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Abstract – Optimization of antenna performance is a
non-linear, multi-dimensional and complex issue, which
entails a significant investment of time and labor. In this
paper, a hybrid algorithm of quasi-opposition grey wolf
optimization (QOGWO) and Gaussian process regres-
sion (GPR) model is proposed for antenna optimiza-
tion. The QOGWO is prone to global optimality, high
precision for complex problems, and fast convergence
rate at the later stage. The GPR model can reduce time
cost of antenna samples generation. After being opti-
mized by the proposed approach, a stepped ultrawide-
band monopole antenna and a dual-band MIMO antenna
for WLAN can achieve wider bandwidth and higher gain
or isolation at low time cost, compared to other intelli-
gent algorithms and published literatures.

Index Terms – Antenna optimization, Gaussian process
regression, grey wolf optimization, quasi-opposition.

I. INTRODUCTION
Since their invention, antennas have become indis-

pensable devices in electric equipment, and they are also
important parts of wireless communication systems. In
microwave engineering, antenna optimization is a non-
linear, multi-dimensional, and highly complex problem.
Antennas are usually analyzed by electromagnetic simu-
lation software, and their optimization and design require
extensive professional experience. Therefore, antenna
design entails a significant investment of time and labor.
However, emerging intelligent algorithms provide prac-
tical approaches to fast optimization and efficient design.

In recent years, many scholars have explored
abundant intelligent optimization algorithms. Nysaeter
employed the NSGA-III algorithm to optimize two-
dimensional antenna locations for MIMO two-way
antenna patterns [1]. Singh applied the cat-swarm-
based genetic optimization (CSGO) to the design of a
miniaturized multiband antenna [2]. Mirjalili proposed
a grey wolf optimization (GWO) in 2014 [3]. It has
been applied in versatile fields because of few param-
eters to be set, robustness, and high performance in
some cases [4, 5]. It has potential applications in

antenna optimization, which motivates our work in this
paper.

Based on the GWO algorithm [3], a quasi-
opposition grey wolf optimization (QOGWO) algorithm
is built. It is prone to global optimality, high-precision
solution for complex problems, and fast convergence
rate. For reducing time cost of antenna samples gener-
ation, the Gaussian process regression (GPR) model
is introduced and combined with the QOGWO into
the QOGWO-GPR algorithm. It is validated by a
stepped ultrawideband monopole antenna and a dual-
band MIMO antenna for WLAN, and the results show
that it has made the two antennas achieve wider band-
width and higher gain or isolation at low time cost
compared to the other intelligent algorithms and the
published literature [14].

II. IMPROVED GWO
The GWO algorithm imitates the hunting behaviors

of a wolf pack in nature. According to the distances
between individual grey wolves and the prey, the three
closest wolves are named α , β , and δ . The remaining
wolves are denoted as ω . The predation process is led
by α wolf and consists of three steps: tracking the prey,
surrounding the prey, and attacking the prey. The GWO
algorithm [3] is outlined as follows:

Step 1: The dimensions of hunting space and their
bounds, the number of individuals in the grey wolf popu-
lation N are set.

Step 2: The grey wolf population are initialized
randomly.

Step 3: In the population, the three wolf individuals
closest to the prey are selected as α , β , and δ respec-
tively. In the specific problem, the distance corresponds
to a pre-defined fitness function value.

Step 4: Convergence factor a is expressed, with the
tth iteration, as

a = 2− 2t
Max iter

, (1)

where Max iter is the maximum number of itera-
tions. Obviously, a decreases linearly from 2 to 0 as t
increases.
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Step 5: Each individual wolf ω updates its position
in the (t + 1)th iteration by its relative position to α , β ,
and δ as following:

Xω(t +1) =
Pα(t)+Pβ (t)+Pδ (t)

3
, (2)

where Pα(t), Pβ (t), and Pδ (t) denote the forward
vectors of ω toward α , β , and δ in the tth iteration.

Step 6: If the iteration number reaches Max iter, the
iteration process will stop; otherwise, go to Step 3.

The other details of the GWO algorithm are referred
to [3]. The GWO algorithm has some advantages such
as few parameters to be set, high robustness, and good
performance in some cases [4, 5]. However, it easily falls
into local optimal solutions, and has low precision in
solving complex problems, and is slowly convergent in
the later stage [6]. In what follows, the GWO algorithm
will be improved in three aspects: population initializa-
tion in Step 2, convergence factor in Step 4, and indi-
vidual position updated in Step 5.

