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Abstract – A least square support vector machine
(SVM) model is proposed for shape modeling of slot
antennas. The slot image is mapped into the electromag-
netic response by the SVM model. A modified shape-
changing technique is also proposed to describe the
antenna geometry by the quadratic uniform B-spline
curve and generate the slot images. In the model, the
histogram of oriented gradients feature is extracted from
the slot images to show the appearance and shape of the
slot. The relationship between the histogram of oriented
gradient features and the electromagnetic responses is
preliminarily built on SVM and the transfer function.
Then a radial basis function network is used for error
correction. The effectiveness of the proposed model is
confirmed with an example of a tri-band microstrip-fed
slot antenna. Compared with the convolutional neural
network (CNN), the feature extracted by CNN is substi-
tuted by the histogram of oriented gradients feature, and
the proposed model shows the same accuracy and the
improvement of training efficiency.

Index Terms – B-spline curve, microstrip antenna, shape
modeling, support vector machine.

I. INTRODUCTION

In recent years, the artificial neural network has been
widely applied to the modeling of antennas, speeding up
the design process [1–3]. The mapping relation between
the antenna geometry and the electromagnetic response
is learned by the neural network model. Although the
generation of training and testing samples needs a certain
number of full-wave simulations, the trained model can
predict the response quickly and accurately.

A parametric model based on the artificial neural
network is proposed for predicting the input resistance
of a broadband antenna [4]. The frequency-dependent
resistance envelope of the antenna is parametrized by
a Gaussian model, and the neural network maps the

geometrical parameter of the antenna to the Gaussian
parameters. To build a neural network with high dimen-
sion of geometrical parameter space and large geomet-
rical variations, the transfer function is employed to
extract the feature of S-parameters, representing elec-
tromagnetic responses versus frequency [5, 6]. In this
model, the neural network predicts the transfer function
coefficients as a function of geometrical parameters. In
[2], an artificial neural network (ANN) model with three
parallel and independent branches is proposed. This
model describes the antenna performance with various
parameters and simultaneously output S-parameters,
gain, and radiation pattern of a Fabry-Perot resonator
antenna. [3] proposes a support vector machine (SVM)
model to learn the mapping relation from the slot-
position and slot-size to electromagnetic responses.
Compared with the ANN model, the SVM model costs
less time in training and predicting.

For antennas with special shapes, their geometries
cannot be readily parametrized. Therefore, it is diffi-
cult to model these antennas. In [7], a convolutional
neural network (CNN) model is proposed for predicting
the resonant frequency of pixelated patch antennas. The
input to CNN is not the geometric parameters but the
image of the pixelated patch antenna. [8] proposed a
CNN model for the shape modeling of a metallic strip
for the microstrip filter. The input to CNN is the image
of the metallic strip with different shapes. The metallic
strip with different shape is generated by the shape-
changing technique, which is based on the cubic spline
interpolation. Although the CNN model can change the
component/antenna geometry flexibly and expand the
solution domain, it is difficult to determine CNN hyper-
parameters due to their huge number, resulting in a
time-consuming training process of CNN. The perfor-
mance of a machine learning model is controlled by
the hyper-parameters, such as the learning rate and the
number of layers. The traditional model (such as the
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least square SVM) performs well with several tuned
hyper-parameters, while there are forty or more hyper-
parameters in the neural network.

This paper proposes an improved least square SVM
model for the shape modeling of microstrip-fed slot
antennas based on the histogram of oriented gradi-
ents feature [9]. Based on the quadratic uniform B-
spline curve, the training and testing samples with
different structures are generated. The electromagnetic
responses are preliminarily predicted by the combination
of the histogram of oriented gradients feature, SVM, and
transfer function. The input for the least square SVM
is the histogram of oriented gradients feature extracted
from slot images. The output for SVM is the coefficients
of the pole-residue-based transfer function. Then a radial
basis function network is employed as error correction.
An example of the tri-band microstrip-fed slot antenna
is selected to confirm the validity of the proposed model.
In this example, the S-parameter and radiation pattern are
predicted.

