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Abstract ─ In this paper, opposition-based differential 

evolution and Meta-particle swarm optimization is 

applied to reconstruct three dimensional conducting 

scatterers. Rational Bezier surfaces are utilized to 

model the shape of the scatterers. The mathematical 

representation of this surfaces are expanded in terms of 

Bernstein polynomials. The unknown coefficients of 

these polynomials depend on a few control points in 

space. An optimization method is used to find the 

location of the control points such that a specific 

measure of the difference between radar cross section 

(RCS) of the reconstructed and the original target is 

minimized. Physical optics (PO) approximation is used 

to find the RCS of a reconstructed scatterer in each 

iteration of the proposed algorithm. Simulation results 

show that these algorithms are very stable in the 

presence of noise. 

 

Index Terms ─ Differential evolution, inverse scattering, 

particle swarm optimization, physical optics approximation, 

rational Bezier surfaces. 
 

I. INTRODUCTION 
Shape reconstruction of two and three dimensional 

conducting targets by using electromagnetic scattered 

field is a typical problem in inverse scattering and  

has many applications in radar target detection and 

identification and remote sensing. Several algorithms 

and approaches have been developed to deal with 

problem of inverse scattering such as level set schemes 

[1], linear sampling [2], time reversal [3]. Employing 

optimization methods to reconstruct the targets is another 

approach which have been widely used in recent years, 

mainly because of their simplicity of implementation 

[4]. Optimization methods are categorized into two 

main approaches of deterministic and stochastic methods. 

The main drawback of the deterministic methods is  

that they may trap in a local minimum. However, in 

stochastic algorithms, population of a random solution 

is used and therefore, better solutions help other 

members to emerge from local minima. Differential 

evolution (DE), particle swarm optimization (PSO), and 

genetic algorithm (GA) are the most popular schemes 

among stochastic algorithms. A comparative study of 

the performance of DE and PSO, to reconstrcut two 

dimensional conducting cases is reported in [4]. The 

performance of the genetic algorithm to reconstrcut two 

and three dimensional conducting scatterers has been 

reported in [5-6]. However, there is no report on the 

performance of DE and PSO for three dimensional 

conducting scatterers.  

The main purpose of this paper is to compare a 

variant of DE, known as opposition-based differntial 

evoloution (ODE) and a version of PSO known as 

Meta-PSO when applied to three dimensional problems. 

These two algorithms have a good peformance over 

traditional optimization methods [12-13]. In reconstruction 

of two and three dimensional scatterers, the shape of  

the scatterers could be parameterized in terms of some 

specific polynomials. In the inverse problem [6], the 

coefficients of these polynomials are optimized such 

that electromagnetic scattered fields of the reconstructed 

shape and the original shape approach each other.  

One of the few commonly used polynomials in this 

field are Bernstain polynomials [8]. In this paper, we 

also use Bernstein polynomials as the basis to expand 

the surface equation. The coefficients of this polynomial 

are extracted in the inverse problem using two 

approaches of ODE and Meta-PSO. 

In summary, the novelty of this paper is two folds: 

(i) in the previous paper DE and PSO methods are 

discussed and compared for reconstruction of two-
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dimensional objects, but in this paper, we analysize and 

compare those algorithms to deal with three-dimensional 

structures, (ii) in this comparison, we use more recent 

versions of DE and PSO methods, namely ODE and 

Meta-PSO. These newer approaches are more efficient 

compared with traditional ones that are discussed in the 

litreture. 

This paper is organized as follows. Section II 

presents the forward formulation. The inverse formulation 

is discussed in Section III. The two optimization 

algorithms are briefly reviewed in Section IV. Simulation 

results and concluding remarks are represented in 

Sections V and VI respectively.  

 

II. FORWARD FORMULATION 
The back scattered electromagnetic field from a 

large conducting scatterer can be expressed by physical 

optics approximation as follows [7]:  
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where   is the operating wavelength, 
0E  is the 

polarization of the incident field, k̂  is the wave vector, 

r  is the source point position vector, ds  is the surface 

differential element, n̂  is the surface normal vector at 

the source, 
0k  is the free space wave number and I  is 

the physical optics integral. In order to compute the PO 

integral, the surface geometry is modeled by rational 

Bezier patches. These patches are parametric and can 

be expressed in terms of Bernstein polynomials as 

follows [8]:  
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where 
3

ij
b R , = 0, ,i m , = 0, ,j n , are the 

Bezier patches control points, 
ij

w R , = 0, ,i m , 

= 0, ,j n , are the associated weights, the integers  

m and n are degrees of the surface, and u and v are  

the parameters that shape the surface. The Bernstein 

polynomial, ( )
m

i
B u  is expressed as:  
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Geometrical parameters of Bezier surfaces such  

as orthogonal and position vectors could be easily 

calculated in terms of Bernstein polynomials. In the 

literature, these surfaces are categorized into three 

groups of singly–curved, doubly–curved and plane 

patches. The PO integral over these surfaces could be 

simply evaluated by the stationary phase method and 

analytical techniques [9], [10] and [11].  

