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Abstract—
The finite element (FE) formulation for waveguide discontinuity

analysis is reviewed and extended to multiple, arbitrarily-oriented
ports. Several higher-order vector elements — specifically hierarchal
linear tangential/quadratic normal (LT/QN) — are compared, and the
extensions required to incorporate LT/QN elements in the formulation
are presented. The improved accuracy afforded by LT/QN elements
compared to constant tangential/linear normal (CT/LN) elements is
investigated by considering energy conservation in an empty waveg-
uide. Results obtained using both CT/LN and LT/QN elements are also
shown for a problem of engineering interest: an E-plane bend. Results
for the LT/QN elements compare especially well to approximate ana-
lytical results using quite coarse meshes. The paper concludes with a
discussion of the use of iterative solvers and possible convergence prob-
lems encountered when using higher-order elements.

Keywords— Finite element method; higher-order vector elements;
waveguide discontinuities.

I. INTRODUCTION

The analysis of waveguide discontinuities has been a
canonical problem for analytical, approximate, and now nu-
merical approaches since the pioneering work of Marcuvitz
and colleagues during the Second World War, now some
sixty years back. Using variational formulations, and quasi-
static approximations of the fields, Marcuvitz et al. were
able to analyze an extraordinary variety of problems, docu-
mented in the classic text [1]. Subsequently, mode-matching
methods were introduced for the analysis of “stepped” dis-
continuities — i.e. structures where the waveguide modes
could be computed in a step-wise fashion, and matched at
two-dimensional planes. However, for general, arbitrary dis-
continuities, and of course those involving non-metallic dis-
continuities such as dielectrics, differential equation based
methods such as the finite element method (FEM) and finite
difference time domain (FDTD) method are now the meth-
ods of choice.

Although an obvious application of the FEM, disconti-
nuities in rectangular waveguide have not been widely ad-
dressed in the literature, in particular using higher-order el-
ements. Ise [2] used “brick” elements of “first” order (con-
stant tangential / linear normal — CT/LN) to analyze both a
dielectric post and a concentric step discontinuity in rectan-
gular waveguide ; Jin presented a detailed formulation in [3,

Chapter 8], also using CT/LN elements; Webb’s review pa-
per discussed a number of related issues but did not address
higher-order elements [4]; and Pekel and Lee addressed the-
oretical aspects of mesh refinement using an empty piece of
waveguide, but again did not explicitly discuss higher-order
elements [5]. Scott addressed rotationally symmetric waveg-
uide and obtained very good results using special-purpose
higher-order elements [6].

The contributions of this paper are the following. Firstly,
Jin’s formulation is extended to arbitrarily oriented waveg-
uides (Jin’s formulation assumes ẑ orientation), with multi-
ple ports (Jin assumes two port devices). Secondly, the avail-
able higher-order vector elements are reviewed, and some
unifying themes underlying these are identified. Thirdly, the
necessary extensions to include higher order vector elements
in the formulation are outlined. Fourthly, the accuracy ob-
tained vs. element size and number of degrees of freedom
for CT/LN and linear tangential / quadratic normal (LT/QN)
elements is investigated by monitoring energy conservation
in a piece of empty guide. Finally, the extended formula-
tion and implementation is validated — and the far greater
accuracy obtainable with the LT/QN elements demonstrated
again — by analyzing a realistic waveguide problem in X-
band waveguide, namely an E-plane bend. Results for this
are compared with Marcuvitz’s.

Some aspects of this paper were originally presented in
[7]. However, the formulation presented therein is Jin’s,
and does not incorporate the new extensions to be presented
here, which are required to analyze general waveguide struc-
tures (such the E-plane bend analyzed here). Furthermore,
the discussion of higher-order elements has been extensively
revised, to highlight the connection between different pub-
lished elements. Finally, some problems regarding conver-
gence of the iterative solvers which have emerged subse-
quent to [7] are discussed.