A. Quasi-opposition population initialization
In the GWO algorithm, the initial population is

generated randomly. This does not ensure a stable and
rich population diversity and lowers the solution preci-
sion for complex problems [7]. The quasi-opposition
principle [8] serves as a potential approach to improving
the population diversity.

Each individual is a multidimensional vector. For
the sake of clarity, its component is considered as a
one-dimensional example to illustrate the concept of
quasi-opposition. The optimal solution to be searched is
supposed in the interval [a0,b0]. For any x ∈ [a0,b0], its
symmetry point x′ is a0 + b0 − x, the probability that x
is close to the optimal solution is the same as x′. The
midpoint of [a0,b0] is denoted by xm, and the quasi-
opposition point xqop can be generated by

xqop =

{
rand (xm,x′) ,x′ > xm
rand (x′,xm) ,x′ ≤ xm.

(3)

As shown in [9], xqop has a higher probability to
be closer to the optimal solution than x′. Obviously,
applying (3) to each component of vector generates the
quasi-opposition point of an individual.

First, the population A is generated randomly, and
the quasi-opposition population Aqop is obtained by
generating the quasi-opposition points of all individuals
in A. Second, the fitness values of individuals in these
two populations are calculated and ranked. Finally, the
top N best individuals are chosen as the initial popula-
tion for subsequent iterations.

B. Non-linear convergence factor
In each iteration of the GWO algorithm, the indi-

vidual grey wolf ω dynamically changes its direction
according to the vector u, which is expressed as

u = 2ar1 −a
[
1 · · · 1

]T
, (4)

where r1 is a random vector whose components are
randomly located in [0,1]. Since its module (i.e., the max
absolute value of components) is a random number in
[0,1], |u| is a random value in [0,a]. When a > 1, the algo-
rithm will be more prone to global optimization search;
when a < 1, it will instead be more likely to perform local
search. To avoid the GWO algorithm getting trapped
early in the local optimum solution, a is chosen as

a = 2cos
(

πt
2Max iter

)
. (5)

In such way, a decreases non-linearly from 2 to 0,
which increases the proportion of global search in the
iterations.

C. Updating positions by weighting coefficients
Eq. (2) is used to update each individual’s position

in the next iteration, and implies the equal contributions
from α , β , and δ . This mean way leads to a slow conver-
gence rate in the later stage toward the optimal solution.
Since α is the approximate solution closest to the optimal
one, its contribution is dominant. Hence, according to the
contribution of α , β , and δ , the strategy of weighting
coefficients is adjusted as

Xω(t +1) =
f (α)Pα(t)+ f (β )Pβ (t)+ f (δ )Pδ (t)

f (α)+ f (β )+ f (δ )
, (6)

where the weighting function f(·) is the fitness value of
the individual.

After the improvement in Subsections A-C, the
GWO algorithm is modified into the QOGWO version,
whose flowchart is demonstrated in Fig. 1.

Fig. 1. The flowchart of the QOGWO algorithm.



ZHU, QIAN, TANG, LI: A HYBRID QOGWO-GPR ALGORITHM FOR ANTENNA OPTIMIZATION 676

III. HYBRID ALGORITHM OF QOGWO
AND GPR

In the QOGWO algorithm, each individual denotes
a vector whose components are dimension parameters
of the antenna and randomly valued within the ranges.
Calculating the fitness value of each individual requires
one full wave simulation. For complex antennas, the time
cost may be unacceptable. For reducing the times of
full wave simulations, the GPR model is introduced to
predict the fitness values of individuals in this section.

In the GPR model, the mean function and the covari-
ance function determine its prediction accuracy. The
mean function often takes a value of 0. The suited kernel
function serves as the covariance function [12]. For
improving its performance, the hyperparameters of the
kernel function are usually optimized by the conjugate
gradient (CG) algorithm [10]. However, the CG algo-
rithm has the shortcomings of over-dependence on the
initial value, easily falling into local optimal solution,
and poor convergence. As a remedy, the QOGWO algo-
rithm is preferably chosen as the optimizer of hyperpa-
rameter due to its merits, shown in Section II A-C.

The QOGWO and the above improved GPR model
are combined into the QOGWO-GPR algorithm. It
consists of two steps. The first step is training the GPR
prediction model, where the QOGWO is used to opti-
mize the hyperparameters of the different kernel func-
tions for obtaining the best-fitting model. The second
step is optimizing individuals, i.e., sets of dimension
parameters of antenna, where the QOGWO invokes the
trained GPR model to calculate the fitness values of indi-
viduals. The process will be detailed in the simulation
experiments below.

