
Limits for Computational Electromagnetics Codes Imposed by

Computer Architecture

Jürgen v. Hagen, Werner Wiesbeck
Institut für Höchstfrequenztechnik und Elektronik

Universität Karlsruhe, Kaiserstr. 12, D - 76128 Karlsruhe, Germany,
Phone: +49 721 608 76 76, Fax: +49 721 69 18 65

email: vonhagen@ihe.etec.uni-karlsruhe.de

Abstract— The algorithmic complexity of the innermost
loops that determine the complexity of algorithms in
computational electromagnetics (CEM) codes are ana-
lyzed according to their operation count and the im-
pact of underlying computer hardware. As memory chips
are much slower than arithmetic processors, codes that
involve a high data movement compared to the num-
ber of arithmetic operations are executed comparatively
slower. Hence, matrix-matrix multiplications are much
faster than matrix-vector multiplications. It is seen that
it is not sufficient to compare only the complexity, but also
the actual performance of algorithms to judge on faster
execution. Implications involve FDTD loops, LU factor-
izations, and iterative solvers for dense matrices. Run
times on two reference platforms, namely an Athlon 900
MHz and an HP PA 8600 processor, verify the findings.

I. Introduction

Most codes for computational electromagnetics, espe-
cially frequency domain methods, involve the solution of
a linear system of equations. The efficient solution of
linear systems of equations is, hence, one important part
in improving the efficiency of computational electromag-
netics. Depending on the method, the linear systems
involve dense or sparse, real-valued or complex-valued,
symmetric and non-symmetric matrices.

One of the most important methods, namely the
Method of Moments, involves the solution of a dense lin-
ear system of equations. It is generally complex-valued,
non-symmetric and non-hermitian. The solution is com-
monly obtained by a direct method, i.e., an LU factor-
ization [1]. A certain interest has appeared to solve sys-
tems with dense matrices by iterative methods [2] that
are usually applied to sparse matrices. The solution time
of either method depends on the algorithm, the arith-
metic operations, the data of the matrices and vectors,
and also the computer architecture which the code runs
on. Iterative methods are also affected by the number of
iterations given by their convergence properties.

In this paper, the influence of the computer architec-
ture on the execution speed of innermost loops is re-
viewed. For this, today’s computer architectures are
briefly reviewed. Then, the complexities of iterative
methods, direct methods, and FDTD loops are re-
viewed with taking into account a hypothetical reference

PSfrag replacements

memory
secondary
storage

reg
isters

CPU
memory

bus
storage

bus

Fig. 1. Schematic computer system with CPU and memory

computer architecture. Two specimens of present day
computers, namely a Linux computer equipped with a
900 MHz Athlon CPU and a HP Risc PA 8600 processor
at 552 MHz, provide measured data on run-times. Impli-
cations on CEM codes and their performance are finally
drawn.

II. Computer Architecture

Figure 1 sketches the most important functional units
of a computer with only those parts shown that are im-
portant for CEM codes. The computations are carried
out in the registers within the central processing unit
(CPU). Before usage, the data is stored in the secondary,
usually disk, storage, and must then be transferred for
execution into the RAM. This is done only once if the
code and the data fit entirely into the memory, this part
then influences run-times only secondarily. Later, the
data is loaded into the registers on the CPU for arith-
metic operations. The number and complexity of regis-
ters determines the number of operations that can take
place simultaneously. This determines the theoretical
performance expressed in FLOP(floating point opera-
tions per second). For the data transfer to take place, the
band widths of the disk bus and mainly the memory bus
determine the rate of data transfer. The performance of
the busses is given as their band width in amount of data
per second (e.g., 1 Gbyte/s).

For a given hardware and a given computation, the
FLOP number is not always defining the computational
speed. Processors in workstations and PCs allow more
floating-point operations per cycle than memory opera-
tions as different registers can hold and act on different
data. This is due to the fact that the arithmetic reg-

1054-4887 © 2002 ACES

ACES JOURNAL, VOL. 17, NO. 2, JULY 2002166



isters in modern processors (up to 1.5 GHz for Athlon
processors) are much faster than memory chips (about
120 MHz). If the data cannot be retrieved from memory
sufficiently quickly, the CPU waits for the memory to de-
liver the data. Hence, the memory band-width is more
limiting than the floating-point capabilities. The max-
imum performance Perf that is attainable on memory-
bound computations (i.e., the CPU awaits memory op-
erations) is approximated by

Perf =





floating

point

operations



 ·





memory

band-

width





(

data retrieved

from memory

) (1)

Here, we define a floating-point operation as an add or
a multiply as both operations are carried out in about
the same time. This definition is in accordance with the
one in [1]. Finally, as arithmetic registers usually hold
double precision floating point numbers, the execution
speed of floating-point operations for single and double
precision real numbers is about the same.

