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Abstract – Future linear accelerators require klystrons
with higher radio frequency (RF) to drive higher gradi-
ent accelerating structure. An x-band accelerator struc-
ture was used to accelerate electrons at the Shanghai Soft
X-ray Free Electron Laser Facility (SXFEL) in Shang-
hai Advanced Research Institute, Chinese Academy of
Sciences (SARI-CAS). A pulse transformer is a crucial
device in an RF system. This study presents a high-
voltage pulse transformer used for a 50 MW x-band
pulsed klystron in SXFEL. Typical specifications of the
pulse transformer are peak pulse voltage 420 kV, peak
pulse current 300 A, 50 Hz repetition rate and 1.5 µs flat-
top pulse width. Design and optimization of pulse trans-
former are achieved by using equivalent circuit analytic
methods and computational aided simulation. The rele-
vant experiments show that this pulse transformer can
meet the requirements of 50MW x-band klystron.

Index Terms – flat-top, klystron, pulse modulator, pulse
transformer, rise time.

I. INTRODUCTION
X-ray free electron lasers (XFEL) are regarded as

a new generation of advanced light sources. Shanghai
Soft X-ray Free Electron Laser Facility, which is the first
coherent x-ray light source in China, started user opera-
tion in 2023 and opened to scientists both from home and
abroad [1]. The RF system of SXFEL’s main accelera-
tor adopts s-band, c-band and x-band technology, includ-
ing five s-band RF units, fifteen c-band RF units and
two x-band RF units. The RF unit is mainly composed
of a klystron amplifier, a low-level RF (LLRF) system,
a pulse modulator and a pulse transformer [2]. An X-
band RF unit is used to achieve higher gradients (80
MV/m) and more compact footprints for SXFEL’s main
accelerator, which is driven by a pulsed 50MW x-band
klystron. The pulse transformer which provides cathode
voltage for the klystron connects the pulse modulator and
klystron. Generally, a pulse transformer realizes voltage
converting, dc isolation, matching impedances, polarity
inversion and power delivery from the primary side to the
secondary side. Figure 1 shows a typical schematic of a

pulse transformer circuit. The x-band RF unit requires a
high-power pulse transformer to drive the 50 MW x-band
klystron [3–7]. A pulse transformer is a crucial device
in an RF unit. The specifications of the high-voltage
pulse transformer are listed in Table 1. Table 2 shows the
performance of the x-band pulse transformers in other
research institutions [8].

In this study, a high-power pulse transformer is
developed. The design needs to guarantee the trans-
former with a fast leading and falling time, a mini-
mum of overshoot and flat-top ringing. The optimized
design method of electromagnetic devices like this pulse
transformer can depend on an equivalent circuit model
and computational aided simulation. The pulse trans-
former’s design procedure, with all the basic stages, is
given. Spice circuit simulation software (LTspice) and
finite element analysis software (Comsol) are used to
verify the design. Test data and waveforms are provided.
The results indicate that the high-power pulse trans-
former meets requirements. The pulse transformer has
been continuously operated for over two years without
any failures.

Fig. 1. A typical pulse transformer circuit. V is the source
of the ideal pulse, r is resistance of pulse source, Cd1 and
Cd2 are winding line distribution capacity, Cw is stray
capacitance between primary and secondary windings,
Lp and Ls are primary and secondary inductance, R is
load.
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Table 1: Specifications of the pulse transformer
Items Value

Peak output power 126 MW
Primary nominal voltage 22 kV

Primary current 5700 A
Secondary voltage 420 kV
Secondary current 300 A

Pulse flat-top 1.5 µs
Pulse overshoot ¡ 1%

Pulse repetition rate 50 Hz
FWHM 3.5 µ

Insulating material breakdown
field

10 kV/mm

Relative permittivity of
insulating oil

3

Relative permeability of core
material

3500

Table 2: Performance of the x-band pulse transformers in
other research institution

Items KEK SLAC CECT
Pulse voltage

(kV)
500 464 446

Pulse current
(A)

301 190 187

Repetition rate
(Hz)

200 120 10

Flat-top (µs) 0.5 1.5 1.5

II. ELECTRICAL AND MECHANICAL
DESIGN

The role and function of pulse transformer is to step-
up pulse voltage from 22 kV to 420 kV with small flat-
top drop, small overshoot and low oscillations. The trans-
former is of rectangular type core and is constructed with
cool-rolled silicon steel sheets. In this section, electron-
ical design and relevant geometrical parameters of the
pulse transformer are provided and discussed.