III. INVERSE FORMULATION 
The objective of the shape reconstruction process is 

to find the shape of the scatterer such that the difference 

between radar cross section of the reconstructed and the 

original shape is minimized. For this purpose, the shape 

of the scatterer is represented by Bernstein polynomials 

and the coefficients of these polynomials are calculated 

through optimization. More precisely, the coefficients 

of these polynomials are determined such that the cost 

function is minimized with respect to some specific 

control points. The cost function is defined as:  
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where 
true


  and 

rec


  are radar-cross sections of the 

original and the reconstructed scatterer, respectively. In 

this paper, opposition-based differential evolution and 

Meta-particle swarm optimization algorithm are used as 

the optimization techniques. 
 

A. Opposition-based differential evolution algorithm 

In the first step of this algorithm NP parameter 

vectors of D -dimension are created, that NP is the 

population of optimization algorithm and D is the 

number of unknown parameters. Also the opposite of 

this parameter vecors are produced as follows [12]:  

 , ,= , i j j j i jox a b x  (6) 

where the minimum and maximum of the thj  dimension 

of the parameter vector are ja  and jb . Then ,i jox  is 

replaced by ,i jx  If the cost function of ,i jox  is lower 

than ,i jx . Next, a mutant vector and a trial vector are 

created for each target as follows:  
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In these equations, G is the generation index,
1 2 3, ,r r r  are 

three mutually different integers that also differ from 

target index i, F is the mutuant constant that is taken to 

be 0.8, 
jh  is a random number in the interval [0,1], 

(0,1)H  is a crossover constant selected by the user, 

and l is a random integer [1,2,..., ]D . 

If the cost function of 1G

iu   is lesser than 1G

ix  , 

then 1G

ix   is changed by the trial vector. In the last step 

a random number between [0,1] is generated and if it is 

lower than the preselected jumping rate rJ  then ,

G

i jx  is 

compared with the opposite of it and the one with a 
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lower cost function is selected as the member of the 

current population.  
 

B. Opposition-based Meta particle swarm algorithm 

For simplicity, first, ordinary PSO is explained and 

then it is generalized to Meta PSO. If a problem has D 

unknown parameters, a group of 
1

NP  parameter vectors 

i
x , 

1
= 1, ....,i NP , each with dimension D are 

produced. Each vector has an initial random velocity to 

search the solution space. This velocity is updated in 

each iteration of the optimization algorithm as: 
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where w is the inertial weight that scale the old velocity, 

1t
pbest


 is the previous best solution of each member 

before iteration t, and 
1t

gbest


 is the previous best 

solution of all members before iteration t. Moreover, 
1

c  

and 
2

c  are the two preselected numbers that are usually 

chosen to be 0.49, 1.49, or 2 [13]. With this velocity, 

the position of the members are updated in each 

iteration as:  

 
1= . t t tx x v  (12) 

If the current member has a lower cost function 

than 
1t

pbest


, then, 
1t

pbest


 is replaced by this member. 

The same procedure is used to update 
1t

gbest


.  

In Meta-PSO, several groups are randomly 

generated. The velocity of one particle from each group 

is changed as follows [9]:  
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where 
1t

sbest


 is the best previous location of all 

members of all groups. 
1

c , 
2

c , and 
3

c  are three 

preselected numbers that are selected to be 2 here. In 

this problem, NS groups, where each group has 
1

NP  

members are considered. For the purpose of comparing 

Meta-PSO with ODE, we choose 
1

NS NP  as equal  

to the population of ODE. Similarly to the previous 

algorithm a random number between [0,1] is generated 

and if it is lower than the preselected jumping rate 
rJ , 

then ,

G

i jx  is compared with the opposite of it and the 

one with a lower cost function is selected as the 

member of the current population.  

