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Abstract—Two major enhancements to the iterative
physical optics (IPO) method are described for analyz-
ing the EM scattering from open-ended cavities. First,
a Jacobi Minimal Residual (JMRES) iterative algorithm
is developed which preserves the physically appealing na-
ture of IPO while establishing robust convergence criteria
based on minimizing the residual error. It is shown that
the JMRES algorithm usually converges much faster than
conjugate gradient based methods for cavities. Second, a
form of the fast far field approximation (FaFFA) is im-
plemented to accelerate the computation of the integral
operator in IPO. The FaFFA decreases the CPU time by

a factor of about %N%, where N is the number of sur-
face integration sample points. These improvements allow
much larger and more realistically complex cavities to be
analyzed with fast IPO.

Keywords—Electromagnetic scattering, Radar cross sec-
tions, Cavities, Iterative methods, Physical optics.

I. INTRODUCTION

The iterative physical optics (IPO) method was de-
veloped to analyze the electromagnetic (EM) scattering
from arbitrarily shaped open-ended cavities which are
large with respect to wavelength [1]. As its name im-
plies, the principles of physical optics (PO) are applied
iteratively to evaluate the equivalent surface currents on
the inner walls of the cavity. The iterative re-radiation of
the wall currents accounts for the multiple reflections in-
side the cavity. IPO was developed to handle arbitrarily
shaped cavities for which the waveguide modal method
[2] is not applicable, because waveguide modes can only
be found in closed form for a relatively small set of canon-
ical geometries. IPO was also developed to obtain better
accuracy than ray-based methods, such as the shooting
and bouncing ray (SBR) method [2], [3], [4], and the gen-
eralized ray expansion (GRE) method [4], [5]. It has been
combined with the termination reciprocity integral [6] to
handle cavities with very complex terminations, such as
a jet engine cavity [7].

This paper addresses two major problems associated
with IPO: convergence and computational efficiency.
First, no solid convergence criterion has been established
for halting the iterations. It has been based on e prior:

knowledge of the cavity geometry by guessing the max-
imum number of internal reflections which will be sig-
nificant as a function of aspect angle [1]. Furthermore,
as a classical (stationary) iterative method [8], the so-
lution may diverge if too many iterations are performed
because the iteration matrix may have a spectral radius
greater than unity. Second, in terms of efficiency the IPO
method is limited by an O(N?) operational count per iter-
ation, where N is the total number of integration sample
points. The iterative equation for IPO is very similar to
the magnetic field integral equation (MFIE) [9]; however,
the numerical sampling density of the surface currents
corresponds to PO, which is far less than rigorous inte-
gral equation methods (i.e., 4 to 9 samples per square
wavelength, instead of 64 to 100). The operational count
per iteration of IPO is O(N?) because each current el-
ement radiates to (nearly) all other current elements at
each iteration. Even though IPO uses a small number of
sample points per wavelength, the O(N?) computational
cost limits the size of the cavity geometry.

It is known that conjugate gradient based iterative so-
lutions to cavity problems are slowly convergent [10]. The
convergence issue is addressed here by introducing a new
iterative algorithm which may be applied to IPO. The
algorithm is a form of Jacobi iteration [8], which is opti-
mized here using two degrees of freedom to minimize the
residual error at each step. The new algorithm is referred
to as the Jacobi Minimal Residual (JMRES) method, and
is described in Section III. It preserves the physical inter-
pretation of IPO, i.e., each iteration accounts for another
internal reflection, while guaranteeing a non-diverging so-
lution. The algorithm is shown to converge after a rela-
tively small number of iterations, starting with the first
order PO currents as the initial guess, and the number of
iterations tends to depend on the geometry and incidence
angle rather than the number of unknowns. The JMRES
algorithm is a reduced form of the generalized minimal
residual (GMRES) method [11] which is also applied here
to IPO. The GMRES algorithm is shown to be much more
rapidly convergent than the conjugate and bi-conjugate
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Fig. 1.

Open-ended cavity illuminated by an incident field.

gradient methods [12], [13] when applied to cavities.

The efficiency of IPO is substantially improved by im-
plementing a form of the Fast Far Field Approzimation
(FaFFA) {14]. The FaFFA is similar to the fast multipole
method (FMM) [15], but is much easier to implement.
The FaFFA accelerates the O(N?) operation associated
with the re-radiation of the surface currents at each itera-
tion, reducing it by a factor of about %N 3 (for a sampling
density of 9 points per square wavelength). The FaFFA
as applied to IPO is referred to here as Fast IPO (FIPO),
and is described in Section IV.