II. THE WAVEGUIDE FORMULATION

The formulation is a straightforward extension of Jin’s ap-
proach [3]. His formulation addressed two-port, single mode
analysis, with the waveguide oriented in the ẑ-direction.
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Here, general waveguide orientation(s) will be considered.
The formulation assumes hollow, rectangular guide at the
ports (although the extension to homogeneously filled guide
is straightforward). The TE10 mode is assumed in the fol-
lowing. In between the ports, in the region to be discretized
using finite elements, the waveguide may contain linear, in-
homogeneous, lossy, dielectric and/or magnetic material(s);
and/or conductors (for instance, posts or irises); and may
change orientation (eg E-plane bends) or dimension (eg E-
and/or H-plane steps). The formulation to be used does,
however, assume isotropic media. The generalization of
the analysis to multiple ports, the inclusion of higher-order
modes, and the extension to more general waveguide, will
be outlined subsequently.

A. Formulation overview

The key part of the formulation is to write the electric field
at port 1 (S1) as the sum of the known incident and unknown
reflected fields in terms of the (�; �; �) coordinate system
local to the port, with � in the direction of propagation, and
set to zero at each port, as follows:

~E(�; �; �) = ~Einc(�; �; �) + ~Eref(�; �; �)

= (E0~e10(�; �)e
�jk�10 � +

RE0~e10(�; �)e
+jk�10 �)

��
�=0

(1)

~e10(�; �) is the relevant waveguide eigenmode (the TE10

eigenmode here) and k�10 is the modal propagation constant.
Note that it is necessary to retain the e�jk�10� term, even
though the field is evaluated at � = 0, since the boundary
condition to be discussed involves the derivative of the field,
which must be evaluated before setting � = 0.

The next key element of the formulation is to convert
eqn. (1) to a boundary condition of the third type involving
both the field and its normal derivative; the detail is given in
[3, x8.5]:

n̂� (r� ~E) + 
n̂� (n̂� ~E) = ~U inc (2)

with


 = jk�10 ; ~U inc = �2jk�10 ~E
inc (3)

It should be noted that, in obtaining eqn. (2), the transverse-
only nature of the TE field is exploited. TM modes contain
axial ~E field components, and the boundary condition cannot
thus be written for an ~E field solver. TM mode analysis
could be undertaken by using an ~H field solver.

The same is repeated at port 2, but at that port, there is
only an unknown transmitted field:

~E(�; �; �) = ~Etrans(�; �; �)

= TE0~e10(�; �)e
�jk�10 �

��
�=0

(4)

Similar comments apply as regards the e�jk�10� term. The
boundary condition at port two is

n̂� (r� ~E) + 
n̂� (n̂� ~E) = 0 (5)

In Jin’s original formulation, eqn. (4) was written as

~E(x; y; z) = ~Etrans(x; y; z)

= TE0~e10(x; y)e
�jkz10 z (6)

In this approach, z = z1 at port 1, z = z2 at port 2, thus the
phase in Jin’s formulation was referenced to each port. In the
present formulation, the transmission coefficient T incorpo-
rates the “insertion” phase — i.e. for a section of empty
guide length `, T will have phase angle �kz10`, whereas in
Jin’s formulation, the phase was 0. The present formula-
tion produces the same phase that would be measured us-
ing a vector network analyzer, with reference planes cali-
brated at the ports. (Jin’s approach worked well for straight
waveguide, but is inappropriate for “bent” guides or multiple
ports.)

The equivalent variational functional (assuming isotropic
but possibly lossy materials), subject to these boundary con-
ditions on the ports and ~Etan = 0 on the perfectly conduct-
ing walls, is well known:

F ( ~E) =
1

2

Z Z Z
V

h
1

�r
(r� ~E) � (r� ~E)� k20�r

~E � ~E

i
dV

+

Z Z
S1

h



2
(n̂� ~E) � (n̂� ~E) + ~E � ~U inc

i
dS

+

Z Z
S2

h



2
(n̂� ~E) � (n̂� ~E)

i
dS (7)

The FE discretization of this functional is discussed in Sec-
tion IV.

B. Computation of the S-parameters

The above formulation produces R and T for port 1 (S11

and S21). It must be repeated with an incident field at port 2
to obtain S12 and S22. Only the excitation vector changes, so
this is simply a question of repeating the matrix solve. For
multiple ports, the extension is obvious: T is computed at
each port, producing one column of the S matrix. The exci-
tation is then repeated at each port to produce other columns.
Although it will not be shown in this paper, the formulation
has also been verified successfully by the author for a four-
port device.