IV. EXAMPLES AND ANALYSIS
A stepped ultrawide-band monopole antenna [11]

and a dual-band MIMO antenna for WLAN [14] are
used to validate the hybrid QOGWO-GPR algorithm.
The simulations are performed on a computer with Core
i7-8700K CPU and 32 GB memory.

A. A stepped ultrawideband monopole antenna
A.1. Configuration of antenna

Figure 2 shows the configuration of the antenna. The
middle layer is the dielectric substrate FR4 (εr = 4.5, h
= 1.6 mm). The top surface of the dielectric substrate
is partially covered with a stepped monopole radiator
patch, which is fed by 50 Ω microstrip line. On the
bottom surface is a corner-truncated ground plate. The
stepped design of both layers is capable of decreasing the
discontinuity of the structure at the antenna feed source
and improving the impedance matching of the antenna
[11]. The frequency f re varies from 2 to 12 GHz.

For broadening the bandwidth of the antenna and
improving its directivity by the QOGWO-GPR algo-

Fig. 2. Configuration of the stepped ultrawideband
monopole antenna (Wsub = 20 mm, Lsub = 30 mm, W =
16 mm, L = 18 mm, L4 = 5 mm).

Table 1: Dimension parameters and their ranges of the
antenna

Parameters L1 W1 L2 W2 L3
Ranges (mm) 4-8 2-5 0.5-3 5-8 1.5-2.5

rithm, the performance targets here are S11 and Gain.
Dimension parameters to be optimized and their ranges
are listed in Table 1.

A.2. Training GPR prediction model
Firstly, we use HFSS simulation to calculate S11

and Gain of the samples. Then, samples are put
into the GPR model. In the GPR model, the vector
[L1,W1,L2,W2,L3, f re] is the input variable, and S11
and Gain are the output values. For each dimension
parameter, three values are sampled uniformly within the
range, and 243 sets are yielded. The frequency step is 500
MHz, so there are 5103 input samples.

The input sample data is divided into two parts: 70%
samples randomly chosen as the training set and 30%
samples as the test set. Based on the two sets, the kernel
function candidates such as RQ, SE and Matern func-
tions are built for the GPR model [12]. Their hyper-
parameters are optimized by the QOGWO algorithm,
where N is set to 24 and Max iter set to 30.

To reduce the bias in experimental results caused by
randomness, the above test is conducted 10 rounds for
each kernel function. The performance of the GPR model
resulted from the kernel function is assessed by the root
mean square error (RMSE) [13] as

RMSE =
D

∑
d=1

√
1
n

n

∑
i=1

(
yd

i − ŷd
i

)2
, (7)

where n is the number of test samples data. D is the
dimensionality of the output sample. yd

i is the output
sample value, and ŷd

i is the predicted output sample value
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by the GPR model. Obviously, the smaller the RMSE, the
better the prediction.

Our simulation results show that the Matern kernel
function (with hyperparameters l = 3.713 and σ2

f =
1.654) can achieve the best training effect. Thus, it serves
as the covariance function in the GPR model. The RMSE
changes with iterations, as shown in Fig. 3.

Fig. 3. RMSE changes with iterations.

A.3. Simulation of QOGWO-GPR algorithm
In the QOGWO-GPR algorithm, one individual

denotes the vector [L1,W1,L2,W2,L3]. N is set to 100
and Max iter set to 500. The dimension parameters and
the ranges are listed in Table 1. Once the initial popula-
tion and the quasi-opposition counterpart are generated,
a trained GPR model is invoked to predict S11 and Gain
of each individual at arbitrary frequencies.

For achieving the multi-objective optimization,
weighting S11 and Gain yields the fitness value as

fitness =
w1

Num

Num

∑
i=1

S11(i)
Stol

+
w2

Num

Num

∑
i=1

Gaintol

Gain(i)
, (8)

where Num is the number of frequency points. The
weight coefficients w1 and w2 are set to 0.5. Stol and
Gaintol are the tolerance values of two optimization
targets, taken as -10 dB and 3 dBi respectively. S11(i)
is the return loss at the ith frequency point after pre-
processing by

S11(i) =
{
−12,S11(i)<−12
S11(i),S11(i)≥−12. (9)

Gain(i) is the gain at the ith frequency point after
normalization by

Gain(i) =
{
| Gain(i) |,Gain(i)<−3
3,Gain(i)≥−3. (10)

Finally, the QOGWO algorithm iterates until the
individual with the best fitness value (i.e., the optimal
solution) is generated. The optimized parameters of the
antenna are: L1 = 4.4 mm, W1 = 5 mm, L2 = 1.16 mm,
W2 = 8 mm and L3 = 2 mm.