II. PROPOSED MODEL

As shown in Fig. 1, the proposed SVM model inte-
grates the histogram of oriented gradients, transfer func-
tion, and radial basis function network. The model learns
the mapping relation between the slot image and electro-
magnetic responses (S-parameter or radiation patterns).
The slot images are generated from the defined control
points with a modified shape-changing technique. Once
the slot images are given, the trained model, which
substitutes the full-wave simulation, can predict S11 and
radiation patterns accurately and quickly.

A. Modified shape-changing technique

In [7], a shape-changing technique is applied one
by one to the sides which need to be changed, and
the contour of the metallic strip is modeled by the
spline curve. To simplify the process, a modified shape-
changing technique based on the quadratic uniform B-
spline curve is proposed here to change the contour of
the metallic patch or slot more flexibly. The function
of contour and its digital image, obtained by the modi-
fied shape-changing technique, are used for the full-wave
simulation and the model input, respectively.

With the modified shape-changing technique, the
contour of slot is determined by an iteration process as
shown in Fig. 2. An ellipse slot is taken as an example to
show the iteration.

First, the slot domain is discretized with a coarse
square gird with the side length d, as shown in Fig. 2 (a),
where d is defined based on the complexity of the
slot contour and the training time. The positions of
the grid lines are x = -d/2 + ixd and y = -d/2 +
iyd, where ix ∈ Z and iy ∈ Z. Second, a set of
the special grid centers are selected as the control

Fig. 1. Structure of the proposed model and the shape-
changing technique.

points. At least one edge of the special grids inter-
sects with the contour. Here, the control points are
denoted counterclockwise by (x1, y1), (x2, y2), . . . ,
(xn, yn) in Fig. 2 (a). Then, the control points are
shifted within the corresponding grid, i.e., the kth shifted
control point

(
x′k,y

′
k

)
= (xk + Δxk, yk + Δyk), where -

d/2 ≤ Δxk ≤ d/2 and -d/2 ≤ Δyk ≤ d/2. To generate
a closed curve, (x′n,y′n) = (x′0,y

′
0)and

(
x′n+1,y

′
n+1
)

=
(x′1,y

′
1)should be satisfied. For the ellipse slot, shifted

control points are shown in Fig. 2 (b). Fourth, the
new contour based on the quadratic uniform B-spline
curve can be defined in segments by n parametric
curves with control points

(
x′k,y

′
k

)
for k = 0, 1, 2, . . . ,

n+1. The kth parametric curve between (0.5x′k−1+0.5x′k,
0.5y′k−1+0.5y′k) and (0.5x′k+0.5x′k+1, 0.5y′k+0.5y′k+1) over
the local parameter interval {t| 0 ≤ t ≤ 1} is[
x(t)
y(t)

]T
= 1

2

[
1 t t2

]⎡⎣ 1 1 0
−2 2 0
1 −2 1

⎤⎦⎡⎣ x′k−1 y′k−1
x′k y′k

x′k+1 y′k+1

⎤⎦ ,
k = 1,2, ...,n.

(1)

For the ellipse slot, the corresponding curve for the
circular control points is also shown in Fig. 2 (b).

In the next iteration, the coarse grid is shifted in both
x- and y-directions by d/2. The control points are selected



689 ACES JOURNAL, Vol. 38, No. 9, September 2023

 

-3 -2 -1 0 1 2 3
-2

-1

0

1

2
 Original control points
 Ellipse slot
 Coarse grid for the 1st iteration

1 1( , )x y 5 5( , )x y

y

x

9 9( , )x y

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

1 1( , )x y 5 5( , )x y

y

x

9 9( , )x y

 Control points for the 1st iteration
 Contour for the 1st iteration
 Coarse grid for the 1st iteration

 
(a) (b)( )

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

y

x

 Control points for the 2nd iteration
 Countor for the 2nd iteration
 Coarse grid for the 2nd iteration

(c) (d)

Fig. 2. Diagram of the shape-changing technique for
an ellipse slot: (a) Ellipse slot and the original control
points, (b) control points and corresponding contour for
the first iteration, (c) control points and corresponding
contour for the second iteration, and (d) binary image Z.

and shifted in a similar way again. In Fig. 2 (c), the posi-
tions of the grid lines are x = ixd and y = iyd, and a new
contour is generated by (1) with square control points.
The iteration process ends after the maximum number of
iterations.