The S-parameters may be computed directly from the
fields on the ports. A more accurate approach uses the or-
thogonality of the modes to integrate the fields computed
over each port [3, x8.5]; as an example for the two-port ex-
ample, the transmission coefficient is given by:

T =
2

abE0

Z Z
S2

~E(�; �; �) � ~e10(�; �)dS (8)
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As before, ~e10(�; �) is the relevant waveguide eigenmode; a
and b are the waveguide dimensions.

C. The waveguide formulation: another perspective

The formulation can be viewed as a finite ele-
ment/boundary integral (FE/BI) formulation, using the
waveguide Green’s function for “exact” mesh termination.
(For radiation or scattering problems, FE/BI formulations
use the free space, or sometimes the half-space, Green’s
function, eg. [3, x9.3]). The current dominant-mode-only
analysis uses only the first in the infinite series of modes
comprising the waveguide Green’s function. It is accurate
provided that the ports are sufficiently far removed from the
discontinuities (assuming, of course, that only the dominant
mode is above cut-off). Higher order modes are easily in-
cluded in the formulation; this does require re-computing
both the LHS matrix and RHS vector, since the former has
one term dependent on the propagation constant, and the
latter is obviously dependent on the incident mode shape.
The formulation presently assumes hollow waveguide at the
ports; i.e. only TE (and TM modes, if an ~H field solver is
also implemented) are included. More exotic modes, or nu-
merically determined ones, could also be incorporated into
the formulation. This is discussed further in Section VI.

III. HIGHER ORDER VECTOR ELEMENTS

A. Vector elements — a brief review

Edge elements (also known as Nedelec elements; Whit-
ney elements/forms; CT/LN elements; H0(curl) elements)
were introduced during the 1980’s. Nedelec [8] provided the
mathematical framework for mixed order finite elements of
various order. However, the polynomial spaces from which
the basis functions were to be chosen were defined by him
in terms of Cartesian coordinates, which is not the form vec-
tor elements are generally given in now. Cendes, Bossavit,
Webb and others introduced vector elements to EM FEA
analysis during the late 1980’s and 1990’s. (See [9] for the
original references). The element shape function was then
presented in terms of simplex coordinates [10], as what is
now recognized as a Whitney form, dating back to much ear-
lier work by Whitney:

~wij = �ir�j � �jr�i (9)

This element has the well-known properties of constant
tangential/linear normal field (CT/LN) approximation along
edges (hence, of mixed order). Since the approximation is
constant in the direction tangential to the edge connecting
nodes i and j, and perpendicular to all the other edges (two,
for triangles, or five, for tetrahedrons), the degrees of free-
dom, defined by Nedelec as the line integrals of the finite
element approximation along the respective edges, are sim-
ply the tangential fields — hence the name “edge elements”.
For higher order elements, additional degrees of freedom on
faces must be introduced, and the name “vector elements”

has now largely supplanted “edge elements”. For CT/LN el-
ements, some researchers have associated the degree of free-
dom with the tangential field at the centre of each edge [11].

B. Vector vs. mixed-order elements

It is not always appreciated that being of mixed-order is
not an essential property of vector elements per se. Com-
plete sets of vector elements have also been described [9],
with degrees of freedom proportional to tangential field com-
ponents, as for mixed-order elements. (This permits explicit
enforcement of tangential field continuity only, as for mixed-
order elements. As is well known, this type of field continu-
ity is very difficult to arrange in general with nodal-based el-
ements, which are also generally complete). However, such
complete sets of vector element produce “wasted” d.o.f.’s for
wave eigenvalue problems. See [12] for a comprehensive
discussion of this. In essence, Nedelec’s constraints provide
mixed-order elements that model the curl-space as efficiently
as possible, for a given number of degrees of freedom. Re-
cent work by Webb [13] has indicated that some vector elec-
tromagnetic problems are more efficiently analyzed using
complete-order vector elements, typically when the solution
is dominated by electric fields strongly “gradient” in nature.
(The specific example Webb uses is an iris in a waveguide,
where the solution is strongly dominated by quasi-static field
components).