 

V. NUMERICAL RESULTS 
For the first example, the reconstruction of a 

perfectly conducting conical curved sector with the 

height of 1 m, the bottom radius of 1m, and the top 

radius of 0.5 m is presented. In the reconstruction 

procedure, the degree of the surface and weight 

coefficients are selected a-priori. In addition, we assume 

that the surface curvature is negative. This cone is 

modeled by 3x2 control points. 

The parameters of the Meta-PSO and the 

opposition-based differential evolution are listed in 

Table 1 and Table 2. The original cone is compared 

with the ODE and the Meta-PSO reconstructed cones  

in Fig. 1 (a) and Fig. 1 (b) respectively. A comparison 

between the cost function of these two algorithms  

at various iterations are depicted in Fig. 1 (c). The 

scattered filed is evaluated at 45  points that are located 

at = 60 ,75 ,90 ,105 ,120     and at frequencies of 

0.4,0.8,1.2GHz . As shown, ODE converges better  

than Meta-PSO. The RCS of the original and the 

reconstructed cones for 45 120    and 45  are 

presented in Fig. 1 (d). A very good agreement is 

observed between the RCS of the original cone and the 

reconstructed one. Also for comparison purpose, the 

RCS simulated with the moment method is depectied in 

the same figure. The good agrement between the full 

wave method and physical optic method can be seen. 

To measure the accuracy of the reconstruction procedure, 

the shape error function is defined as [6]:  
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where = 2vnetN mn m n   is the number of elements in 

the vector net and ,i jp  is the Euclidean norm given 

by: 

 2 2 2

, , , ,= . i j i j i j i jp x y z  (15) 

0,1

,i jp  and 
1,0

,i jp  are related to the control points as: 
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The cost function in this problem is defined on 

RCS. Because the RCS does not change with the 

displacement of the shape, we obtain a transformation 

of the object in the reconstruction. Finally, we define 

the reconstruction error in a form that does not change 

with the displacement of the shape.  

 

Table 1: Opposition-based differential evolution 

parameters 

Jumping Rate Mutant Constant Crossover Rate 

0.5 0.8 0.5 

 

Table 2: Meta-particle swarm optimization parameters 

Jumping Rate w c1 c2 c3 

0.5 0.9-0.4 2 2 2 
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Fig. 1. (a) Comparison between original and reconstructed 

target by ODE, (b) comparison between original and 

reconstructed target by Meta-PSO, (c) cost function of 

ODE and Meta-PSO, and (d) comparison between RCS 

of reconstructed and original shape at = 1.2 .f GHZ  

 

In the simulation, the average reconstruction errors 

for five simulation of ODE and Meta-PSO are 0.16 and 

0.07 respectively. The stability of the algorithm is tested 

in the presence of an additive noise of [6]: 

 , ,

2

, , , ,
( ) ( )
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where 
, ,  

  is the RCS of the original shape, NL is the 

noise level, rand is a random number between [0,1], 

and is the root mean square of the original RCS. The 

reconstruction error with an additive noise level of 0.1 

is 0.1764 for ODE and 0.1532 for Meta-PSO. Therefore, 

given that the reconstruction method is stable in the 

presence of additive noise in the radar cross-section, it 

can be concluded that if we use the measurement data 

for reconstruction, this method is also usable. 

For the second example, the reconstruction of 

perfectly conducting 90º–cylindrical sector, with the 

height and radius of 1m is considered. Similarly, Fig. 2 

shows the target and the simulation results. The average 

shape error obtained by ODE is 0.2174 and by Met-PSO 

is 0.2138. If the number of optimization steps was 

increased, the radar cross section of the reconstructed 

body would be closer to the original object. 

 

 
 (a) 

 (b) 

 
 (c) 
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 (d) 

 

Fig. 2. (a) Comparison between original and reconstructed 

target by ODE, (b) comparison between original and 

reconstructed target by Meta-PSO, (c) cost function of 

ODE and Meta-PSO, and (d) comparison between RCS 

of reconstructed and original shape at = 1.2 .f GHZ  

 

VI. CONCLUSION 
ODE and Meta-PSO algorithms are compared for 

shape reconstruction of three dimensional conducting 

objectst. In both cases, a good agreement between the 

reconstructed and the original shape is observed. Bezier 

surfaces are utilized to model the target and PO 

approximation is used to compute the scattered field. In 

addition, the stability of this algorithm in the presence 

of noise is investigated. Finally from the results we find 

that Meta-PSO is better than ODE for reconstruction of 

the target. 