The hybrid QOGWO-GPR algorithm is compared
with the genetic algorithm (GA), the particle swarm opti-
misation algorithm (PSO) and the QOGWO algorithm.
In the later three algorithms, N = 100, and Max iter
= 100. The variance factor pm in the GA is set to 0.1
and the crossover probability factor pc set to 0.8. The

learning factors c1 and c2 are set to 0.5, and the inertia
factor ω set to 0.8 for the PSO. In these three algorithms,
S11 and Gain for each individual are obtained from the
HFSS software simulation, and the corresponding fitness
value is generated via (8). When the maximum number
of iterations is reached, the dimension parameters corre-
sponding to the best fitness individual are put into the
HFSS software for simulation. Figures 4 and 5 compare
the results of S11 and the normalized Gain obtained from
the different algorithms. Tables 2 and 3 list the statis-
tical values, where Hybrid denotes the QOGWO-GPR,
and S̄11 the average S11.

Seen from the above figures and tables, the antenna
optimized by the hybrid QOGWO-GPR algorithm has
the best overall performance, and fully satisfies the
design requirements. The one by the QOGWO algorithm
has the second best overall performance, and the average

Fig. 4. Comparison of S11 curves from different algo-
rithms.

Fig. 5. Comparison of normalized Gain curves from
different algorithms.

Table 2: Statistical values of impedance bandwidths from
different algorithms
Algorithm Bandwidth S̄11

GA 107.56% (2 GHz-10.39 GHz) -14.67 dB
PSO 82.31% (2 GHz-8.42 GHz) -14.56 dB

QOGWO 113.84% (2 GHz-10.88 GHz) -12.77 dB
Hybrid 113.97% (2.06 GHz-10.95 GHz) -15.30 dB
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Table 3: Statistical values of gains from different algo-
rithms

Algorithm -3dB Gain Bandwidth
GA 6.69 GHz (2.03 GHz-8.72 GHz)
PSO 7.31 GHz (2 GHz-9.31 GHz)

QOGWO 7.45 GHz (2 GHz-9.45 GHz)
Hybrid 7.53GHz (2 GHz-9.53 GHz)

S11 is 2 dB higher than these by the GA and PSO algo-
rithms.

In this example, the time cost of the hybrid
QOGWO-GPR algorithm consists of three parts: gener-
ating the sample data, yielding the best-fitting GPR
model, and optimizing the antenna size parameters. It
takes a total of 7.47 hours. In the other three algorithms,
the time cost of the individual updating position is negli-
gible, and the time is mainly consumed by HFSS simu-
lation for yielding the fitness values. It takes a total of
25.93 hours. The hybrid QOGWO-GPR algorithm takes
about 28.8% of the time of the other three algorithms,
respectively.

B. Dual-band MIMO antenna for WLAN
B.1. Configuration of antenna

Figure 6 shows the configuration of the antenna [14].
It generates two separate resonant modes to cover 2.45
and 5 GHz WLAN bands. The middle layer is the dielec-
tric substrate chosen as FR4 (εr = 4.4, h = 0.8 mm).
The antenna consists of two radiating units, which are
the same and located symmetrically. The F-type antenna
with two branches resonates at low frequency and high
frequency, respectively. Two I-type floor branches and a
floor gap act as an isolator.

In the QOGWO-GPR algorithm, the performance
targets here are S11 and S21. The dimension parameters
determining S11 and S21 are listed in Table 4. They are
optimized by the QOGWO-GPR algorithm for broad-
ening the bandwidth of the antenna and improving its
isolation.