Numerical results demonstrating the convergence prop-
erties, accuracy, and efficiency of the algorithms proposed
here are presented in Section V. Conclusions are dis-
cussed in Section VI. The original IPO algorithm is first
briefly described in the next section.

I1I. THE IPO METHOD

Figure 1 shows the geometry of an arbitrarily shaped
open-ended cavity with the aperture illuminated by an
incident EM field. S, is the aperture surface and S. is
the surface of the inner cavity walls. The cavity walls are
assumed here to be perfect electrical conductors (PEC),
but the formulation may be easily extended to impene-
trable material walls using a surface impedance boundary
condition [16]. An e/“! harmonic time convention is as-
sumed and suppressed in the following. A\ and k are the
wavelength and wavenumber, respectively, of the incident
EM field in the ambient media which is assumed to be
free space.

The cavity geometry and aperture are replaced
with equivalent surface currents which radiate in free
space. The approximate magnetic field integral equation
(MFIE) for finding the electric surface current J at points
7. on the cavity walls is given by [1}:

J(7) = 2ax HiF)+ (1)

B . e—JkR'
271 x][ J(#) x R’ (;k + R,) ds’
Sc

4w R’
where R = 7, — ¥, R’ = |R'|, R = R'/R', # is an
integration point on the surface S;, and F-denotes the
principal value integral. H(7.) is the incident magnetic
field on the cavity walls radiated by the Kirchhoff aper-
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ture currents defined by

jg(":a) =
MZ(Fa) =

A x H'(ra)
Ei(7,) x A (2)

where 7, is a point on the aperture surface S,. Eq. (2)
is approximate because the Kirchhoff approximation has
been used for the aperture currents [2]. Otherwise, to
find the aperture currents rigorously it is necessary to
write a second integral equation for the external region
which is coupled to the cavity via the aperture currents.
The resulting equations are solved simultaneously using
a direct solution as in [10}, [17], or an iterative solution as
in {18]. The Kirchhoff approximation used here has been
shown to be very accurate for electrically large apertures
as long as the incident field is not close to grazing the
aperture [2].

The rules of IPO state that the integral in (2) is eval-
uated only over the portion of S, where 7 - R’ < 0. In
other words, source points only radiate to points on S,
which are facing them, ignoring any intervening geome-
try. The same rule is followed in evaluating the incident
magnetic fields H(J!) and H(M?) on S.. The original
IPO paper [1] used more rigorous shadowing rules, but
the new 7 - R’ < 0 rule has been found to give better
convergence and is very easy to implement.

The integral equation of (2) is discretized using point
sampling with a sampling density of 4 to 9 points/A2.
The surfaces are assumed to be locally flat at the sample
points, and two orthogonal current directions are defined
at each point. In the original IPO method the following
iterative equation is used to find J for the £** iteration:

JO(F) = 20 x HiF,) + (3)
—JLR

~ —1) (=t 1] k 1
2nX][st () x R T <] +R>d5

starting with an initial guess of

JOGF) = 2nx H(7,) (4)

which is the first order PO current on the cavity walls.
Each iteration adds another internal reflection of the cav-
ity fields. The iteration halts after a pre-specified number
of steps based on the number of expected internal reflec-
tions, or when the relative change in the currents becomes
small enough to neglect subsequent iterations. However,
the number of internal reflections is generally not known
a priori, and the algorithm is likely to diverge after too
many iterations for reasons discussed in the next section.

Once (2) is solved for J using IPO, the Kirchhoff ap-
proximation is again used to find the scattered equivalent
currents in the aperture, and the cavity scattered fields
in the external region may then be found via aperture
integration.
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I1I. Tee JMRES ALGORITHM

Eq. (2) can be written in operator notation as

Zi = I (5)

where
—_ . S —jkR 1 1 )
Z] = J—2nx][SJ><R T <]k+ﬁ)ds
o (6)
J' = 2axH. (7)

The residual error vector at the £** iteration step is de-

fined as
RO J—ZJ® (8)

It is clear that the error vector goes to zero if J(©) satisfies
(2), or equivalently, if J¢ = J¢=1 in (4). The residual
error norm, usually referred to as simply the Residual

Error, is given by
< RO, RO >
S 2 (9)
<JLJP >

where the inner product of two vector functions existing
over the surface S, is defined by

Residual Error =

<AB> = / A*(7) - B(F') dS'. (10)
Sc
The residual error is a measure of how well the solution
satisfies the original discretized integral equation.
The basic IPO equation (4) may be re-written in terms
of the residual error vector as

JO  — Je-1 gy, (11)

This equation has the form of a stationary Jacobi iter-
ation, and it is not guaranteed to converge to a stable
solution unless the spectral radius of the iteration ma-
trix is less than unity [8]. If a relaxation parameter « is
introduced the equation becomes

o

JE 4 aRE-D, (12)

This equation may converge if « is chosen based on a pri-
ori knowledge of the eigenvalue distribution of the system
matrix. Alternatively, a new o may be found at each it-
eration which minimizes the ¢** residual error. Taking
this idea one step further, the following iterative form is
proposed:

JO = o JED 4, RED), (13)

where a; and a are chosen to minimize the norm of R(9
as follows.