C. Higher order elements

Although extending the “edge” elements to higher order
became a topic of interest as soon as the CT/LN elements
achieved widespread acceptance, it remains a topic of active
research at present, a decade or more later. Development of
such elements raises a number of issues, including: hierar-
chal vs. interpolatory behaviour; methods for the construc-
tion of the element shape functions; the interpretation of the
degrees of freedom; the construction of prototype elemental
matrices (analytical vs. quadrature); and the efficient itera-
tive solution of the poorly conditioned linear algebra systems
which unfortunately often result.

C.1 Hierarchal higher order LT/QN elements

For mesh refinement/enrichment purposes, hierarchal el-
ements are required, and this paper considers only the use
of such elements. Interpolatory elements have been com-
prehensively described in [14]. Two specific hierarchal ele-
ments have been used; the work was originally undertaken
[15], [16], [7] using those proposed by Savage [17]; see Ta-
ble I. Subsequently, the elements proposed by Andersen and
Volakis [18], [19] have also been implemented.

As per Nedelec’s definitions of suitable mixed order ele-
ment, there are twenty vector based functions (v.b.f.’s) and
degrees of freedom (d.o.f.’s) per tetrahedron. The lowest or-
der v.b.f. — the Whitney form — has the usual properties,
and the accompanying d.o.f. is proportional to the tangen-
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CT/LN
Edge-based 1 per edge �ir�j � �jr�i

LT/QN
Edge-based 1 per edge r(�i�j)
Face-based 2 per face �i(�jr�k � �kr�j)

(out of 3 possible)

TABLE I

SAVAGE’S LT/QN HIERARCHAL ELEMENTS.

tial electric field on the edge. Since the element shape func-
tions are hierarchal, higher-order d.o.f.’s are not located at
specific points, but defined as weighted field quantities in-
tegrated over the relevant edge or face. The latter has the
interpretation as the flux through the face.

Many other hierarchal elements have been published, in
particular of LT/QN order. Most of these (including those of
Savage described above) can be seen as variants of the el-
ements proposed by Webb and Forghani [20]. (Indeed, not
only are these variants on a theme, they are also linear trans-
forms, as will be discussed subsequently). A number are
summarized in Table II. Note that all the face elements ex-
clude (arbitrarily) one possible combination of fi; j; kg; this
asymmetry has long been noted, and is required to avoid lin-
early dependent basis functions.

An apparent exception to this are the elements proposed
by Andersen and Volakis [18], [19]; the additional six vec-
tor based functions for the edges are apparently of quadratic
order. However, the Andersen and Volakis elements are lin-
ear transforms of the (non-hierarchal) elements proposed in
[21] (the explicit transform for the two dimensional case was
given in [19]) and the hierarchal elements proposed by Sav-
age [17] — and used here — are in turn linear combinations
of those in [21], thus the Andersen and Volakis elements are
linear transforms of Savage’s [17].

It might seem strange that the Andersen and Volakis el-
ements, with apparently quadratic behaviour, can be ex-
pressed as linear combinations of elements with at most lin-
ear field dependence. This is a consequence of the mixed-
order nature of the basis functions, and of course the linearly
dependent nature of simplex coordinates (

PN

i=1
�i = 1, with

N = 2; 3 or 4 in one, two or three dimensions respectively).
The (�ir�j � �jr�i) term is of course the Whitney ele-
ment, with CT/LN behaviour along edges; multiplication by
the (�i ��j) term (actually the Legendre polynomial P1 re-
defined on the interval [0; 1]) yields the LT/QN behaviour.

These elements are generally constructed by “inspection”,
using the properties of simplex coordinates, and the gradi-
ents thereof. Nedelec required that these functions be uni-
solvent (that is, linearly independent) and conforming (that
is, d.o.f.’s are proportional to integrals of the tangential field
along edges, or over faces). The latter is easily established by
inspection, but the former is less obvious. The present author

CT/LN – all
Edge-based 1 per edge �ir�j � �jr�i

LT/QN — Savage
Edge-based 1 per edge r(�i�j)
Face-based 2 per face �i(�jr�k � �kr�j)

(and fj; i; kg but not fk; i; jg)
LT/QN — Webb and Forghani

Edge-based 1 per edge r(�i�j)
Face-based 2 per face �i�kr�j

(and fj;k; ig but not fi; j;kg)
LT/QN — Andersen and Volakis

Edge-based 1 per edge (�i � �j)�
(�ir�j � �jr�i)

Face-based 2 per face �i(�jr�k � �kr�j)
(as for Savage’s elements)

TABLE II

COMPARISON OF VARIOUS HIERARCHAL LT/QN ELEMENT SCHEMES.

has shown that all these basis functions satisfy the Nedelec
constraints (restrictions on the properties of the polynomial
spaces from which they are chosen) and thus (from [8, The-
orem 1]) the elements are indeed both conforming and uni-
solvent. This proof requires expressing the basis functions
in Cartesian coordinate form and then testing the Nedelec
constraints explicitly; it will not be detailed here.

