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Abstract — In this paper, a periodic weakly conditionally
stable -pseudospectral time domain (WCS-PSTD)
method is presented to simulate photonic crystal in
Terahertz frequency range. The time step size in this
method is only determined by the mesh length Az and
the spatial discretization along the z direction only needs
two cells per minimum wavelength. The 3D formulas of
the method are presented and the time stability condition
of the method is demonstrated. Numerical results show
that this method is more efficient than the periodic finite
difference time domain (FDTD) method in terms of
computer memory and computation time.

Index Terms — Finite difference time domain,
pseudospectral method, time stability condition, weakly
conditionally stable.

L. INTRODUCTION

Terahertz (THz) wave has significant transmission
loss in free space, so the design and fabrication of
controlling device for THz frequency radiation are
imperative. Photonic crystal as a novel artificial material
has photonic band gaps characteristic [1, 2]. It can be
used to control the transmission of THz wave. Therefore,
study on the photonic crystal has important effect on the
development of Terahertz technique.

The finite-difference time-domain (FDTD) method
is one of the most effective tools for the analysis of the
photonic crystal [3, 4]. However, because the cross-
section of the photonic crystal is circular, staircase
approximation is used to model the curved surface. To
decrease the approximation error, the cells’ size must be
very small compared with the wavelength. These fine
cells reduce the time step size in the FDTD method, and
hence, the FDTD method is computationally expensive.
In addition, in the THz frequency region, the longitudinal
direction of the photonic crystal is electrically large
structure in most cases. Applying the FDTD method to
simulate electrically large object, to decrease the
dispersion error, a large number of cells (typically 10-20
cells per wavelength) are required. This stringent
requirement severely limits the length of the photonic
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crystal solvable and increases the computation time
inevitably.

Recently, a new weakly conditionally stable-
pseudospectral time domain (WCS-PSTD) method [5]
which is based on the hybrid implicit explicit difference
technique [6-9] and the pseudospectral scheme [10-12]
is presented. In this method, the time step size is not
confined by fine cells and is extremely useful for
problems with very fine structures along one or two
directions. Meanwhile, this method allows a coarse
spatial discretization that only needs two cells per
minimum wavelength. Thus, for the simulation of the
object which has fine and electrically large structures
simultaneously, the WCS-PSTD algorithm is more
efficient than the FDTD method in terms of computer
memory and computation time. However, for the
simulation of the photonic crystal which has periodic
structures, the WCS-PSTD method needs to cope with
the periodic boundary.

To solve this problem, this paper presents a periodic
WCS-PSTD method which introduces the periodic
boundary in the conventional WCS-PSTD method [5]. It
also combines the hybrid implicit explicit difference
technique with the pseudospectral scheme. The time step
size in this method is not confined by fine cells and the
space discretization along electrically large direction
only needs two cells per minimum wavelength. The 3D
formulas of the periodic WCS-PSTD method are
presented, and final updating equations are given. The
time stability condition and space discretization
limitation of the method are discussed. When this
method is applied to simulate photonic crystal, high
computational efficiency is obtained and less computer
memory is required, which is demonstrated through
numerical examples by comparing with the periodic
FDTD method.

By using the periodic WCS-PSTD method to
simulate the photonic crystal, some useful conclusions
are obtained. The simulation result shows that the
photonic crystal has obvious band gap characteristic. The
frequency and bandwidth of the band gap have relation
with the permittivity of the photonic crystal. As the
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increase of the permittivity, the frequency of the band
gap decreases and the relative bandwidth of the band gap
becomes wider. Besides, the smaller the radius and
period length of the photonic crystal are, the higher the
frequency range of the band gap. The relative bandwidth
of the band gap reaches maximum value when the ratio
between the diameter of the photonic crystal and the
period length is 0.6.