A. Electrical circuit
A high-voltage pulse transformer is designed for

x-band modulator and klystron. In this design, a fila-
ment heating power supply and a pump power supply
are required for the x-band klystron cathode, so the pulse
transformer adopts a scheme of four secondary wind-
ings. Figure 2 shows the practical schematic of the pulse
transformer in the linear modulator. In pulse transformer,
magnetic flux swings in one direction only, not fully uti-
lizing the core. To avoid flux saturation, core reset cir-
cuits named bias power supply (PS)PS are used. The
primary winding receives the output pulse waveform of
pulse modulator. The filament heating power supply and

pump power supply use two secondary windings sep-
arately. The secondary winding generates an induced
high-voltage pulsed waveform.

Fig. 2. Detailed circuit of pulse transformer application.

B. Ratio of pulse transformer
In this high-voltage pulse transformer, the secondary

peak pulse voltage is 420 kV and the maximum primary
peak pulse voltage is 25 kV, which is equal to half of
the charging power supply. The minimum ratio of pulse
transformer can be calculated as follows:

n =
VS

Vp
, (1)

where n is transformer ratio, VS is the secondary peak
pulse voltage, and Vp is the primary peak pulse voltage.
The ratio of the pulse transformer is selected as 1:19 in
consideration of suitable margins.

C. Coil Turns and core cross-sectional area
The primary winding turns, the secondary winding

turns, and the minimum cross-sectional area of the core
are determined by the following equations:

Np =
VP TP

Acore ∆B
(2)

NS = nNP (3)

Acore =
1

Np∆B
(VPTP) (4)

where NP and NS are the primary and secondary winding
turns, Tp is the pulse width at full width at half maxi-
mum (FWHM), ∆B is increment of magnetic induction
intensity, Acore is the minimum cross-sectional area of
the core to avoid saturation. The primary coil is designed
as two 5-turn windings in parallel, and the secondary
coil is designed as four 95-turn windings in parallel.
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Fig. 3. The mechanical design of the pulse transformer.

Fig. 4. 3D view of the pulse transformer structure.

The cross-sectional area of the core is designed as 112
cm2. The geometric shape of the core is almost rectan-
gular, except for the corners which are rounded. High-
quality cool-rolled silicon steel sheets are chosen as the
core’s material.

D. Mechanical design
In order to ensure sufficient insulation distance,

a wedge with an inverted trapezoidal cross section is
designed as the secondary winding. The core is fixed
to a ground plane covered with a special glass fiber
layer. The secondary winding is supported by a fiber-
glass braced structure which surrounds the core. Creep-
age and clearance distances are the main considerations
in the design. The transformer, together with the protec-
tive circuit and measuring circuit is placed in a metallic
tank holding electric insulating oil which serves both as
insulator and coolant. The primary winding is separated
from secondary by a gap of 46 mm in case of electric
spark due to insufficient insulation distance. In the trans-
former operation, heat is generated due to losses in wind-
ings caused by Joule heating and the core caused by hys-
teresis, eddy and anomalous effects. An eficient cooling
system is necessary in order to minimize the risk of tem-
perature rise. Figure 3 shows the mechanical design of
the pulse transformer and Fig. 4 shows the 3D view of
the pulse transformer structure.

III. MODEL ANALYSIS
A. Equivalent circuit of pulse transformer

In transformers, the time variation of the magnetic
flux passing through the secondary coil depends on the
current change of the primary coil [9–11]. The primary
input of a pulse transformer is a pulse waveform gen-
erated by a pulse modulator. In fact, due to a finite fre-
quency band of pulse transformers, output waveforms in
the secondary side have a finite rise time, an overshoot, a
flat-top droop and a backswing at fall time [12]. The prin-
ciple of the pulse transformer is the same as an ordinary
transformer. However, pulse transformer handles not a
simple sine wave but a pulse waveform with complex
spectrum. In the case of an ideal rectangular pulse, there
is no rise time, no overshoot, a completely flat top and
also no backswing.

The pulse transformer’s equivalent circuit model
including a pulse generator and a load is presented in
Fig. 5.