In sampling and quantization [10], the coordinate
values are digitized to determine the pixel positions, and
each material is denoted by specified numbers. In other
words, the slot domain is discretized with a fine square
gird, i.e., pixel, with the side length of dpixel. The value
of the pixels whose center lies inside the slot is 0, and the
value of the others is 1.

B. Histogram of oriented gradients feature

Because the local object appearance and shape can
be characterized well by the distribution of local inten-
sity gradients or edge position, the histogram of oriented
gradients feature is often used for human detection. In
our model, the feature is used as the input of SVM to
simply the relationship learned by the neural network.

The feature of the example is visualized over the
slot image in Fig. 3. The extraction of the feature
can be implemented by the MATLAB function extrac-
tHOGFeatures.

First, the gradient of each pixel is calculated.
Second, the image is divided into small connected
regions, i.e., cells, as shown in Fig. 3 (a). The size

(a) (b)

Fig. 3. Extraction of histogram of oriented gradients
features: (a) Binary image Z with cells, (b) visualization
of the histogram of oriented gradients feature and blocks.

of cell is also defined based on the complexity of the
slot contour and the training time. Then a local one-
dimensional histogram of gradient directions over the
pixels of the cell is accumulated for each cell. Nine
bins are evenly spaced over the range of 0◦-180◦. To
reduce aliasing, votes are interpolated bilinearly between
the neighboring bin centers in both orientation and posi-
tion. The vote of each pixel is the gradient magnitude.
Fourth, the local histogram is contrast-normalized by a
measure of the intensity across several cells, called a
block, as shown in Fig. 3 (b). The number of overlapping
cells between horizontally or vertically adjacent blocks
is hoverlap × vblock or hblock × voverlap, i.e., the block
stride for the horizontal direction is hoverlap cells, and the
one for the vertical direction is voverlap cells. The block
normalization scheme is Lowe-style clipped L2 norm.
Then the histogram of oriented gradients feature vector
is gotten. For an image with the pixel size of himage ×
vimage, the length N of the histogram of oriented gradi-
ents feature vector is

N = 9hblockvblock

⎢⎢⎢⎣ himage
hcell

−hblock

hblock−hoverlap
+1

⎥⎥⎥⎦⌊ vimage
vcell

− vblock

vblock− voverlap
+1

⌋
,

(2)
where the cell contains hcell × vcell pixels and the block
contains hblock × vblock cells.

C. Multi-output least square SVM

To improve the reliability and accuracy of the whole
model, the multi-output least square SVM [11] learns
the mapping relation from the histogram of oriented
gradients feature hi to the transfer function coeffi-
cients ci for electromagnetic responses (S11 or radia-
tion patterns). The objective function of SVM and corre-
sponding constrains are

min
www0,vvv j ,bbb,ξi

1
2wwwT

0www0+
γv
2nc

nc
∑
j=1

vvvT
j vvv j +

γξ
2

msample

∑
i=1

ξT
i ξi,

s.t. ccci = wwwTϕ (hhhi)+bbb+ξξξ i, i = 1,2, ...,msample,

(3)

where a radial basis function is used as the kernel func-
tion, i.e., ϕ(hi)T ϕ(h j) = exp(-p||hi - h j||2), p is a positive
kernel scale parameter, weight matrix W = [w0 + v1, w0 +
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v2, . . . , w0+vnc ] (the smaller the w0 is, the more similar
the transfer function coefficients are to each other), b is
the bias vector, ξ i is the slack variable, γv and γξ are the
positive real regularized parameters, and msample repre-
sents the number of training samples. Compared with
CNN, there are much fewer hyper-parameters for the
multi-output least square SVM, i.e., p, γv, and γξ .

D. Pole-residue-based transfer function

The transfer function is employed to extract the
feature of electromagnetic responses [5, 6]. The pole-
residue-based transfer function coefficients have low
sensitivities with respect to geometrical parameters, and
they are a reasonable representation of electromagnetic
responses. Thus, the neural network model based on
the transfer function is accurate with high dimension of
geometrical parameter space and large geometrical vari-
ations. The transfer function coefficients can be obtained
with vector fitting [12]. The pole-residue-based transfer
function is presented as

H (s) =
Q

∑
i=1

(
ri

s− pi
+

r∗i
s− p∗i

)
, (4)

where pi and ri represent the pole and residue coefficients
of transfer function, respectively, s is the frequency in
Laplace domain, Q represents the order of transfer func-
tion, and the superscript * represents complex conjugate.
The transfer function coefficient ci is a vector of the real
and imaginary part of pi and ri.