RO = Ji— 0 ZJED — 0, ZRED (14)

7O — 7
RO = Ji — Z[JO)]
For{=1,2,..
G = 2JED = Ji - RED
Go = ZRED
Hyp =<q,q >
Hiy =< 0,42 >

21 = Hy,
Hiy =< q2,G2 >
v =< q_la {z >

vy =< §a, J* >
Solve [H][a] = [v]
JO = 0, JED 4 gy RE-D
RO = J — 0,51 — a2
Check residual error.

End

Fig. 2. The JMRES algorithm.

<RO RO > =< J J >+
laa|? < ZTED ZJED 5 ey < ZRED ZRED >
—9Re [a’{ <ZJEV Jis 4oy < ZRED >] (15)

where the property < A,B >=< B, A >* has been em-

ployed. Taking partial derivatives of (15) with respect to

the real and imaginary parts of a; and as and setting

the resulting equations equal to zero yields the following
2 x 2 system of equations:

ay

B

(16)

< ZJED Zje-n 5 < ZJe-D) ZRE-D

< ZRE-D Fye-1) 5 L FRE-D ZRE-D) 5
_ | <EZJEN g

< ZRE-Y Ji >

This iterative approach preserves the physically in-
sightful nature of IPO while minimizing the residual at
each step. Since the solution vector at the £** step is a
linear combination of the solution and residual error vec-
tors of the previous step, the minimized residual error is
guaranteed to be less than or equal to the residual error
of the previous step. The complete JMRES algorithm is
shown in Figure 2.

A close examination of the JMRES algorithm will re-
veal that it is mathematically equivalent to the GMRES
algorithm [11] with a restart interval of 2. GMRES saves
the search vectors from all previous iterations within the
restart interval, and minimizes the residual error at each
step. GMRES also orthogonalizes the search vectors,
but the same solution space is spanned with or with-
out orthogonalization. GMRES requires a large amount
of computer memory, depending on the restart interval.
As the numerical results of Section V will show, JMRES
has nearly the same convergence when applied to cavity
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problems as the full (not restarted) GMRES algorithm.
Furthermore, JMRES is much easier to implement than
GMRES and requires far less storage (only 5N complex
variables as opposed to 3N + mN for GMRES, where m
is the number of iterations done before restarting). It
is noted, however, that GMRES is guaranteed to reduce
the residual error to zero after N iterations (assuming
no restarts, and machine precision permitting) because it
spans the entire solution space. It also has much faster
convergence than the conjugate and bi-conjugate gradient
methods for cavities, as the numerical results will show.

Finally, it is noted that the computationally expensive
evaluation of the operator Z needs to be done only once
per iteration in JMRES and GMRES, which is an O(N?)
operation. This is in contrast to conjugate gradient based
methods for non-Hermitian systems which generally re-
quire two of these operations per iteration [12], [13]. Fur-
thermore, they al_S(I){ usually require that the Hermitian

adjoint operator Z be computed as one of these oper-

ations. However, Z is not straightforward to define for
the non-reciprocal IPO operator, especially when it is ac-
celerated using the FaFFA method of the next section.

_ IV. FAFFA ACCELERATION
The FaFFA [14] accelerates the computation of the sur-
face current radiation integral,

—jkR'
-,e J

HF) = Jéj(F’)xR =

(jk + R}—) ds’ (17)

which is the most time-consuming operation in evaluating

ZJ. The integral is computed at every sample point 7,
which requires O(N?) operations if done with straight-
forward numerical integration.