There is another school of thought regarding the con-
struction of higher-order basis functions, which might be
described as the degree of freedom-centered approach (as
opposed to the above, which could be described as the ba-
sis function-centered approach). Salazar-Palma et al. [11]
use elements from the Nedelec polynomial space and en-
force Lagrangian interpolatory properties on the degrees of
freedom. This produces interpolatory elements with well-
defined degrees of freedom at points, but this is not possible
in general with higher-order hierarchal elements. Yioultsis
and Tsikboukis take a similar degree-of-freedom centered
approach, but working with simplex instead of Cartesian co-
ordinates [22].

IV. IMPLEMENTATION ISSUES

A. Finite element discretization

The finite element discretization of the volumetric integral
term is identical to that of cavity eigenanalysis. This has
been described in several references (such as [3], [23], [21],
[24]) and will not be discussed further here.

Discretization of the surface integral terms, which arises
due to the introduction of the ports, requires compatible sur-
face basis functions. This is discussed in Jin in detail [3,
x8.5], and need only be outlined here, since the extension to
higher-order elements is obvious. Generation of the volu-
metric tetrahedral mesh automatically generates a triangular
surface mesh. Suitable basis functions also implicitly de-
fined, as follows:
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n̂� ~Es =

nsX
i=1

~Ss
i = fEsgT f~Ssg (10)

with fEsg are the degrees of freedom associated with the
(surface) triangular element.

The surface basis functions are:

~Ss
i � n̂� ~Ns

i (11)

~Ns
i are the appropriate tetrahedral functions for the face.
Note that for CT/LN elements, this magnetic surface cur-

rent (n̂ � ~Es) discretization is identical to that produced by
standard moment method RWG elements [25], providing a
linear tangential/constant normal approximation of the cur-
rent.

B. Elemental matrices and matrix assembly

A new elemental matrix and vector are required:

[Bs] =

Z Z
Ss

~Ss � ~SsdS (12)

fbsg =

Z Z
Ss
2

~Ss � ( ~Einc � n̂)dS (13)

Here, 
 is as in eqn. (3), and ~Einc is the incident field, as
before.

[Bs] can be evaluated in closed form, since it involves the
integral of simplex coordinates over both ports — these inte-
grals are known analytically. fbsg requires quadrature, since
it involves the product of the incident mode, typically a si-
nusoid or product of sinusoids, with a vector based function.
A four-point symmetric rule [26] was generally found to be
sufficient, although a six-point rule was also implemented.

The system matrix [A] is assembled from [S], [T ] and [B];
the forcing vector is fbsg, resulting in the conventional lin-
ear system [A]fxg = fbsg with fxg the vector of degrees
of freedom to be solved for. All these terms are frequency
dependent, and [B] and fbsg are additionally also dependent
on the mode number and/or mode type (TE or TM), either
via the propagation constant or the modal eigenfunction.

Once the system matrix and right hand side vector have
been assembled, the system is solved (for multiple RHS’s,
if the full S-matrix is required) and the S parameters are ex-
tracted as already discussed in Section II-B.