II. FORMULATIONS

Figure 1 shows a schematic view of the photonic
crystal under study. The cross-section of the photonic
crystal is circular and needs to use very small cells to
staircase approximation, as shown in Fig. 2. The length
(L) of the photonic crystal is much larger than the
wavelength in the THz frequency region. Typically, it is
20-30 times the wavelength. So, the photonic crystal is a
complicated structure which has fine size (along the x
and y direction) and electrically large size (along the z
direction) simultaneously.

.
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Fig. 1. Schematic view of photonic crystal.

)

R

gz

y

x ]
L= =

Ax1

Fig. 2. The staircase approximation of the photonic
crystal’s cross-section.

In the FDTD method, the small cell sizes Axl and
Ayl will confine the time step size Af and result in a
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large number of computation time. To remove the
confine of the fine space increment on the time step size,
the periodic WCS-PSTD method uses a hybrid implicit
explicit difference technique to replace the explicit
difference along the x and y directions. The 3D formulas
for the periodic WCS-PSTD method are as follows:
<First procedure>

LBy O(HI4HT) oM

s (1.1)
At 20y oz
n+l/2 _
Ey = Ey s (1.2)
En+1/2 _E" 0 H:HI/Z +H"
£— L= Gl - ) (1.3)
At 20x
H:+l/2 — H:, (14)
HYP g O(EI +EL) gEm”
u— L= - (15)
At 20x oz
gV _ g 0 E;Hl/2 + E:
Z Z — ( - ). (1.6)
At 20y
<Second procedure>
E:+1 — E:H/Z’ (21)
En’+l _E}:l+l/2 aH,Hl/z a(HZnH/Z +Hzn+1)
f————=——~ . 2
At 0z 20x
E _En+]/2 o H:H/2 +H:+l
& z z —_ ( E ) , (23)
At 20y
ntl _gpnt2 gE™ 9 E"+1/2 + Em
H; H; _oB ( z z )’ (2.4)
At oz 20y
n+l _ n+l1/2
Hy = Hy > (2.5)
Hr g 0 E','”/Z + £
,Ll z z - _ ( Y y ) , (2.6)
At 20x

where n and Ar are the index and size of time step.
The calculation for one discrete time step is
performed using two procedures in the periodic WCS-
PSTD method. The first procedure is based on Egs. (1.1)-
(1.6), and the second procedure is based on Egs. (2.1)-
(2.6). It can be seen from these equations that for the
spatial derivatives Ox and dy, a hybrid implicit explicit
difference technique is used; thus, the equations (1.1),
(1.3), (1.5), (1.6), (2.2)-(2.4) and (2.6) can’t be
calculated directly, because they all include the unknown
components defined at the same time step. For example,
updating of E”** component, as shown in Eq. (1.1),

needs the unknown H!*> components at the same time

step; thus the E”*> component has to be updated
implicitly. By substituting Eq. (1.6) into Eq. (1.1), the
equation for E"*> component is given as:
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Because the periodic WCS-PSTD method applies
the hybrid implicit explicit difference technique to the
derivatives Ox and dy, its time step size will have no

(€)

& 0Oz

relation with the spatial increments Ax and Ay. This

will be demonstrated in the next section.

In the FDTD method, to decrease the dispersion
error resulted from the spatial finite difference, spatial
discretization should satisfy the condition that 10-20
cells per wavelength are required. This stringent
requirement causes a large number of cells along the z
direction in the simulation of the photonic crystal,
because the longitudinal direction of the photonic crystal
is often larger than the wavelength. It not only severely
increases the memory requirement, but also increases the
computation time.