 

ACKNOWLEDGMENT 
The authors would like to thank M. Rabbani and 

M. Khosravi for their contributions. 

 

REFERENCES 
[1] P. Kosmas and C. M. Rappaport, “An inverse 

scattering method based on contour deformation 

by meand of a level set method using frequency 

hopping technique,” IEEE Trans. Antennas 

Propagat., vol. 51, no. 5, pp. 1100-1113, May 

2003. 

[2] L. Crocco, I. Catapano, L. Di Donato, and T. 

Isernia, “The linear sampling method as a way  

to quantitative inverse scattering,” IEEE Trans. 

Antennas Propagat., vol. 60, no. 4, pp. 1844-

1853, Apr. 2012. 

[3] P. Kosmas and C. M. Rappaport, “Time reversal 

with the fdtd method for microwave breast cancer 

detection,” IEEE Transactions on Microwave 

Theory and Techniques, vol. 53, no. 7, pp. 2317- 

2323, July 2005. 

[4] I. T. Rekanos, “Shape reconstruction of a 

perfectly conducting scatterer using differential 

evolution and particle swarm optimization,” IEEE 

Trans. Geosci. Remote Sens., vol. 46, no. 7, pp. 

1967-1974, July 2008. 

[5] A. Qing, C. K. Lee, and L. Jen, “Electromagnetic 

inverse scattering of two-dimensional perfectly 

conducting objects by real-coded genetic 

algorithm,” Geoscience and Remote Sensing, 

IEEE Transactions on, vol. 39, no. 3, pp. 665-676, 

Mar. 2001. 

[6] A. Saeedfar and K. Barkeshli, “Shape reconstruction 

of three-dimensional conducting curved plates 

using physical optics, nurbs modeling, and genetic 

algorithm,” IEEE Trans. Antennas Propagat., vol. 

54, no. 9, pp. 2497-2507, Sept. 2006. 

[7] F. S. de Adana and O. Gutierrez, Practical 

Applications of Asymptotic Techniques in Electro-

magnetics. Artech House Electromagnetic Analysis 

Series, Artech House, 2010. 

[8] G. E. Farin, Curves and Surfaces for Computer-

Aided Geometric Aesign: A Practical Guide. 

Number v. 1 in Computer Science and Scientific 

Computing, Academic Press, 1997. 

[9] J. Perez and M. F. Catedra, “Application of 

physical optics to the rcs computation of bodies 

modeled with nurbs surfaces,” IEEE Trans. 

Antennas Propagat., vol. 42, no. 10, pp. 1404-

1411, Oct. 1994. 

[10] O. M. Conde, J. Perez, and M. P. Catedra, 

“Stationary phase method application for the 

analysis of radiation of complex 3-D conducting 

structures,” IEEE Trans. Antennas Propag., vol. 

49, no. 5, pp. 724-731, May 2001. 

[11] F. S. de Adana, I. G. Diego, O. G. Blanco, P. 

Lozano, and M. F. Catedra, “Method based on 

physical optics for the computation of the radar 

cross section including diffraction and double 

effects of metallic and absorbing bodies modeled 

with parametric surfaces,” IEEE Trans. Antennas 

Propagat., vol. 52, no. 12, pp. 3295-3303, Dec. 

2004. 

[12] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. 

Salama, “Opposition-based differential evolution,” 

IEEE Transactions on Evolutionary Computation, 

vol. 12, no. 1, pp. 64-79, Feb. 2008. 

[13] S. Selleri, M. Mussetta, P. Pirinoli, R. E. Zich, 

and L. Matekovits, “Differentiated meta-pso 

methods for array optimization,” Antennas and 

Propagation, IEEE Transactions on, vol. 56, no. 

1, pp. 67-75, Jan. 2008. 

 

 

 

 

MADDAHALI, TAVAKOLI, DEHMOLLAIAN: A COMPARATIVE STUDY OF OPPOSITION-BASED DIFFERENTIAL EVOLUTION 824



Mojtaba Maddah-ali was born   

in Isfahan, Iran, on December 5, 

1987. He received B.Sc. degree in 

Electrical Engineering from Isfahan 

University of Technology, Isfahan, 

Iran, in 2009, the M.Sc. degrees 

from the Amirkabir University of 

Technology (Tehran Polytechnic), 

Tehran, Iran, in Electrical Engineering, in, 2013.  

Currently, he is a Research Assistant with the 

Amirkabir University of Technology. His main interest 

lies in the electromagnetic wave propagation, scattering 

and inverse scattering in electromagnetic problems. 