The [S] and [T ] elemental matrices may be pre-computed,
using explicit forms as given in [3], [23], [21], [24], [15].
However, a non-trivial amount of analytical work is re-
quired for new elements, and the use of cubature (three-
dimensional quadrature) permits far quicker program devel-
opment; new element basis functions (and their gradients,
which are straightforward to compute analytically), can be
added in very quickly. Since the functions being integrated
are polynomials, and very efficient rules exist for integration
of polynomials over simplexes, the computational overhead

h N CT/LN LT/QN
(mm) D.o.f.’s jS21j 6 S21 D.o.f.’s jS21j 6 S21

(dB) (o) (dB) (o )
20.4 20 14 -16.18 134.4 96 -0.4113 22.11
13.8 43 29 -4.538 5.602 202 -0.3001 6.077
9.87 105 73 -1.157 -38.57 498 -0.01575 -0.2293
7.31 234 172 -0.5191 -19.72 1144 -2.78E-3 0.0448
6.47 369 273 -0.7414 -31.87 1810 -2.26E-3 -0.1619
4.99 697 600 -0.1944 -3.615 3700 -4.34E-4 0.0251
4.22 1125 962 -0.1455 -0.561 5948 -9.56E-4 0.0546

TABLE III

S21 FOR AN EMPTY SECTION OF WAVEGUIDE FOR THE DOMINANT

TE10 MODE AS A FUNCTION OF THE AVERAGE EDGE LENGTH h [MM]

AND NUMBER OF ELEMENTS N.

is modest, and of O(N). As an example, a symmetric rule
of degree of precision four requires only eleven points, and
this is sufficient for LT/QN basis functions. (The elemental
matrix entries in this case require at most the integration of
the product of quadratics, i.e. a polynomial of order four).

V. RESULTS

The theory discussed above has been implemented in a
finite element code developed by the author, his students and
industrial colleagues. The code uses the same graphical user
interface as the commercial package FEKO, and is called
FEMFEKO [27].

A. Empty guide

An empty section of waveguide provides a useful test of
the performance of the elements, since the results are known
exactly. In Table III, the transmission coefficient of a hollow
piece of X-band waveguide, 40mm long, is presented. The
analytical solution is trivial; the transmission coefficient is 1
(0dB), with phase angle 0o in Jin’s formulation, or �kz10`
for the extended formulation presented in this paper, as dis-
cussed in Section II. (The results in Table III were gener-
ated with Jin’s original formulation, hence the zero phase
angles). The 20 element result is of course highly inaccurate,
since the problem is badly under-discretized with so few el-
ements. (The guide wavelength was 48.630mm). The mesh
refinement used in Table III was a simple h-uniform scheme.

Eigenvalue problems are appealing since one quantity (the
eigenvalue) can be checked for convergence (and it is also
known that the eigenvalue is variational [28]); for example,
Savage and Peterson reported convergence results for LT/QN
elements for eigenvalue problems in [21]. Investigating the
convergence of scattering parameters is somewhat more dif-
ficult. The energy conservation term, jS11j

2 + jS21j
2, is a

useful overall solution quality indicator, suggested by Jin,
and will be used here. For a lossless structure, this should
of course be unity. Results are presented in Figs.1 and 2.
The former shows a consistently lower error (result closer
to unity) for the same h — i.e. the same mesh — and thus
modelling and pre-processing effort, although of course the
solution using LT/QN elements uses many more degrees of
freedom. The latter shows a consistently lower error for
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Fig. 1. jS11j2 + jS21j2 versus h, the average edge length in the mesh.
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Fig. 2. jS11j2 + jS21j2 versus the number of degrees of freedom used.

the same number of degrees of freedom — and thus com-
putational effort as well, presuming that efficient solvers are
available and unaffected by the use of the higher-order ele-
ments (an assumption that will be discussed subsequently).
This indeed is the major motivation for using higher-order
elements.

B. E plane bend

As a test of the general formulation, and also of the rel-
ative performance of the elements, an E-plane bend will be
analyzed (refer to Fig. 3). The analysis will be performed
for X-band (� 8-12 GHz) waveguide. It will be seen that at
the lower frequency band, the bend is largely transparent, but
towards the upper end of the frequency band, the effects of
the bend become significant. This problem has an (approxi-
mate) analytical solution, which was first derived some sixty
years ago by Marcuvitz, Schwinger and colleagues, and sub-
sequently documented in [1].

This problem was modelled with a section of “dummy”
waveguide, to ensure that only the dominant TE10 mode is
present at the ports. A half-length of 40mm is sufficient;

this translates into around 30mm of waveguide between the
bend and the port (that is, `� b = 30mm). The geometry is
shown in Fig. 3. It is assumed that the waveguide is air-filled,
approximated as free-space.