To overcome the limit of the wavelength on the
space discretization Az, the periodic WCS-PSTD method
uses a Fourier transform algorithm instead of finite
difference to represent the spatial derivative Oz. This
allows a coarse spatial discretization along z direction
that only two nodes per minimum wavelength are
required (the demonstration will be shown in the next
section). For other spatial derivatives ox and dy, italso
applies centered second-order finite differences as that in
the standard FDTD method. Thus, the equation for
E""? component can be obtained as follows:

(1+27))EM" (i+1/2, j, k)=, EXY (i +1/2, j+ Lk)
0 E (i+1/2, - 1k)

=(1-27))E! (i+1/2, j,k)+7,E! (i+1/2, j+1,k)
+0,E! (i+1/2,j-1,k)

BT 2, 20 H: (12,720

L T
o Wik S (i+12.).6) ]},

“4)
where, j=~—1, 7, =Ar’/4guAy*, Ay is the spatial
increment along y direction; i, j, and k denote the indices
of spatial increments respectively along X, y, and z

. . —1 .
directions; I and I represent the Fourier transforms
and inverse Fourier transforms which were described in
detail in references [13].

After E™'? component is obtained by using
equation (4), component H'"? is explicitly updated
straightforward as follows:
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H' (i+1/2,j+1/2,k) = H! (i+1/2,j +1/2,k)
Ar | EF (412, j+Lk)-E"YV (i+1/2, ), k)
2phy | +E! (i+1)2, j+ LK) =B (i+1/2,5.k) |
(5)

By following the same procedure, the equation for E”*?
component can be obtained as follows:
(1422, EX (i, jok +1/2) =0, EF 2 (i +1, i,k +1/2)
0, EM (-1, j,k+1/2)
=(1-22,)E" (i, j,k+1/2)+ 7, E! (i+1, j,k +1/2)
+0,E" (i-1, j,k+1/2)

Atro . Vo )
+E[Hy (i+1/2,).k)-H’ (1—1/2,],k)]
e
 2euAx
AC k[ B (=12, .4 ]}
2&1Ax LT
where, 7, = At”/4guAx®, Ax is the spatial increment

along x direction.
Because the photonic crystal has periodic structure
along the x direction, the computation of E"?

(6)

SRS B (i+1/2, k) ]}

+

component at the periodic boundary needs to be
modified as follows:

E"" (i, jk+1/2)

—, [ EF (2, .k +1/2) = B (1, j. ke +1/2) ]

+1, [ B (1, ok +1/2) = EX (1-1, .k +1/2) ]
=E!(i,]j,k+1/2)

+7, [E; (2,7,k+1/2) - E" (1, ),k +1/2)]

0, [ B2 (1 )k +1/2) = E (1 -1,j,k+1/2)] (7

At . , .
[ H (12, (112, .K)

- 2“; R {]‘kZS[E:“/Z (1+1/2, j,k)]}
et
+ 252& 3! {}sz[Ej*'/z (1-1/2, j,k)]} ,

here, i=1 and / denote the meshes at the periodic
boundary respectively.

The computations for other components H™*,
E, E™', H!"' and H!"' can be obtained by following
the same procedure and will not be discussed in detail.

It should be noted that, in contrast to the standard
Yee’s algorithm, the periodic WCS-PSTD method does

not require a spatially staggered grid along the z
direction, because Fourier transforms operation is



global. It means that the field components E. and H,,
E, and H: are located at the same nodes in the periodic
WCS-PSTD method, as shown in Fig. 3.
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Fig. 3. Spatial grid of the field components in the
periodic WCS-PSTD method.

III. STABILITY AND NUMERICAL
DISPERSION ANALYSIS
The relations between field components of Egs. (1)
and (2) can be represented in a matrix form as follows:
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1 0 0 0 -aD, aD, /2]
0o 1 0 0 0 0
0 0 1 0 aD/2 0
FI=l 0 0 0 1 o o
0 0 bDJ/2 0 1 0
bD,/2 0 0 0 0 1
10 0 0 0 0 ]
0 1 0 0 0 aD./2
(] 0 0 1 aD//2 0 0
0 -pbD, bDJ2 1 0 0 |
0 0 0 0 1 0
10 bD./2 0 o o0 1 |
10 0 o 0 0
0 1 0 aD. 0 —aD,/2
(D]~ 0 0 1 -aD,/2 0 0
o o0 -pD/2 1 0 0 [
0 0 0 (U
0 -bD. /2 0 o 0o 1 |