B. Rise time
Generally, in the equivalent circuit of Fig. 4, it is

possible to ignore Re, Cd and CL when analyzing the
leading edge [13–15]. Then, the equivalent circuit for
leading edge analysis can be given as shown in Fig. 6.
We can obtain the leading edge by solving differential
equation of second order circuit, the leading edge is cal-
culated as follows:

Tr = 2πy(σ)
√

LeCd (5)
where Le denotes the leakage inductance, Cddenotes
the distributed capacitance, RL denotes the load
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Fig. 5. Equivalent circuit model of the pulse trans-
former. RG means the impedance of power supply, Le
indicates the leakage inductance, Re means equivalent
impedance of eddy current loss, LP is the primary coil
inductance, Cd is stray capacitance between coils and
grand, CLmeans the load stray capacitance, and RL means
impedance at primary side.

impedance. σ = ZT
2RL

, ZT=
√

Le
Cd

and y(σ) is a monotoni-
cally increasing function of the damping coefficient σ . It
is obvious that leading edge depends on the pulse trans-
former distribution capacitance and leakage inductance.
It is evident that small overshoot leads to short pulse rise
time.

Fig. 6. Equivalent circuit for leading edge analysis.

In the pulse transformer design, leakage inductance
is of considerable importance due to high insulation
distance between the primary and secondary winding
resulting in flux leakage [16]. For simulation of pulse
transformer to evaluate leakage inductance, Comsol
Multiphysics, which is a simulation tool for solving elec-
tromagnetic problems, is used. Magnetostatic simulation
is used for the evaluation of leakage inductance of pulse
transformer [17]. The model is specified in Comsol Mul-
tiphysics, together with material parameters, boundary
conditions and other needed input values such as excita-
tion current and frequency. Figure 7 shows the magnetic
flux density of the designed pulse transformer. The leak-

age inductance simulation result is 1.78 µH. From lead-
ing edge calculation formula, it can be seen that the
larger leakage inductance, the slower leading edge, and
the smaller the distributed capacitance, leading to faster
leading edge and smaller overcharge.

Fig. 7. Magnetic flux density of the designed pulse trans-
former.

C. Flat-top droop
In the flattop of the pulse waveform, pulse trans-

former behaves as a low-frequency equipment, due to
the invariant voltage over time [18–19]. Thus, elements
that are involved in the high-frequency component for
Le, Cd , CL and Re can be ignored. Then, the equivalent
circuit of Fig. 4 may be rewritten as in Fig. 8. According
to Kirchhoff’s voltage law, the voltage on the load RL can
be expressed as follows:

UL = αE e−
t

Td (6)

α=
RL

RL+RPFN
(7)

Td=
LP(RL+RPFN)

RLRPFN
(8)

where E is the voltage of the pulse, α is the pulse trans-
former primary to secondary transfer factor. Td is the
time constant of the pulse transformer. The flat-top droop
is denoted by D, which is defined as follows:

D= 1− e−
t

Td (9)
From Equations (6) to (9), the primary inductance of

the pulse transformer is related to the top drop as follows:
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Fig. 8. Equivalent circuit for flat-top droop analysis.

D ≈ ln
(

1
1−D

)
=

t RL RPFN

LP (RL +RPFN)
. (10)

The relationship between the primary inductance
and the flat-top drop in the pulse transformer is shown
as Fig. 9.

Fig. 9. The relationship between primary inductance and
flat-top droop.

IV. RESULTS AND DISCUSSION
Figure 10 shows a picture of the high-voltage pulse

transformer. The pulse transformer was installed inside
a cylinder filled with electric insulating oil. A precise
pulsed current sensor (0.1 V/A) installed in the sec-
ondary windings is used to convert pulse current to volt-
age for current measurement. A high-voltage divider
(10850:1) close to the secondary side is used to measure
the pulse voltage. Figure 11 shows output waveforms of
pulse transformer. Table 3 summarizes the test param-

Fig. 10. Picture of the pulse transformer.

Fig. 11. Output waveform of the pulse transformer.

eters of the typical measured waveforms of the x-band
high-power pulse transformer.

This paper presents the design process of the x-band
klystron pulse transformer. Equivalent circuit modeling
was used to analysis the leading edge and the fiat-top
droop. It was indicated by relevant experimental data that
the pulse transformer satisfied the requirements of the x-
band 50 MW klystron.

Table 3: Test parameters of the waveform
Items Value

Pulse voltage 432.8 kV
Pulse current 301 A
Leading edge 0.77 µs
Falling edge 1.56 µs

Flat-top 1.59 µs
FWHM 3.99 µs
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