ŷ

ẑ

x̂

Port 1

Port 2

`

Fig. 3. The E-plane waveguide bend. Total (half) length of the bend is `.

b

b

T

d
T

d

Fig. 4. Side view of the E-plane waveguide bend.

T
Yo

T

Yo�jB

Fig. 5. Equivalent circuit of the E-plane waveguide bend.

B.1 Comparing with Marcuvitz’s approximate analytical re-
sults

The equivalent circuit for the E-plane bend of Fig. 3 as
derived by Marcuvitz [1, pp.312ff] is pure susceptance —
a shunt inductor, �jB; (B > 0) — at terminal planes T,
located distance d from the outer corner of the bend. See
Figs. 4 and 5. In the following, Y0(= 1=Z0) is the waveguide
characteristic admittance; Z0 = �=

p
1� (�=(2a))2 with

ACES JOURNAL, VOL. 17, NO. 1, MARCH 2002, SI: APPROACHES TO BETTER ACCURACY/RESOLUTION IN CEM6



� the free-space wavelength, � the wave impedance of free
space and �g = �=

p
1� (�=(2a))2 the guide wavelength.

The formulation presented in this paper computes S pa-
rameters, whereas this model is given in terms of a shunt sus-
ceptance. There are several methods that may be used to con-
vert Marcuvitz’s model to the same format as the present for-
mulation. A straightforward technique is to find the equiv-
alent ABCD model for the shunt susceptance, using tables
available in standard texts (for example, [29]); then convert
this to S parameters; and finally, embed this within a section
of guide `� d. This procedure will now be applied.

Firstly, the normalized shunt susceptance and distance d
can be read off [1, Fig.5.28-3]. This is then multiplied by the
normalized factor 2Y0b=�g, giving Bshunt.

The ABCD matrix [29, Table 4.1] for this shunt load is:

A = 1; B = 0; C = �jBshunt; D = 1 (14)

The S-parameters are [29, Table 4.2]:

S11 =
A+B=Z0 � CZ0 �D

A+B=Z0 + CZ0 +D

S12 =
2(AD � BC)

A+B=Z0 + CZ0 +D

S21 =
2

A+B=Z0 + CZ0 +D

S22 =
�A+B=Z0 � CZ0 +D

A+B=Z0 + CZ0 +D
(15)

Finally, the shunt load is embedded in a line of length
d � `. This amounts to changing the phase of the indi-
vidual S-parameters by e�j2�, with � = kz10(` � d) [29,
p.202-204], and kz10 = 2�=�g the wavenumber of the TE10

mode. This now permits direct comparison between the re-
sults computed using the FEM and the approximate results
derived by Marcuvitz.

B.2 Results

For the results to be presented, two meshes were gen-
erated; a “coarse”mesh with an average edge length of
about 6mm, and a “fine” mesh, with 3.5mm average edge
length. The problem was run over a frequency range of 8.25–
12.25 GHz, with an accompanying guide wavelength vary-
ing from about 60–29mm. Thus, at the highest frequency,
the coarse mesh was about �=5 — too coarse for the CT/LN
elements to generate reliable solutions. The fine mesh should
be satisfactory.

Results are presented in Figs. 6 and 7 for the CT/LN ele-
ments for the coarse elements. The S11 results for the coarse
mesh are indeed very inaccurate. However, the fine mesh
yields acceptable results, although S11 is still not very accu-
rately computed. (Note that at the low frequency end, S11 is
small, and a very accurate solution will be required to obtain
good agreement.)

Clearly, this is case where the LT/QN elements will be
required to obtain really good results. These are presented in
Figs. 8 and 9 for the LT/QN elements. In this case, the phase
comparison is also shown, in Figs. 10 and 11. Even with
the coarse mesh, the results are now acceptable; for the fine
mesh, the agreement is excellent across the entire frequency
band.

Both Savage’s and Andersen and Volakis’s LT/QN ele-
ments were used; both perform very well from a viewpoint of
accuracy. There was no discernible difference between the
S-parameter results computed using them. Since the basis
functions are related by a linear transformation, this is to be
expected. However, both generated ill-conditioned matrices
on occasion. This remains a problem and will be discussed
in the next section.