U'=[E B E H H H'].a=Me, b=Au,

[E]U”H/z = [F ]U " (3 D, =0/6m (m=x,y,z ) represents the first derivative
[clu™ =[D]U™", (9)  operator with respect to .
where By substituting Eq. (9) into Eq. (8), it obtains:
1 0 0 0 0 -aD,)2 (ENCls - [ENPIET [Fl)u =0, (10)
0 1 0 0 0 0 ¢ indicates growth factor. By applying the forward
0 0 1 0 -aD,/2 0 Fourier transforms to both sides of equation (10), it
[E]= : , ) b ik V
0 0 0 1 0 0 obtains equation (11), where, X = abD, , L= a (j Z) R
bD. 0 -bD,/2 0 1 0 i 4 4
|-bD, /2 00 0 0 L y 2B S=(1-x)(1-7), T:abD;Dy:
~ o -
-1 -T(¢+1) 0 0 ab, —%(gn)
2T -aD.T  aD 1+Y
 — -1 0 —aD — £ —
(1-7) ¢ <ty 2 (§+1—Yj
D -
0 0 ca1 Lrpayy Rl 0
, 2 2 Ur=0. (1)
_ D - -
bD.T(1+Y) D, , §+(1+X) col 2T (1-Y+2Z) —-abD.D.Y
S 2 (1-X) S S
b¢ D, 0 _sz"(g“H) -T(¢+1)  ¢-1 0
-bD
v (g +1) e 0 0 0 £l

2 2
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For a nontrivial solution of (11), the determinant of
the coefficient matrix in (11) should be zero. It can be

obtained:
(1} (C-1)7 -4ze-v(¢+1))
~X(+1) + XY (& +1)
By solving equation (12), the growth factor ¢ is

0. (12)

obtained:
¢ =1, (13)
N++N?-R?
§2,3 = R ) (14)

where, R=1-X-Y+ XY, N=1+X+Y+2Z-XY.
According to the stability condition during field
advancement, the module of growth factor ¢ cannot be

larger than 1. In equation (14), the relation |§ s = 1| can
be obtained when the condition R* > N is satisfied. D,
and D, represent the first derivative operator with

respect to x and y. They are approximated by centered
second-order finite differences. So it has the relations

D, =2jsin(k,Ax/2)/Ax and D, =2;sin(k,Ap/2)/Ay
(6],

R°>N*=1+7Z>0. (15)
Because the maximum value of k. is 2—”, it has:
2Az
2
ab(z—”j <4< (16)
2Az crw

where, ¢ = l/ «/8/1 is the speed of light in the medium.

It can be seen from Eq. (16) that the maximum time
step size in the periodic WCS-PSTD method is only
determined by the cell size Az. This is very useful when
the object of analysis has fine scale dimensions along the

x and y directions.

By substituting the expression ¢ = e’ into equation

(12), the dispersion relation for the periodic WCS-PSTD
method can be obtained as follows:

2 2 2 2.2

] A e A

sin’ (w ! j _ y

= s 17
2 1+ rxz + ry2 + ’}2 ryz a7

2
s

where, 7. =(cArtk.[2)", . = (cAtsin (k,Ax/2)/Ax)

ry:(cAtsin(kyAy/2)/Ay)2. It can be seen from

equation (17) that the numerical dispersion error of the
periodic WCS-PSTD method has no relation with the
spatial cell size Az. It is only decided by the cell sizes
Ax, Ay, and the time step size Ar. As a result, the
spatial cell size Az is not confined by the wavelength.

It only needs to satisfy the Nyquist sampling theorem
that only two nodes per minimum wavelength are
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required along the z direction.