E. Radial basis function network

The radial basis function network is used for error
correction. It learns the relationship between the elec-
tromagnetic response (S11 or radiation patterns) obtained
from the transfer function and the simulated one. As
shown in Fig. 4, there are two layers in the radial
basis function network, i.e., a hidden radial basis
layer with R1 neurons and an output linear layer
with R0 neurons. The mathematical form is

yyyRBF = www′
2 exp

(
−(∥∥www′

1− xxxRBF
∥∥◦bbb′1

)2)
+bbb′2, (5)

where yRBF is a vector of real and imaginary parts
of electromagnetic responses, xRBF is a vector of real

Radial Basis Layer Linear Layer

|| · ||

  

⸰ +

1w

2w

R1×R0

R0×R1

1b 2b

R0×1
xRBF

R1×1 R1 R0×1 R0

R0×1
yRBF

Fig. 4. Structure of the radial basis function network.

and imaginary parts of H(s), ◦ denotes the Hadamard
product, www′

1 and www′
2 are the weight vectors of the two

layers, and bbb′1 and bbb′2 are the bias vectors of the two
layers. This can be implemented by the MATLAB func-
tion newrb. The function newrb iteratively creates one
more neuron for the radial basis function network.
Neurons are added to the network until the mean squared
error falls beneath a preset error goal or a maximum
number of neurons is reached.

F. Training and optimization

In the training process, if the accuracy of the model
is not acceptable, the hyper-parameters are adjusted or
more training samples are added to retrain the model.
The mean absolute percentage errors of the frequencies
at |S11| = -10 dB and the radiation pattern are adopted to
measure calculation precision.

Once the model is trained, it can substitute the full-
wave simulation and speed up the process of optimiza-
tion. It is difficult to directly optimize the contour of slot
in the image domain. The optimized variable is a vector
of shifting distance in x- and y-directions for the control
points.

III. APPLICATION EXAMPLE

A tri-passband microstrip-fed slot antenna [13] (see
Fig. 5) is employed as an example to evaluate the
proposed model. The original geometric parameters are
as follows: W = 31 mm, L = 41 mm, Wf = 3.14 mm, Lf
= 13.5 mm, l1 = 6.7 mm, l2 = 2.6 mm, t = 0.5 mm, s1 =
0.3 mm, D1 = 18 mm, D2 = 20 mm, d1 = 2.3 mm, d2 =
3.5 mm, w1 = 1.7 mm, and w2 = 4.1 mm. The metallic
strips are printed on a substrate with a thickness of 1.59
mm and a relative permittivity of 4.4.

The slot shown in Fig. 5 (a) is considered for
modeling, i.e., the first two resonant frequencies are
modeled. The slot keeps mirror symmetry in both hori-
zontal and vertical directions. Therefore, one-eighth of
the slot is presented by a binary image, which contains
168 × 144 square pixels, i.e., himage × vimage = 168 ×
144, with dpixel = 0.05 mm. The metal and the substrate
are denoted by 0 and 1, respectively. For the histogram of
oriented gradients feature, hcell = 8, vcell = 8, hblock = 2,
vblock = 2, hoverlap = 1, and voverlap = 1. The length of the
histogram of oriented gradients feature vector is 12,240.

HFSS 17.0 performs the full-wave simulation and
generates training and testing samples; 400 training
samples and 100 testing samples are defined randomly
in Table 1. The control points are shifted in the blue
polygon in Fig. 5 (c), and the geometric parameters of
the blue polygon are l3 = 0.7 mm, l4 = 2 mm, l5 = 0.95
mm, l6 = 0.84 mm, l7 = 7.96 mm, and θ = 35.16◦. In the
shape-changing process, the maximum iteration is 4 and
the side length d of the coarse square gird for the samples
is 0.8 mm.
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Fig. 5. Geometry of the tri-passband microstrip-fed slot
antenna: (a) Top view, (b) back view, (c) quarter slot.

