, . . .

(42)

Similarly, the Neumann modes are

ψmn (x, y) = cos
¡
mπ xa

¢
cos
¡
nπ yb

¢
for m,n = 0, 1, 2, . . .

(43)

Accordingly, the exact eigenvalues for both Dirichlet and
Neumann boundary conditions are

βmn
k

=

r
1−

³m
2a

´2
−
³ n
2b

´2
. (44)

The last two columns show the values ofm and n for each
computed mode. Four Neumann modes and one Dirichlet
mode are propagating modes, the rest are evanescent.
Not surprisingly, the lower the mode, the more accu-

rate the eigenvalue for a given quadrature rule. With a 64
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TABLE III

Computed Eigenvalues (β/k) vs. Discretization for a 5λ x

3λ Waveguide Containing Two Interior Conductors

First 10 TM modes First 10 TE modes
4 x 4 6 x 6 4 x 4 6 x 6

0.899770 0.898954 0.996147 0.996122
0.889666 0.888867 0.991385 0.991335
0.880594 0.879772 0.986280 0.986221
0.877820 0.877004 0.985071 0.985030
0.866849 0.866051 0.968195 0.968162
0.858987 0.858275 0.957283 0.957146
0.824123 0.822946 0.948050 0.947774
0.814496 0.813010 0.946083 0.946051

point quadrature rule, the lowest eigenvalues are accurate
to almost 6 digits. The higher the spatial frequency con-
tent of the mode, however, the lower the accuracy of the
computed result. This is evident in the list of Dirichlet
eigenvalues computed using a 16-point quadrature rule.
It also holds in both cases for the higher modes that were
computed2 but are not shown in the tables.

The second sample problem is a 3λ x 5λ rectangular
waveguide containing two 1λ x 1λ square conductors. Ta-
ble III lists the computed eigenvalues for the first ten
Dirichlet/TM and Neumann/TE modes of the guide. All
computations were performed using a mesh consisting of
thirteen 1λ x 1λ patches arranged on a Cartesian grid.
The columns labeled ‘4 x 4’ and ‘6 x 6’ give results for
discretizations derived from 16-point and 36-point prod-
uct rules, respectively. The accuracy of the results can be
estimated from the fact that results computed from the
different discretizations agree to better than 2 digits in
the TM case and better than 3 digits in the TE case. As
for the previous problem, however, the accuracy of the
propagation constants for the other modes declines with
increasing mode number.

Plots of the vector modes are given in Figures 1 through
5. Small arrows indicate the local direction of the (trans-
verse component of the) electric field in the aperture. The
background shading represents the corresponding scalar
potential.

Figure 1 shows the two TEM modes of the guide. The
first was derived from the solution to the 2d Laplace equa-
tion assuming a unit potential on the left interior con-
ductor and zero potential on all other boundaries. The
second plot is essentially its mirror image. The lowest
eight TM modes are shown in Figures 2 and 3 and the
lowest eight TE modes are shown in Figures 4 and 5.

2The number of computed modes in this case equals the number
of quadrature points.

Fig. 1. TEM modes of a 5λ x 3λ waveguide containing two interior
conductors.

VI. Conclusions

Our method is based on the following observations: the
scalar traveling modes of a waveguide can be obtained
by diagonalizing an integral operator whose kernel is the
Green function for the 2d scalar Helmholtz equation in-
side the waveguide aperture; the 2d electrostatic modes
are solutions to the 2d Laplace equation inside the aper-
ture; and, the electromagnetic modes can be obtained by
taking gradients of these scalar modes.
We showed how to construct discretized representa-

tions of the various integral operators using the locally
corrected Nyström method and presented results from a
software implementation of this method.
Improvements are possible in a number of areas. For

example, if we were to set up the 2d Laplace problem
using a double-layer potential instead of a single-layer
potential, the resulting integral equation would be sec-
ond kind rather than first kind. Second kind integral
equations are better conditioned and generally lead to
more accurate solutions, especially for high spatial fre-
quency modes. If we went one step further and combined
the double layer potential with a single layer potential
(i.e., employ a combined source formulation), the result-
ing equation would be second kind and would also be in-
sensitive to spurious resonances. Similar considerations
apply to the integral equations representing the Green
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functions for the scalar traveling modes.

Our original objective was to compute an accurate, dis-
cretized representation of the waveguide integral equa-
tion3 in order to model waveguide apertures and excita-
tions in general antenna and scattering problems. This
requires accurate representations of the electromagnetic
modes on the aperture. The results as presented here are
not sufficiently accurate for this purpose. Consequently,
this paper should be regarded as a report on a work in
progress.

We are grateful for support from the Raytheon Com-
pany.
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Fig. 2. First four TM modes of a 5λ x 3λ waveguide containing
two interior conductors.

Fig. 3. Second four TM modes of a 5λ x 3λ waveguide containing
two interior conductors.
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Fig. 4. First four TE modes of a 5λ x 3λ waveguide containing
two interior conductors.

Fig. 5. Second four TE modes of a 5λ x 3λ waveguide containing
two interior conductors.
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