Modern processors contain between the processor and
the main memory smaller and faster so-called cache
memories. The access time for cache memories is be-
tween the access time of the main memory and the pro-
cessor clock. However, the size of cache memories is in
the range of only a few Mbyte, for larger data sizes not
all the data can be held in the cache memory. Due to
this fact, the band width of the main memory is the most
important limiting factor.

Due to the hierarchical memory layout and a possible
re-use of data already loaded in the faster cache mem-
ories, the actual performance obtained with optimized
subroutines can be better than the above theoretical es-
timate. Optimized libraries are available for a variety
of platforms and processors. An auto-optimizing library
ATLAS [3] attains performance values that surpass usual
implementations. For actual run-times, two reference
platforms are chosen that should be representative for
a wide range of platforms currently used. The first ref-
erence platform is a Linux based AMD Athlon proces-
sor clocked at 900 MHz. It includes a small cache of
125 kbyte that is clocked at the processor speed. A sec-
ondary level cache memory amounts to 512 kbyte and
is clocked at half the CPU clock speed. The computa-
tions carried out are obtained when the above cited At-
las library is used. A second platform, an HP PA 8600
processor with HP-UX 11.00, has a primary cache of
1.0 Mbyte accessible at processor speed. The bus band
width is 2 Gbyte/s. The run-times are reported when
using the vendor supplied library mlib.

TABLE I

Run-times for 100 double precision matrix-vector

multiplications on two reference platforms.

Matrix Size Athlon HP PA
N Mbyte 900 MHz 8600

1000 15.4 1.47 s 0.61 s
1500 34.3 3.30 s 1.40 s
2000 61.1 5.94 s 2.42 s
2500 95.4 9.30 s 3.78 s
3000 137.3 13.49 s 5.67 s

Resulting Perf2 133 MFLOP 317 MFLOP

III. Maximum Performance for Matrix-Vector

Multiply

The matrix-vector multiply y = Ax for a square N×N
matrix A spells out

y(1:N) = 0 (2)

y(1:N) = y(1:N) +
∑

A(1:N, i) x(i) for i = 1:N

The total number of operations is 2N 2. The inner loop
A(1:N, i) x(i) requires per element three memory oper-
ations (load y(·) and A(·, i), store result y(·)) and two
floating-point operations (multiply x(i) and A(·, i), add
to y(·)).

On a hardware that is memory-bound by a bus band
width of 2 Gbyte/s, the maximum attainable perfor-
mance is

Perf2 =
2 FLOP · 2 Gbyte/s

3 · 8 byte
≈ 170 MFLOP (3)

if each datum occupies 8 byte. Standardized subrou-
tines available as the BLAS subroutines [4] that com-
pute matrix-vector products are called Level 2 subrou-
tines. We hence define the above performance as level-
2 performance Perf2. The run-times for matrix-vector
multiplications of square matrices with double precision
real elements and size N × N are reported in Table I.
The last line in the table concludes the run-times in a
performance number given as floating-point operations
per second FLOP.

IV. Maximum Performance for Matrix-Matrix

Multiply

A matrix-matrix multiply of N ×N matrices C = AB
is computed, e.g., by

C(i, j) =
∑

A(i, 1:N) B(1:N, j) for i, j = 1:N (4)

v. HAGEN, WIESBECK: LIMITS FOR CEM CODES IMPOSED BY COMPUTER ARCHITECTURE 167



TABLE II

Run-times for a double precision matrix-matrix

multiplications on two reference platforms.

Matrix Size Athlon HP PA
N Mbyte 900 MHz 8600

1000 15.4 2.30 s 1.27 s
1500 34.3 7.77 s 4.39 s
2000 61.1 19.05 s 10.05 s
2500 95.4 38.18 s 19.93 s
3000 137.3 74.11 s 34.41 s

Resulting Perf3 364 MFLOP 784 MFLOP

The total number of floating-point operations is now
2N3. The inner loop A(i, 1 :N)B(1 :N, j) requires per
element only two memory operations (load A(i, ·) and
B(·, j)) and again two floating-point operations (multi-
ply A(i, ·) with B(·, j), add to a running sum). The result
of the loop is the running sum that is stored at the end
of the loop. On the same hardware and the same data
size as above, the maximum attainable performance is

2 FLOP · 2 Gbyte/s

2 · 8 byte
≈ 256 MFLOP (5)

According to the name of BLAS Level 3 [5] of matrix-
matrix subroutines, we identify the above performance as
level 3 performance Perf3. For memory-bound hardware,
the matrix-matrix multiply always tops the matrix-
vector multiply performance as more floating-point oper-
ations are needed for the same data. The ratio of Perf2
to Perf3 indicates the higher efficiency of level-3 oper-
ations. This ratio is 0.66 for the above estimates. Ac-
tual run-times are reported in table II. The performance
measured for the different platforms is higher than the
above estimate due to the influence of cache memories.
For both platforms, the level-3 performance is more than
double the level-2 performance.