It concludes from above analysis that in the periodic
WCS-PSTD method, the time step size At is only
determined by the spatial increment Az, and spatial

increment Az only needs to satisfy with the condition:
Az <A, /2. This will be very useful in the

simulation of the photonic crystal, because the photonic
crystal has very fine scale along x and y directions and is
electrically large along z direction. For solving this
problem the periodic WCS-PSTD method is more
efficient than the periodic FDTD method in terms of
computer memory and computation time, which will be
demonstrated in next section.

IV. SIMULATION AND ANALYSIS

To demonstrate the accuracy and efficiency of the
periodic WCS-PSTD method, the photonic crystal
shown in Fig. 1 is simulated. The radius (r) and length
(L) of the photonic crystal are 20 um and 3000 um,
respectively. The period length of the photonic crystal is
T=100 um. The material of the photonic crystal is silicon
with dielectric constant & =11.7. A uniform plane wave

polarized along the x direction is normally incident on
the photonic crystal. The propagation direction of the
wave is along the y direction. The time dependence of
the excitation function is as follows:
dr(t—t,)’
E ()= eXp[—t—zo], (18)
1

where, £, and #, are constants, and both equal to 1 x 10"'%s.

In such a case, the highest frequency of interest is 2 THz and
the minimum wavelength of the source is about 150 um.

The periodic WCS-PSTD method is used to
simulate the transmitted field at the back of the photonic
crystal. For comparison, the results calculated by the
periodic FDTD method are also shown. Because the
structure has circular cross-section, it is discretized by
using staircase approximation, as shown in Fig. 2. To
guarantee the computational accuracy, the circle is
discretized by using 20 x 20 cells, so the cell sizes Axl
and Ayl are both equal to 2 um, corresponding to 1/75

of the minimum wavelength. In other computation
domain, Ax2 and Ay2 are 3 umand 15 um, respectively.

Along the z direction, for the periodic FDTD method,
considering the limit of the wavelength on the space
discretization, the space increment Az is selected to be
15 um, corresponding to 1/10 of the minimum
wavelength. While for the periodic WCS-PSTD method,
space increment Az can be increased to 75 um,
corresponding to 1/2 of the minimum wavelength. To cut
off the outer boundary, periodic boundary condition is
applied along the x direction and convolutional perfectly
matched layer (CPML) that are ten cells thick are applied
along the y and z directions. Thus, for the periodic FDTD



and periodic WCS-PSTD methods, the total mesh
numbers are 40x110x240 and 40x110x80, respectively.
The time step size in the periodic FDTD method is:

1Y 1Y 1Y
At=1/ ¢ + + =4.69x107ps,
J[leo*j [2x106j [15x106j P

which is the maximum time step size to ensure the
numerical stability. In the periodic WCS-PSTD method,
the time step size that is only determined by cell size Az
2x75x10°°
cr
is 34 times as that of the periodic FDTD method.
Figure 4 depicts the transmitted field £ calculated

is selected to be At = =159x10~ ps, which

by using the periodic FDTD method and the periodic
WCS-PSTD method. It can be seen from this figure that
the results of these two methods agree very well with
each other, which shows the periodic WCS-PSTD
method has high computational accuracy.

1-5. . -
= 1 FDTD
= o5 | ——— WCS-FDTD
03070005 0015 0025 0.035
time(ns)

Fig. 4. The transmitted field E_ calculated by using

periodic FDTD method and periodic WCS-PSTD
method.

The computation time and memory requirement of
the simulation above are summarized in Table 1. It can
be seen from this table that both the memory requirement
and computation time of the periodic WCS-PSTD
method are reduced significantly compared with those of
the periodic FDTD method. Because large spatial cell
and large time step size are used, the memory
requirement of the periodic WCS-PSTD method is
reduced by 60%, and its computation time is almost 1/30
of that of the periodic FDTD method.

