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ABSTRACT. A novel iterative method based on the
concept of waves is reported for use in the field theory,
computer aided design and optimization of high frequency
integrated circuits. It consists of a recursive relationship
between a given source and reflectéd waves from the
discontinuity plane which is divided into cells. A high
computational speed has been achieved by using Modal
Fast Fourier Transformation (MFFT). The theory as well
as its procedure implementation is described. Numerical
results are successfully compared with published data.

1 INTRODUCTION

With the increasing demand of wireless services, more and
more features have to be implemented in smaller devices
part. As a matter of fact, the integration for the front end
and antenna becomes more and more complex. Therefore, it
is not anymore for the designer of MMIC or passive circuits
a problem of single design, however a more global
approach has to be taken. It is obvious that all the
constitutive parts of the systems are interacting with each
other and the development of fast and efficient software
tools that can accurately predict the electrical behavior of
the components being investigated is of primary
importance.

A significant amount of research has been devoted to these
subjects, and a variety of special purpose methods have
been developed [3]. Several numerical methods can be used
such as the moment method [4], the Finite Element Method
(FEM) [5-6] and the Finite Difference Time Domain
Method (FDTD) [2]. However, major limitations for these
ones are the necessity of having large computer storage as
the problem size increases in terms of wavelength, as well
as time consumption for the mathematical treatment

The purpose of this paper is to present an efficient iterative
technique which can overcome the limitations of the above
methods and is suitable to analyze a general structure. The
basic theory and its implementation in a global structure
solving procedure will first be explained. To demonstrate
the wvalidity of this approach a microstrip filter
characterization will then be shown. Based on the treated
examples, comparisons in terms of computational
performances are given in the last part of the paper.

2 BASIC PRINCIPLE

To demonstrate the application of the general definition of
waves, we consider a planar circuit with arbitrary shape
printed on a dielectric interface as shown in Fig.1.

metal

source region (1)

Dielectric
Interface ()

h

h;

+— >
Fig.1: Planar circuit studied

To initialize the iterative process, an electric field source E, is
defined on the discontinuity plane (m). As a consequence, two
spatial waves with two components A; (x, y) and A, (x, y) are
generated by the upper and lower metallic box given two
spectral waves. These lasts come back to the dielectric
mterface then produced the waves for the next iteration. This
process is described on Fig.2.
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Fig.2 : Iterative process
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The wave concept is introduced by the transverse electric E;
and current density J; in terms of waves{7][8]. It leads to the
following set of equations.

1

A=
2\Z;

(E;+Z475) 1))

1
2,2

(E; -Z4,3) (2)
oi

Z; s the characteristic impedance of region i (i=1,2) which
is equal to 120 * m *g,. (&, : relative permittivity of the
medium).

A specific scattering problem may be formulated in analogy
to standard scattering expression in antenna or radar theory.
In this context a schematic description is illustrated in
Fig.3.

The main operation of the iterative procedure with the
above given schematic can be summarized for one iteration
by the following steps [9].

- Discretisation of the interface circuit plane (w), on which
the boundary conditions have to be satisfied (spatial
domain).

-Using the Modal Fast Fourier Transformation.
-Application of the reflection operator in its spectral form.
-Inverse Modal Fast Fourier Transformation backs into
spatial domain.

21 Space domain formulation

The interpretation of waves A; and B; in Fig.2 may be

viewed as the scattering matrix or more exactly the
scattering operator associated with the discontinuity surface
(m). Let Hy, H,, and H; denote the indicator functions of
respectively the dielectric, metal and source. These are
equal to one in the considered domain and zero elsewhere.
Due to the continuity relationship (E,;=E;; and J;+ J,=0 on
the dielectric E,;=E;,=0 on the metal and finally E,;=E,=E,
on the source) in each point of the plane, it is easy to
deduce from the equations (1) and (2) the scattering matrix

( see appendix ).

l—N2 2N2
—Hp - Hy-———H4 > Hd
1+N 1+N
Sd = 5 5 3)
2N q 4 1-N .
d “HUmT s T d
L1+N2 1+N2 R
Where:
N = Zol
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Fig.3 : Schematic description of the method
a =TE, TM mode.
p = reflection coefficient.