The FaFFA is very similar to the FMM [15] in that the
unknown current elements are spatially grouped as shown
in Figure 3, and the radiation integral is evaluated one
pair of groups at a time. For groups which are separated
by less than the far field distance of 2D?/), the integral
is computed using direct numerical integration. If there
are approximately M elements in each group, then the
numerical integration for one group radiating to another
requires M? operations. For groups separated by more
than the far field distance, the following far field approx-
imation is used for (17):

Hyo(7) =~ Hpy(Ty) e I =Ta) Fre (18)
where Hp, denotes the magnetic field radiated from
source group p to far field group ¢, 7, and 7, are the
centers of groups p and g, respectively, and Rpq =g —Tp
as shown in Figure 3. Hp,(7,) is found first by integrat-
ing over the elements of group p. Then, (18) is used to
find Hp,(F) for all the test points within group ¢. The
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Fig. 3. Spatial grouping of surface elements for the FaFFA formu-
lation.

number of operations required for evaluating (17) for this
pair of groups is then reduced to 2M from M?2.

Considering the savings in computing the far field
group interactions compared with nearby groups, we
should choose the groups to be as large as possible. How-
ever, larger groups means the far field separation distance
between groups is larger, so fewer pairs of groups will be
eligible for (18). A tradeoff can be reached by minimizing
the total operational count as a function of M.

For a 3D cavity geometry the number of near field
receiving groups within radius 2D? /X of a given source
group is approximately

167
N;

Npy = M (19)
where N, is the number of sample points per square wave-
length. Since there are N/M groups, the operational
count associated with evaluating all the near field inter-
actions is
167
M?N.
N,

s

Cns = NuMA(N/M) =

(20)

Likewise, using (18) the operational count associated with
evaluating all the far field interactions is

Css = 2M(N/M — Nypy) (N/M)
= onzjm - 3w, (21)
N,
and the total count is then
c = Cnf + Cff
167 9
= N M(M —-2)N +2N=/M. (22)

8§

Minimizing with respect to M (and assuming M > 2)

yields
NN\ #
M = (—167?) (23)
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and the minimal operational count is

1

3 (16”> " NE
N,
For large N this is substantially lower than the N2 opera-
tions required for direct numerical integration. It is noted
that the operational count of the basic FaFFA (without
the use of a discrete plane wave expansion) is claimed to
be O(N3/2) in [14]. This is because the authors do not
take into account the variable size of the near field region
in their optimization procedure. The O(N3/2) count may
be achieved if a constant number of near field groups is
assumed, although it may not be optimal or it may be
invalid as the group size increases.

Crmin (24)

V. NUMERICAL RESULTS

Figure 4 shows the RCS patterns as a function of az-
imuth angle for an open-ended circular cylinder with a
flat termination. The waveguide modal solution has been
shown to be very accurate for this type of canonical ge-
ometry, so it is used as a reference. The Direct IPO
results were obtained by halting the iterations when a
residual error of less than 0.1 was reached. The Fast IPO
iterations were halted when a residual error of less than
0.1 and 0.05 were reached for the two curves, respectively.
The three IPO curves agree very well with each other, and
with the modal solution, out to about 60°. Beyond 60°
the errors introduced by the approximations used in IPO
and FaFFA accumulate to a noticeable degree after many
iterations (see Table I below). Furthermore, the Kirch-
hoff approximation used for the aperture currents begins
to break down, and the higher-order diffraction effects
across the aperture begin to excite modes near cut-off.
Since the waveguide modal results also use the Kirchhoff
approximation at the apérture, these higher-order effects
are not included. So, none of the results may be consid-
ered reliable beyond 60°. However, the scattering from
the external geometry generally tends to become domi-
nant over the cavity scattering at wide angles. It is noted
that the FIPO method may be extended to a rigorous
coupled integral equation formulation which includes the
external region, as in [18].

As Figure 4 shows, the FaFFA introduces a small er-

ror in the evaluation of the integral operator Z compared
with direct IPO integration, but is only noticeable for
very wide angles of incidence. The cavity walls are dis-
cretized with 9 facets/A? for a total of N = 6,600 facets.
The IPO results took a total of 31 hours and 14 minutes
on an SGI Indy Workstation with a 150 MHz R4400 pro-
cessor and 96 MB RAM. The patterns are computed at 2°
increments in azimuth. The FIPO results took 11 hours
and 6 minutes on the same machine, which is a factor
of 2.8 speed-up. Equation (24) predicts a speed-up fac-
tor of 3.5 compared with the N2 operations needed per
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Fig. 4. RCS patterns of a circular waveguide cavity at 10 GHz.
The JMRES algorithm is used for all the IPO results with 9
facets/A? sampling density.

iteration without FaFFA. The actual speed-up is lower
than predicted because (24) assumes an optimal group-
ing of elements in FaFFA, such that all the groups have
the same number of elements and are about the same
size. In practice, this is very difficult to achieve for real-
istic geometries. Furthermore, IPO with FaFFA required
slightly more iterations for convergence than IPO without
FaFFA because of the small amount of error introduced
by the far field approximation. It is noted that the ap-
proximation may be improved by simply defining a larger
far field distance, but at the cost of reduced efficiency.
Figure 5 plots the residual error curves for the same ge-
ometry for a wide aspect angle of 60°. The residual error



curves for the conjugate gradient method (CGM) and the
bi-conjugate gradient stabilized method (BiCGStab) [19]
are also shown in Figure 5 for comparison. The FaFFA is
not used here with the CGM because of the difficulties in
evaluating the Hermitian adjoint operator with FaFFA.