Table 1: Simulation time and memory requirement for
the periodic FDTD method and periodic WCS-PSTD
method

Az At Time Memory
(um)| (ps) |(minute)Requirement (Mb)
FDTD 15 10.0046 | 320 311.73
method
WCS-PSTD 75 1 0.159 12 115.45
method

The transmission coefficient (Tr) of the photonic
crystal calculated by using the periodic FDTD method
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and the periodic WCS-PSTD method are presented in
Fig. 5. The computation formula of Tr is as follows:

T =20log, |E,/E.|: (19)
here, E_ denotes the transmitted field £ _ calculated by
using the periodic FDTD method and the periodic WCS-

PSTD method; E, is the magnitude of the incident wave.

It can be seen from Fig. 5 that in the frequency range
from 1.5 THz to 1.8 THz, the transmission coefficient Tr
is below to -10 dB. This is a direct evidence of that the
photonic crystal has obvious band gap in this frequency
range. The relative bandwidth of the band gap is 18.18%.
The distribution of the electric field E_ at frequency

1.7 THz is shown in Fig. 6. From this figure, it can be
seen that the incident wave is reflected completely and
little wave penetrates the photonic crystal at this
frequency.

5 _—

2 0dB

.5 "’r

2 Ot e
=] \ <
o \ad
O 9| [—=— FDTD ",
2 %  WCS-PSTD| ‘%

ol

B A0 e e
B 04 08 12 16 20
g Frequency(THz)

=

Fig. 5. The transmission coefficient of the photonic
crystal calculated by using the periodic FDTD method
and the periodic WCS-PSTD method.

the longtitudinal direction of the photonic crytal

Fig. 6. The distribution of the electric field E  at
frequency 1.7 THz.

It should be noted that in Fig. 5 there is a slightly
divergence between the results of the periodic FDTD
method and the periodic WCS-PSTD method at 1.7 THz.
The difference between these two methods in time
domain is too small to be neglected, as shown in Fig. 4,
but in frequency domain, it is enlarged by the resonance
effect of the photonic crystal at 1.7 THz. The divergence
between these two methods is brought about by the
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splitting-error in the periodic WCS-PSTD method. The
periodic WCS-PSTD method applies the hybrid implicit
explicit difference technique. This technique will bring a
splitting error which is proportional to the time step size.
The detailed discussion about the splitting error of the
hybrid implicit explicit difference technique has been
presented in [14]. So, compared with the periodic FDTD
method, the accuracy of the WCS-PSTD is reduced
slightly. However, this reduction of the accuracy doesn’t
affect the periodic WCS-PSTD method to get correct
results. The periodic WCS-PSTD method can be used in
the analysis which doesn’t require the accuracy strictly.

Because the periodic WCS-PSTD method is more
efficient than the periodic FDTD method in terms of
computer memory and computational time, it is used to
analyze the band gap characteristic of the photonic
crystal in detail.

Firstly, the relation between the frequency range of
band gap and the radius of the photonic crystal is
analyzed. The length and period of the photonic crystal
is 3000 um and 100 um. The radius of the photonic
crystal increases from 5 um to 40 um. The variations of
the frequency range of the band gap with respect to
radius are shown in Table 2. In this table, Rt which is
equal to 2xr/T represents the ratio between the

diameter of the photonic crystal and the period length. It
can be seen from this table that as the increase of the
radius, the band gap of the photonic crystal moves to a
lower frequency range. The relative bandwidth of the
band gap has maximum value equal to 29.85% when the
radius of the photonic crystal is 30 um.

Table 2: Variations of the frequency range of the band
gap with respect to the radius

r (um) Rt Frequency Relative
Range (THz) Bandwidth

10 0.2 2.70-2.80 3.64%
15 0.3 1.97-2.06 4.47%
20 0.4 1.50-1.80 18.18%
25 0.5 1.30-1.75 29.51%
30 0.6 1.14-1.54 29.85%
35 0.7 1.03-1.33 25.42%
40 0.8 0.97-1.18 19.53%

When it keeps the radius r=20 um unchanged and
increases the period length of the photonic crystal from
50 um to 200 um, the band gap of the photonic crystal
also moves to a lower frequency range, as shown in
Table 3. The relative bandwidth of the band gap has
maximum value equal to 30.12% when period length of
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the photonic crystal is 66.66 um.