Each element of the scattering matrix Sy is an operator acting
in the spatial domain. Let us note that the global operator Sy is
unitary:

T

Sy Sq=Hp +Hq +Hg=1 4

Consequently, it will be easy to introduce the known form of
operator in a general formulation by associating to each cell of
the spatial domain a matrix depending on the physical nature
of the discontinuity (metal, dielectric, source).
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2.2 Modal Fast Fourier Transformation

According to the schematic description in Fig.3, it is shown
that the iterative process consists in combining the waves
expressed in the spectral and spatial domain using the
Modal Fast Fourier Transformation. It is developed to allow
a high computational speed. The definition of this
transformation leads to the following set of equations:

M~1N-1 2nm 2nn
ME-S T {cxmn<cos< X)Sin=—y) fnl;rl?x> +
m=0n=0 a b
. 2nm 2nn TE
eymn<Sm(——“—X)C05(T}’) fmny> } G2
a

M-1N-1 2rm 2nn
AiTM -y 3 {exmn<cOs( X)Sin(——y)
m=0n=0 a b

™
fmnx> +

f$ﬁ§> } (5b)

. 2nm - 2nn
Cymn Sm(——x)Cos(—-;—y)
a

f,ﬁf; Pg are the expansion functions, which are suitable

for representing the box circuit in fig.1 and can be obtained
by considering the modes of a wave guide bounded by four
electric walls.

€xmns €ymn are determined by the fast Fourier Transformation
[11] of E¢/(20,)"° in which E, is the excitation source and
x= a/M, and y=b/N.

m, n are the number mode of the metallic box

2.3 Spectral domain formulation

Using the Modal Fast Fourier Transformation requires to
mesh the discontinuity plane (1) into small rectangular sub-
domains (cells) which depend on the physical nature of the
interface (metal, dielectric or source). In the spectral
domain, the fields are therefore developed in N modes TE
and N modes TM corresponding to N components for (x)
direction and N components for (y) direction in the spatial
domain. Moreover, the incident waves A™™ are reflected

on the metallic box. This reflection is characterized by an
operator reflection. It can be expressed in the following
form([9]:

a .
a o 1= Z6i Y mn,i Coth (Ymn,l hi)/ o
pj = = fon \fnn (6)
m2>1
1+ Zoi Y% pn,; Coth (Ymn,i hj

With:

TE _ Ymn,i ™ _ J0EoE;

Ymn,1 ’ Ymn,i -

jou o Ymn,i

2 2
2 mmn nm
Ymn i z[ a j' +[T} -Ko g N

Ko is the space wave number.

2.4 Inverse Modal Fast Fourier Transformation

To get the desired solution for microstrip structure
characterization, an Inverse Modal Fast Fourier
Transformation [IMFFT] must be done to return into the
spatial domain [10]-[12].

TE
A gx) Amn
=1FFT{M "~} (8)
()
A A
! AT
With:
M =
And:
2 ifmn=0
Cmn =9, .
1 ifmn=0
25 Iterative process

The implementation of the iterative process consists on
establishing a recurrence relationship between the waves in
media (1) and (2) using the reflection in the spectral domain
and boundary conditions at the dielectric metal discontinuity
in spatial domain. A successive set of iterations corresponding
to the circuit plane (dielectric or an aperture in absorbing
material) is considered. The process continues up to the
convergence. It leads the following relations:

Spectral domain :

B(l = p(X. A(X

1,(q) 1 1, -1

) q ) a(q 9)
B2,(q) ©P2 A2,(q-1

Spatial domain :

(10)

Al,(q) (s ) B1,(q) . N E,
d
A2(q) Bi(q)) (1 )V%o2

Where: q is the number of iterations.
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Consequently, using equation (1) and (2), it is possible to
calculate the electric field and the current density at the
interface plane.

Zoi (Ajq *Big)
1

SRy

(Aig ~Big) an

At this stage the Sij parameters for two port circuit of
interest can be obtained by the following [9]:

byl-b- Db+ T
[Y] is the admittance matrix.

3 RESULTS AND ILLUSTRATIONS

The waves concept iterative process has been successfully
applied to the analysis of several circuits, one of which is
the stepped-impedance microstrip low pass filter presented
in Fig.4.

g 20 40 60 80 100 120 140

Fig.4 : Microstrip filter layout
S : Source.

The thickness and dielectric constant of the substrate are
1.57 mm and 2.33 respectively, and the height of the
shielding box is 11.4 mm. We can model the source as an
electric field Ey equivalent to a magnetic current density
[13], and defined by:

M=2xE, (12)

The expression of this electric field is Ey = 8 (x), with 8
defined on the metallic domain, of width w and centered on
zero.

S (x)=wy,y € [0,d] and x € [-w/2,w/2]

d: dimension of the source.
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The value of v is chosen to satisfy the condition <E,E>=1.

A gnid N,= 128 and N,=128 is adopted for easiness in the
computation of Fast Fourier Transformation. The dimensions
of shielding box are 67.5mm x 67.5mm x 11.4mm and Ax=
Ay=0.527mm.

In order to demonstrate the validity and advantages of the
iterative approach, a simulated program on Matlab is
developed on a Personal computer Pentium II ( 200 MHz).
The convergence of mag. (S;) is achieved in 195 iterations as
depicted in Fig.5. It is shown to converge in few hundred
iterations

S“ mag.
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Fig.5 : §,) mag. as a function of iteration number

In Fig. 6-7, we show a comparison on two S parameters
magnitudes obtained by iterative method and the published
results [1]. It is seen that the error between them is less than
5%.