C. Iterative solver convergence and computational effi-
ciency

A problem which has not been addressed in this paper
is the issue of computational efficiency. Unfortunately, the
higher-order elements appear to generate ill-conditioned ma-
trices. The results presented here were obtained using iter-
ative solvers for the linear algebra — variants on the conju-
gate gradient scheme (CG, Bi-CG), QMR and GMRES, with
simple diagonal pre-conditioning, where relevant — but all
converged erratically, some schemes converging rapidly at
certain frequencies, and then converging very slowly at oth-
ers, and also exhibiting different convergence behaviour for
different geometries. (All converged at an acceptable pace
for the CT/LN elements). This is a problem which is only
hinted at in much of the literature on higher-order vector
based elements. An exception is the work by Webb [13];
he proposes a scheme to improve the matrix conditioning
by at least partially orthogonalizing the higher-order basis
functions. Other recent approaches have focussed on the use
of more sophisticated pre-conditioners. Incomplete LU pre-
conditioning is one possibility; another is the use of a di-
rect solution of the CT/LN solution (which can generally be
computed quite cheaply) as a pre-conditioner for the LT/QN
matrix.

VI. CONCLUSIONS

This paper has discussed the use of LT/QN elements for
waveguide analysis. As would be expected, the LT/QN el-
ements give much better solutions for the same mesh than
CT/LN elements; this remains true if the number of degrees
of freedom are compared. Which of the many published
LT/QN elements are used appears insignificant in terms of
solution accuracy (at least for the E-plane bend analyzed in
this paper, as well as several other problems not reported
here); the choice of element does impact on the convergence
of the iterative solver, but unfortunately not in a consistent
fashion.

Although the performance of higher-order elements is
usually compared with that of lower-order elements in terms
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Fig. 6. Magnitude of the reflection coefficient for the E-plane bend in X-
band guide; CT/LN elements.
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Fig. 7. Magnitude of the transmission coefficient for the E-plane bend in
X-band guide; CT/LN elements.
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Fig. 8. Magnitude of the reflection coefficient for the E-plane bend in X-
band guide; LT/QN elements.
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Fig. 9. Magnitude of the transmission coefficient for the E-plane bend in
X-band guide; LT/QN elements.
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Fig. 10. Phase of the reflection coefficient for the E-plane bend in X-band
guide; LT/QN elements.
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Fig. 11. Phase of the transmission coefficient for the E-plane bend in X-
band guide; LT/QN elements.
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of the number of degrees of freedom required for a partic-
ular accuracy, it is worth making the point that the geomet-
rical pre-processing (and to a lesser extent, post-processing)
required in a real-world FE code is largely a function of the
number of elements, rather than of number of the degrees of
freedom. The time required for this can become a significant
fraction of the total run-time of the code. This is another
practical advantage of higher-order elements not often men-
tioned in the literature.

Yet higher-order schemes — quadratic tangential /cubic
normal and also cubic tangential / quartic normal basis func-
tions have been published (eg [21], [17]); the extension of
the present work to these is relatively straightforward the-
oretically, but implementing these will require meticulous
work.

From the viewpoint of waveguide applications, further
waveguide implementations could include TM modes; this
would require an ~H solver (due to the boundary condition)
if the same formulation is used, but this should present no
major problems. Multi-mode analysis is already included in
the formulation (and been implemented in the code which
generated these results), but had not been tested at the time
of writing.

Extending the formulation to right-circular cylindrical
waveguides (or indeed any shape for which the eigenmodes
are known in closed form and are transverse in nature) would
be moderately straightforward. Extensions to include arbi-
trary, numerically-determined modes would be a desirable
future addition. Inhomogeneously loaded waveguide poses
new challenges, since one needs to simultaneously solve for
the tangential and axial fields. Hybrid schemes, using vec-
tor elements for the former and nodal schemes for the latter
have been used successfully [30], but there are a variety of
approaches to this requiring exploration. These also pose
some problems for the present formulation, which relies on
the transverse nature of the eigenmodes to obtain the bound-
ary condition at the ports.

Another possible extension would be to include anisotropic
materials; the formulation for diagonally anisotropic materi-
als for CT/LN elements is available [24] and this would have
to be extended to fully anisotropic media and LT/QN ele-
ments. Non-linear materials are however probably best left
to a time-domain approach, in particular the FDTD.
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