From Table 2 and 3, we can see that the relative
bandwidth of the band gap is mainly determined by the
ratio between the diameter and the period length. It
reaches its maximum value when the ratio is 0.6, no
matter what the radius and period length are.

Table 3: Variations of the frequency range of the band
gap with respect to the period length

T (um) Rt Frequency Relative
Range (THz) Bandwidth
50 0.8 1.94-2.37 19.95%
60 0.7 1.78-2.32 26.34%
06.66 0.6 1.72-2.33 30.12%
80 0.5 1.62-2.19 29.92%
100 0.4 1.50-1.80 18.18%
133 0.3 1.48-1.61 4.85%
200 0.2 1.34-1.37 3.97%

In addition, the frequency range and relative
bandwidth of the band gap also have relation with the
dielectric constant of the photonic crystal. The variations
of the frequency range and bandwidth with respect to
relative dielectric constant & are shown in Table 4.

Here, the geometry of the photonic crystal, including the
period length, radius and length, are unchanged. It can
be seen from this table that as the increase of the
dielectric constant, the frequency of the band gap
decreases and the relative bandwidth becomes wider.

However, if the polarization of the incident wave is
along the z direction, namely, the longitudinal direction
of the photonic crystal, the band gap characteristic will
become unobvious. The transmission coefficient of the
photonic crystal impinged by a plane wave polarized
along the z direction is shown in Fig. 7. In this figure, the
transmission coefficient is above -10 dB in all the
frequency range, which means that some incident wave
passes through the photonic crystal and the band gap of
the photonic crystal disappears.

Table 4: Variations of the frequency range of the band
gap with respect to relative dielectric constant

g, Frequency Range (THz) | Relative Bandwidth
3 2.64-2.67 1.13%
5 2.23-2.67 7.34%
7 1.94-2.16 10.73%
9 1.74-2.01 14.40%
11 1.60-1.90 17.14%
13 1.48-1.83 21.25%
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Fig. 7. The transmission coefficient of the photonic
crystal impinged by a plane wave polarized along the z
direction.

To validate this, the distribution of the electric field
E_ at the frequency 1.7 THz is depicted in Fig. 8. It can

be seen from this figure, that at this case most of the
incident wave penetrate the photonic crystal obviously.

Vim
2.66
123 r’
0.553{ 42
0.184
0

. the longtitudinal direction of the photonic crystal

Fig. 8. The distribution of the electric field E. at
frequency 1.7 THz.

It concludes from the analysis above that when the
photonic crystal is impinged by a plane wave polarized
along the radial direction, the photonic crystal exhibits
obvious band gap characteristic; the smaller the radius
and period length of the photonic crystal are, the higher
the frequency range of the band gap. The relative
bandwidth of the band gap reaches maximum value
when the ratio between the diameter of the photonic
crystal and the period length is 0.6. Besides, the
frequency and bandwidth of the band gap have relation
with the permittivity. As the increase of the permittivity,
the frequency of the band gap decreases and the relative
bandwidth of the band gap becomes wider.

VI. CONCLUSION
This paper introduces a periodic WCS-PSTD
method which is based on the hybrid implicit explicit
difference technique and pseudospectral scheme to
simulate the photonic crystal. The maximum time step
size in this method is only determined by cell size Az
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and the spatial discretization along z direction only needs
two cells per wavelength. When this method is applied
to simulate the photonic crystal, high computational
efficiency is obtained and less computer memory is
required, which is demonstrated through numerical
examples by comparing with the periodic FDTD
method. This method not only can be used in the
simulation of photonic crystal, but also be useful in other
electromagnetic problems where both fine and
electrically large structures are used.
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