0 T

_5? .............................................................. -
B A0 ]
e - ——Reft] B

i -+— Computed ]

Q0 [t e S .
P S DU U NN DU SO

1 15 2 25 3 35 4

F(GHz)

Fig.6 : S;; Magnitude as a function of frequency
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Fig. 7 : S;; Magnitude as a function of frequency

A second structure used, as a demonstrator is the
one studied in [2}{14]. Dimensions are given in Fig. 8.

Fig. 8 : microstrip low pass filter

W=W,=2.540mm; L,;=5.715mm, L,=3.81mm
e, =2.2;hy=0.794 mm

Box 27.093mm x 10.16mm.x.12mm

In figures 9 and 10, numerical results are compared with
success to those obtained from references [2][14]. The error
between them is less than 10 %. There is a good agreement,
showing the accuracy of the new method.
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Fig. 9: S;; Magnitude as a function of frequency
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Fig. 10 : S;; Magnitude as a function of frequency

A similar, program is developed to determine the phase of S,;.
The simulated results are illustrated in Fig; 11.
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Fig. 11 : Phase of S;; as a function of frequency

As a conclusion, an excellent agreement is observed for
each of the results, which depend on the adjustment of a
uniform mesh dimension and on the couple between source
and circuits.

4 COMPARISONS OF TIME AND MEMORY
CONSUMPTION

Let consider 7 the total number of cells meshing the

interface plane (w), and ¢ the number of cells on metallic
domain (related to the number of rooftops in a moment
method). The operation numbers of the two methods are
presented in the following table[10]:

Iterative method Operation number
Spatial domain T
MF.F.T 37 logt
Spectral domain T
IM.FET 37 logt
Spatial domain T
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U

Number for q iteration
requires the convergence
(Iterative method)

qB8 T +6 T logT)

Number for q iteration
requires the convergence
(moment method)

7° ¢*/3

Consequently ( see Fig. 12), the iterative method becomes
interesting above 64x64 or 128x128 cells because the
number of iterations required to obtain the convergence was
always less than 500.

Number of operations

16

X10°
i Moment
12 1 Method
8 | Tterativ
- Method
4 L
or
0 40 80 120
A
-a:if /7 (150
Number of operations
10 r x10"
o
Moment
g F Method
6 F Iterative
Method
4 |
5 k
= ﬂ/‘
o [ me—
1 N I " I " ] i 1 1 J
0 100 ‘\!{; 200 300
-b:if /1 (256

Fig. 12 : Comparison in number of operations between
the iterative procedure and moment method for 500
iterations.
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To demonstrate this theory, a program implemented with
symbolic calculation using moment method is developed to
characterize the studied structures. It is interesting to find
that time saving factor is about 20 compared to the conv-
entional method.

5 CONCLUSION

A general implementation of the iterative method based on
the concept of waves has been presented. It takes the
advantage of the simplicity, which does not involve bases
functions and inversion of matrix. It is capable to analyze
longer bodies[10]. Moreover, the introduction of the Modal
Fast Fourier Transformations allowed simplifying
calculations and accelerating the convergence with a
reduced CPU time. The good agreement between computed
and published results justifies the design procedure and
validates the present analysis approach. Consequently, the
present approach will be investigated for further new
applications such as air bridges, diodes, active elements,
etc...
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7 APPENDIX: DERIVATION OF Sy MATRIX

The boundary conditions at the discontinuity (plane 7T ) are
given as:

7-1 on the metal domain (M):
E1=E2

Using equation (1) and (2), it is easy to obtain:

\fz:(Al + Bl)= \/Z—oz(Az + Bz)= 0

Moreover

Al -Hm 0 Bj
A2 0 “Hm || B2

where as in the perfect conducting domain M, we can
deduce:

{H m =1 on the metal
Hp =0

7-2 On the dielectric domain D :

elsewhere

J1:J2=0
E1+E2¢ 0

imply:
1 ( ) 1 ( )=0
T— WA~ BYt 77—~ By =
Vzol VZO2
1 ( ) 1 ( )
T A TBYT T/ A2 7B
VZol VZo2

After that, it is possible to deduce:

1-N? 2n2

A - Hy Hy B,
| o1eN? 1+n°
2N 1-n?
A2 2 Hy - 2 Hq B2
1+N 1+N

Consequently, The complete scattering matrix given by the
relation (3) can be deduced.

7-3 On the source domain S

In the source field domain S, on can deduce (15) from (1),
(2) and (14).

E1=E]=Eo (14)
E
B, = == A,
z (15)
ol
E
B, = Zo —A,
02
imply:
Aq -1 0B Eo
- . Zol
EO
Aj 0 R 2,5

Finally, the boundary conditions on each domains of the
discontinuity surface can be expressed in the condensed
form presented by the equation (10).