V. Maximum Performance for FDTD Loops

An update per field component (e.g., Ex) in an FDTD
computation on a three-dimensional grid of size Nx ×

Ny ×Nz conforms to the following equation

Et+1
x (x, y, z) = C1(z) · Et

x (x, y, z)

+

(

H
t+1/2
z (x, y, z − 1/2)−H

t+1/2
z (x, y, z)

∆y µ (z)
(6)

+
(H

t+1/2
y (x, y, z)−H

t+1/2
y (x, y − 1, z)

∆z µ (y)

)

· C4(z)

For the update in each cell, eight floating-point oper-
ations take place, whereas ten memory operations are
carried out. With the same restrictions as above, the
performance of an FDTD loop is hence

8 FLOP · 2 Gbyte/s

10 · 8 byte
≈ 205 MFLOP (7)

which is slightly lower than the one for the matrix-matrix
multiply.

VI. Implications

For high-power computers the computational perfor-
mance is often memory-bound, and not floating-point
bound. We have shown that for memory-bound archi-
tectures, i.e. all present day platforms, the performance
of matrix-vector multiplications is always lower than the
one of matrix-matrix multiplications.

Solving a linear system of equations of size N by iter-
ative solvers requires subsequent matrix-vector multipli-
cations. Each matrix-vector multiplication requires 2N 2

operations executed with the above level-2 performance
Perf2 resulting in a run-time of

TMV =
2N2

Perf2
(8)

for one matrix-vector multiplication, and

Titer = 2niter

2N2

Perf2
(9)

for a solution of a linear system of equations after niter

iterations with two matrix-vector multiplications each.

In contrast, a LU factorization requires 2N 3/3 oper-
ations [1], however executed with a level-3 performance
Perf3 resulting in a total run-time of

TLU =
2N3

3Perf3
(10)

Comparing the execution time of the LU factorization
(10) with the one of an iterative solution (9), and deriv-
ing the number of iterations niter for which the iterative
algorithm is faster, one obtains

2N3/3

Perf3
> niter

4N2

Perf2
(11)

which yields

niter <
N

6

Perf2
Perf3

(12)

For the hypothetical level-3 to level-2 ratio of about 0.66,
the number of iterations is niter < 0.11N , and not only
niter < N/3 as often cited in literature. Even worse,

ACES JOURNAL, VOL. 17, NO. 2, JULY 2002168



TABLE III

Run-times for double precision LU factorizations on two

reference platforms.

Matrix Size Athlon HP PA
N Mbyte 900 MHz 8600

1000 15.4 0.89 s 0.59 s
1500 34.3 2.88 s 1.9 s
2000 61.1 6.74 s 4.36 s
2500 95.4 12.90 s 8.38 s
3000 137.3 22.11 s 14.98 s

resulting PerfLU 815 MFLOP 1.2 GFLOP

the above reference platform HP PA 8600 has a ratio of
Perf2/Perf3 ≈ 0.2. Hence niter < 0.034N << N/3.

On the two test platforms, the LAPACK LU factoriza-
tion routine dgetrf is executed according to the run-times
in Table III. Due to an efficient reuse of cache mem-
ory [6], [7], [8], the performance PerfLU is even higher
than PerfMM . The number of iterations for an itera-
tive method to be faster than the direct method is now
0.022N .

VII. Conclusions

The actual execution speed of computational electro-
magnetics codes is not only affected by the complex-
ity of algorithms, but also by the computer hardware.
It is shown that on memory-bound platforms, i.e., any
modern computer platform, the performance of matrix-
matrix multiplications is always higher than for matrix-
vector multiplications. This implies that for dense ma-
trices, iterative solvers must converge with very few it-
erations for an iterative algorithm to be faster than di-
rect methods. Furthermore, FDTD loops do not attain
the raw performance of LU factorizations on mermory-
bound platforms.

References

[1] G. H. Golub and C. F. van Loan, Matrix Computations. Balti-
more and London: The Johns Hopkins University Press, 1996.

[2] Y. Saad, Iterative Methods for Sparse Linear Systems. Boston:
PWS Publishing Company, 1996.