Table 4: Dimension parameters and their ranges of the
dual-band MIMO antenna

Parameters DP1 GL1 GL3
Ranges (mm) 17.37-21.23 13.86-16.94 0.5-0.9
Parameters LF T P GP2

Ranges (mm) 16.2-19.8 0.5-0.7 11.52-14.08

B.2. Training GPR prediction model
In the GPR model, S11 and S21 are the output

values, and the vector [DP1,GL1,GL3,GP2,LF,T P, f re]
is the input variable. For each dimension parameter,
three values are sampled uniformly within the range, and

(a) Top view

(b) Side view

Fig. 6. Configuration of the dual-band MIMO antenna
for WLAN (KD = 63 mm, CD = 28 mm, Wf = 1.4 mm,
L f = 18 mm, GP1 = 9 mm, Jg = 18.5 mm, Lg = 8.9 mm,
GL2 = 1.4 mm, GL4 = 5.9 mm, L = 15.1 mm).

729 sets are yielded. The frequencies are 2, 2.3, 2.45,
2.8, 4.4, 5, 5.3, and 5.9 GHz, so there are 5832 input
samples. Then, putting samples into the GPR model,
we optimize their hyperparameters by the QOGWO
algorithm, where N is set to 24 and Max iter set to
30. The GPR model simulation results show that the
Rational Quadratic kernel function(with hyperparame-
ters l = 4.79, α = -0.76 and σ2

f = 0.06) can achieve
the best training effect. Thus, it serves as the covariance
function in the GPR model. The RMSE changes with
iterations, as shown in Fig. 7.

Fig. 7. RMSE changes with iterations.

B.3. Simulation of QOGWO-GPR algorithm
In the QOGWO-GPR algorithm, one individual

denotes the vector [DP1,GL1,GL3,GP2,LF,T P]. N is set
to 30, and Max iter set to 50. The dimension parame-
ters and the ranges are the same as those in Table 4. For
achieving the multi-objectives optimization, weighting
S11 and S21 yields the fitness value as

fitness =
w1

Num

Num

∑
i=1

S11(i)
S11tol

+
w2

Num

Num

∑
i=1

S21(i)
S21tol

, (11)
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where Num is the number of frequency points. The
weight coefficients w1 and w2 are set to 0.5 each. S11tol
and S21tol are the tolerance values of two optimization
targets, taken as -10 dB and -15 dB, respectively. S11(i)
is the modified return loss at the ith frequency point
after pre-processing by (9). S21(i) is the modified isola-
tion between two ports at the ith frequency point after
normalization by

S21(i) =
{

−15,S21(i)<−15
S21(i),S21(i)≥−15. (12)

Finally, the QOGWO algorithm iterates until the
individual corresponding to the best fitness value (i.e.,
the optimal solution) is generated. The optimized param-
eters of the antenna are: DP1 = 21.23 mm, GL1 = 16.48
mm, GL3 = 0.5 mm, GP2 = 14.08 mm, LF = 16.2 mm,
and T P = 0.5 mm. The hybrid QOGWO-GPR algorithm
takes a total of 20.18 hours.

The values are input into HFSS simulation, and the
results are shown in Figs. 8 and 9. After optimization,
two operation frequency bands are 2.40 GHz – 2.50 GHz
and 4.36 GHz – 6.39 GHz, and the isolation of all oper-
ation frequency bands is less than -15 dB. In [14], the
two bandwiths at 2.45 and 5 GHz are 36.7% and 23.8%,
respectively. And these are 40.8% and 40.6%, respec-

Fig. 8. Comparison of S11 curves between Ref. [14] and
the hybrid algorithm.

Fig. 9. Comparison of S21 curves between Ref. [14] and
the hybrid algorithm.

Table 5: Comparison between Ref. [14] and the hybrid
algorithm

2.45GHz 5GHz
Ref. [14] 2.39 GHz-2.48 GHz 4.64 GHz-5.83 GHz
Hybrid 2.40 GHz-2.50 GHz 4.36 GHz-6.39 GHz

tively, in the hybrid QOGWO-GPR. Table 5 shows the
comparison between the Ref. [14] and the hybrid algo-
rithm.

V. CONCLUSION
In this paper, the hybrid QOGWO-GPR algorithm

is presented to improve the GWO algorithm in antenna
optimization. It is prone to global optimality, high preci-
sion for complex problems and fast convergence rate at
the later stage. It can also reduce the optimization time
of the antenna. We have given two examples to vali-
date the proposed algorithm in this work. At low time
cost, for the stepped ultrawideband monopole antenna,
the impedance bandwidth can reach 113.97% and the -3
dB gain bandwidth can reach 7.53 GHz; for the dual-
band MIMO antenna for WLAN, the impedance band-
widths can reach 40.8% and 40.6% at 2.45 and 5 GHz,
respectively, and the isolation of all operation frequency
bands is less than -15 dB.
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