Table 1: Definition of training and testing samples
Training Data

(400 Samples)

Testing Data

(100 Samples)

Min. Max. Step Min. Max. Step
Δxk (mm) -0.35 0.35 0.1 -0.3 0.4 0.1
Δyk (mm) -0.35 0.35 0.1 -0.3 0.4 0.1

Table 2: Hyper-parameters of the trained SVM
|S11| Patterns at the First Resonant

Frequency

E Plane (θθθ =

[0◦, 180◦])

E Plane (θθθ =

[180◦, 360◦])

H Plane

p 6.17×10−7 5.90×10−3 1.62×101 8.84×10−7

γv 1.91×10−2 2.42×10−10 1.17×10−4 1.05×10−4

γξ 8.93×1013 1.62×1015 1.98×1015 8.05×10−2

The hyper-parameters of the trained least square
SVM are listed in Table 2, where the hyper-parameters
are obtained with Bayesian optimization [14]. The
training and testing errors for the frequencies at |S11| =
-10 dB and the radiation pattern (taking the pattern at
the first resonant frequency for example) are given in
Table 3. For comparison, a CNN model is also trained
for the tri-passband antenna. The training and testing

Table 3: Training and testing errors for the frequencies
at |S11| = -10 dB and the radiation patterns at the first
resonant frequency

Frequencies at

|S11| = -10 dB

Patterns at the

First Resonant

Frequency

Proposed

Model

CNN

Model

Proposed

Model

CNN

Model

Training
error

0.13% 0.48% 0.96% 0.85%

Testing
error

0.57% 0.62% 1.18% 0.89%

errors of the CNN model are at the same level as the
proposed model. The training costs 1.1 mins for SVM,
and 56.6 mins for CNN. Much less time is spent to
train the proposed model, and fewer hyper-parameters
need to be determined. For this paper, the calculations
are performed on an Intel i5-1135G7 (2.4 GHz) machine
with 16 GB RAM.

Two examples out of the training range are chosen to
test the model, as shown in Figs. 6 and 7. The predicted
electromagnetic responses of the proposed model and
CNN model both agree well with the full-wave simu-
lated ones from HFSS. The corresponding control points
for the sample are shown in Figs. 6 (c) and 7 (c).

Once the model is trained, it can be applied to the
optimization design as a substitute for the full-wave
simulation. Then a tri-passband antenna is optimized
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Fig. 6. Continued
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Fig. 6. Comparison of the first testing sample: (a) |S11|,
(b) radiation patterns at the first resonant frequency, (c)
image of a quarter of slot.
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Fig. 7. Comparison of the second testing sample:
(a) |S11|, (b) radiation patterns at the first resonant
frequency, (c) image of a quarter of slot.
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Fig. 8. Optimization results for the example and photo-
graph of the fabricated antenna: (a) |S11|, (b) radiation
patterns at the first resonant frequency, (c) top view, (d)
back view, (e) image of a quarter of slot.

with the genetic algorithm [15] to reach the design
specification of |S11| ≤ -10 dB (2.4-2.48 GHz, 3.49-3.54
GHz, and 5.72-5.79 GHz). From Fig. 8, the curves of
predicted S-parameter and radiation pattern for the first
resonant frequency agree well with the measured ones.



693 ACES JOURNAL, Vol. 38, No. 9, September 2023

IV. CONCLUSION

In this paper, a new least square SVM model for
shape modeling of slot antennas is proposed. In the
modified shape-changing technique, the B-spline inter-
polation curve is used to describe the slot shape, and
the corresponding slot image is used as the model input.
The model consists of histogram of oriented gradients
feature, transfer function, and the radial basis function
network. The histogram of oriented gradients feature
is extracted to obtain the distribution of local inten-
sity gradients or edge position from the slot images.
Then, the least square SVM maps the histogram of
oriented gradients features into transfer function coef-
ficients, and there are only three hyper-parameters that
need to be determined in the training of SVM. The
transfer function provides a preliminary prediction about
electromagnetic response. In the end, the radial basis
function network is applied to the error correction. A
tri-passband microstrip-fed slot antenna is employed as
an example to confirm the effectiveness of the proposed
model. The proposed model gets the same precision
as the CNN model while it costs much less training
time.
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