 

Ahad Tavakoli was born in Tehran, 

Iran, on March 8, 1959. He received 

the B.S. and M.S. degrees from the 

University of Kansas, Lawrence, 

and the Ph.D. degree from the 

University of Michigan, Ann Arbor, 

all in Electrical Engineering, in 

1982, 1984, and 1991, respectively.  

He is currently a Professor in the Department of 

Electrical Engineering at Amirkabir University of 

Technology. His research interests include EMC, 

scattering of electromagnetic waves and microstrip 

antennas. 

 

Mojtaba Dehmollaian was born  

in Iran in 1978. He received the 

B.S. and M.S. degrees in Electrical 

Engineering from the University of 

Tehran, Tehran, Iran, in 2000 and 

2002, respectively. He received the 

M.S. degree in Applied Mathematics 

and Ph.D. degree in Electrical 

Engineering from the University of Michigan, Ann 

Arbor, in 2007.  

Currently, he is an Assistant Professor with the 

Department of Electrical and Computer Engineering, 

University of Tehran. His research interests are applied 

electromagnetics, radar remote sensing, electromagnetic 

wave propagation and scattering. 

ACES JOURNAL, Vol. 32, No. 9, September 2017825


	JOURNAL
	ISSN 1054-4887

	page 2 of frontal always insert.pdf
	FRONTAL_MAY 2017
	JOURNAL
	ISSN 1054-4887

	Always replace second page with addition of Abouzahra.pdf
	02_ACES_Journal_20160117_SL_AZE headers.pdf
	I. INTRODUCTION
	II. FORMULATION
	III. STABALITY ANALYSIS OF FOURTH ORDER HIE-FDTD METHOD
	IV. NUMERICAL DISPERSION ANALYSIS
	V. NUMERICAL RESULTS
	CPU Time (s)
	Second-order
	14.40
	FDTD
	Fourth-order
	FDTD
	Second-order
	HIE-FDTD
	One-step-leapfrog
	Fourth-order HIE-FDTD
	VI. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	03_ACES_Journal_20160903_SL_AZE header.pdf
	I. INTRODUCTION
	II. LOSSY-ANI ALGORITHM
	III. NUMERICAL RESULT
	IV. CONCLUSION
	REFERENCES

	new page going forward to insert.pdf
	ALL OF THEM WITH HEADERS & NUMBERS and front.pdf
	06_ACES_Journal_20150819_SL_AZE header.pdf
	I. INTRODUCTION
	II. TRIANGULAR CLOAKS DESIGNING PROCEDURE
	III. HOMOGENEOUS CLOCK OF ARBITRARY SHAPE
	IV. CONCLUSION
	REFERENCES



	fix list and insert.pdf
	JOURNAL
	ISSN 1054-4887




	FRONTAL_MAY 2017 page on only special.pdf
	JOURNAL
	ISSN 1054-4887


	FRONTAL_MAY 2017new first page.pdf
	JOURNAL
	ISSN 1054-4887



	page 2 of frontal always insert.pdf
	FRONTAL_MAY 2017
	JOURNAL
	ISSN 1054-4887

	Always replace second page with addition of Abouzahra.pdf
	02_ACES_Journal_20160117_SL_AZE headers.pdf
	I. INTRODUCTION
	II. FORMULATION
	III. STABALITY ANALYSIS OF FOURTH ORDER HIE-FDTD METHOD
	IV. NUMERICAL DISPERSION ANALYSIS
	V. NUMERICAL RESULTS
	CPU Time (s)
	Second-order
	14.40
	FDTD
	Fourth-order
	FDTD
	Second-order
	HIE-FDTD
	One-step-leapfrog
	Fourth-order HIE-FDTD
	VI. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	03_ACES_Journal_20160903_SL_AZE header.pdf
	I. INTRODUCTION
	II. LOSSY-ANI ALGORITHM
	III. NUMERICAL RESULT
	IV. CONCLUSION
	REFERENCES

	new page going forward to insert.pdf
	ALL OF THEM WITH HEADERS & NUMBERS and front.pdf
	06_ACES_Journal_20150819_SL_AZE header.pdf
	I. INTRODUCTION
	II. TRIANGULAR CLOAKS DESIGNING PROCEDURE
	III. HOMOGENEOUS CLOCK OF ARBITRARY SHAPE
	IV. CONCLUSION
	REFERENCES



	fix list and insert.pdf
	JOURNAL
	ISSN 1054-4887




	FRONTAL_MAY 2017 page on only special.pdf
	JOURNAL
	ISSN 1054-4887


	FRONTAL_MAY 2017new first page.pdf
	JOURNAL
	ISSN 1054-4887