[3] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated em-
pirical optimization of software and the atlas project,” To ap-
pear in Parallel Computing, 2001. Also avalable as University
of Tennessee LAPACK Working Note #147, UT-CS-00-448,
2000 (www.netlib.org/lapack/lawns/lawn147.ps).

[4] J. J. Dongarra, J. du Croz, S. Hammarling, and R. J. Hanson,
“An extended set of fortran basic linear algebra subprograms,”
ACM Transactions on Mathematical Software, vol. 14, pp. 1–
17, Mar. 1988.

[5] J. J. Dongarra, J. du Croz, S. Hammarling, and I. Duff, “A set
of level 3 basic linear algebra subprograms,” ACM Transac-
tions on Mathematical Software, vol. 16, pp. 1–17, Mar. 1990.

[6] B. K̊agström, P. Ling, and C. van Loan, “GEMM-based level
3 BLAS: Portability and optimization issues,” ACM Transac-
tions on Mathematical Software, vol. 24, pp. 303–316, Sept.
1998.

[7] B. K̊agström, P. Ling, and C. van Loan, “Algorithm 784:
GEMM-based level 3 BLAS: High-performance model imple-
mentations and performance evaluation benchmark,” ACM
Transactions on Mathematical Software, vol. 24, pp. 268–302,
Sept. 1998.

[8] J. W. Demmel, N. J. Higham, and R. S. Schreiber, “Stability
of block lu factorizations,” Num. lin. Alg. with Appl., vol. 2,
no. 2, pp. 173–190, 1995.

Jürgen v. Hagen (S’97, M’98) recevied
the Dipl.-Ing. (M.S.E.E) and the Dr.-Ing.
(Ph.D.E.E.) degrees from the University of
Karlsruhe (TH) in 1994 and 1997, respec-
tively. From 1994 to 1997 he was work-
ing with the CNRS (Comité National de la
Recherche Scientifique), France on electro-
magnetic compatibility. In 1998 he held a
postdoctoral position at the Electromagnet-
ics Research Laboratory at the Pennsylvania
State University, in State College, PA, USA.

Since 1999 he has been with the Institut für Höchstfrequenztechnik
und Elektronik (IHE) at the Universität Karlsruhe (TH), Germany
where he is currently lecturer responsible for planar and conformal
antennas as well as numerical techniques in electromagnetics and
research assistant for industrial applications of microwaves, mi-
crowave heating processes, and EMC.

His research interests are electromagnetic theory, numerical
techniques including frequency and time domain techniques, pla-
nar and conformal antennas, industrial applications of microwave
power, and automotive sensors.

Dr. v. Hagen is member of IEEE, ACES, and VDE.

Werner Wiesbeck (SM’87, F’94) received
the Dipl.-Ing. (M.S.E.E.) and the Dr.-Ing.
(Ph.D.E.E.) degrees from the Technical Uni-
versity Munich, Germany in 1969 and 1972,
respectively. From 1972 to 1983 he was with
AEG-Telefunken in various positions includ-
ing that of head of R&D of the Microwave
Division in Flensburg and marketing direc-
tor Receiver and Direction Finder Division,
Ulm. During this period he had product re-
sponsibility for mm-wave radars, receivers,

direction finders and electronic warfare systems. Since 1983 he
has been director of the Institut für Höchstfrequenztechnik und
Elektronik (IHE) at the Universität Karlsruhe (TH), Germany.

Research topics include radar, remote sensing, wave propaga-
tion and antennas. In 1989 and 1994, respectively, he spent a six
month sabbatical at the Jet Propulsion Laboratory, Pasadena. He
is a member of the IEEE GRS-S AdCom (1992-2000), Chairman of
the GRS-S Awards Committee (1994-1998), Executive Vice Pres-
ident IEEE GRS-S (1998-1999), President IEEE GRS-S (2000 -
2001), Associate Editor IEEE-AP Transactions (1996-1999), past
Treasurer of the IEEE German Section.

He has been General Chairman of the 1987 Heinrich Hertz Cen-
tenial Symposium, the ’93 Conference on Microwaves and Optics
(MIOP ’93) and he has been a member of scientific committees of
many conferences. For the Carl Cranz Series for Scientific Educa-
tion he serves as a permanent lecturer for Radar System Engineer-
ing and for Wave Propagation. He is a member of an Advisory
Committee of the EU - Joint Research Centre (Ispra/Italy), and
he is an advisor to the German Research Council (DFG), to the
Federal German Ministry for Research (BMBF) and to industry in
Germany.

v. HAGEN, WIESBECK: LIMITS FOR CEM CODES IMPOSED BY COMPUTER ARCHITECTURE 169