Furthermore, since the CGM requires the Z and ?H in-
tegral operators to each be evaluated for every iteration,
the number of iterations in Figure 5 is actually the num-
ber of times the integral operator is computed for the
CGM results. The BiCGStab results use FaFFA, but the
integral operator is computed twice per iteration also, so
the number of integral operator computations is plotted.
This provides a more direct comparison in terms of the
most computationally expensive step in the algorithms.
The convergence of CGM is much slower than GMRES,
and BiCGStab is better than CGM but more erratic and
not as fast as GMRES. JMRES, which is equivalent to
GMRES with a restart interval of 2, has nearly the same
convergence as GMRES down to a residual error level of
0.05. Beyond 0.05 the algorithms start flattening out,
most likely due to the approximations associated with
IPO and FaFFA. However, it has been found that a resid-
ual error level of 0.1 gives sufficiently accurate RCS re-
sults for most cavity scattering applications.

Table I shows the number of iterations as a function of
the azimuth angle for the JMRES/FIPO results of Fig-
ure 4 with a residual error threshold of 0.1. As expected
from the physical interpretation of IPO, the number of
iterations is closely related to the number of dominant in-
ternal reflections for this simple geometry. For more com-
plex geometries the number of internal reflections may
not be easy to guess a priori. That is why the new JM-
RES algorithm is especially valuable—the residual error
can be easily monitored to indicate when the solution
has sufficiently converged, and the number of iterations
provides the maximum number of significant internal re-
flections.

TABLE 1
NUMBER OF ITERATIONS FOR CYLINDRICAL CAVITY {RESIDUAL
ERROR < 0.1).

| || v-Pol. | H-Pol. |
0° 4 4
10° 5 4
20° 9 7
30° 12 10
40° 18 16
50° 23 22
60° 28 34
70° 33 59

Figure 6 shows the RCS patterns of a realistically com-
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Fig. 5. Error curves of a circular waveguide cavity at 10 GHz,

illuminated 60° off-axis. 9 facets/A? are used in the IPO algo-
rithm. GMRES, BiCGStab and JMRES use FIPO.

plex cavity computed using the FIPO/JMRES algorithm.
The geometry is represented by a facet model generated
by ACAD [20], and is compatible with the XPATCH code
[21]. The exact dimensions of the cavity are too cumber-
some to include here, but the ACAD file is available from
the sponsors listed in the Acknowledgements (U.S. only).
8,122 facets are used with an average sampling density of
14.3 facets/A2. The patterns took a total of 33 hours and
19 minutes to compute on the SGI Indy (computed at 2°
increments in azimuth angle). The minimum and maxi-
mum number of iterations for convergence are 43 and 79,
respectively. As one would expect, this complex cavity
requires more iterations than the simple cylindrical cav-
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ity. As with the cylinder RCS results, only the scattering
from the cavity interior is included in the calculation,
with no external scattering.

VI. CONCLUSIONS

Two major enhancements to the basic IPO method for
cavity scattering problems have been demonstrated: (1)
a robust convergence criteria based on the residual er-
ror of the newly introduced JMRES iterative algorithm,
and (2) acceleration of the numerical integration using
the FaFFA. Convergence is reached in a relatively small
number of iterations using the JMRES algorithm, and
the physical insight of IPO is preserved. A residual error
threshold of 0.1 is seen to be sufficient for cavity RCS
problems. The GMRES algorithm is also found to be
very useful for cavities, having much faster convergence
than gradient methods, but the storage requirement may
be excessive.

The simple version of FaFFA used here reduces the op-
erational count per iteration by a factor of about %N 3
compared with direct numerical integration, with a small
degradation in accuracy. The accuracy may be improved
by using a larger far field group separation requirement,
but at the cost of efficiency. The efficiency may be fur-
ther substantially improved using the discrete plane wave
expansion method described in [14], or the more sophis-
ticated FMM [15] and accelerated versions of FMM such
as in [22], but with considerably more implementation
effort.
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