
Electromagnetic Device Optimization: The Forking of Already

Parallelized Threads on Graphics Processing Units

S. Ratnajeevan H. Hoole 1, Sivamayam Sivasuthan 1, Victor U. Karthik 1,

Arunasalam Rahunanthan 2, Ravi S. Thyagarajan 3, and Paramsothy Jayakumar 3

1 Department of Electrical and Computer Engineering

Michigan State University, East Lansing, MI 48824, USA

srhhoole@gmail.com, sivasuth@msu.edu, uthayaku@msu.edu

2 Department of Mathematics and Computer Science

Edinboro University, Edinboro, PA 16444, USA.

rahunanthana@gmail.com

3 U.S. Army Tank Automotive Research, Development & Engineering Center, Warren, MI 48397, USA

ravi.s.thyagarajan.civ@mail.mil, paramsothy.jayakumar.civ@mail.mil

Abstract ─ In light of the new capability to fork an

already parallelized kernel on a GPU, this paper

shows how the use of the parallelization capabilities

of a PC’s Graphics Processing Unit (GPU) makes

the finite element design of coupled problems (such

as the electroheat shape optimization problems we

work with) realistic and practicable in terms of

computational time.

Index Terms - Finite elements, GPU computing,

inverse problems, parallelization.

I. INTRODUCTION: INVERSE

PROBLEMS
In contrast to the forward problem (Fig. 1) that

we normally solve, inverse problems are more

realistic in device design going from the bottom to

the top of that figure, in such design tasks as, say,

compute the size and other descriptions of a motor

that can produce so much torque. Figure 2 shows

the design cycle for an inverse problem as a

repeating cycle of forward problems. In the first

step, the design parameter set ℎ̅ is randomly

selected (or estimated by a subject expert), and

thereupon we generate the parameter based mesh,

get the finite element solution, measure the object

value (often conveniently defined as a least square

difference between design objects desired and those

computed) and check whether it is minimum or not.

If this is minimum, we terminate the loop;

otherwise we change the design parameters and do

the same procedure again.

This procedure repeats until the object value

goes to its minimum. This solution process

however, is computationally intensive. To address

this problem, parallelization on GPU threads has

been proposed [1-2]. Each finite element solution in

its matrix solution part is computationally intensive

[3,4] and GPU parallelization significantly reduces

solution time. But in genetic algorithm optimization

[5,6], several copies of the matrix are held on the

GPU and the corresponding solutions attempted.

This runs into the memory limits of GPUs, newly at

12 GB from around the time of the initial

submission of this paper [7].

In this paper therefore, we look more deeply at

using the GPU to do the optimization in parallel.

We examine memory limits and use the recently

revived element-by-element finite element method

for speedy finite element matrix solutions on the

GPU [8,9] to address memory concerns and exploit

such matrix solution speedups to obtain a speedup

UNCLASSIFIED: Distribution Statement A. Approved for public release.

1054-4887 © 2014 ACES

Submitted On: March 13, 2014
Accepted On: September 6, 2014

677ACES JOURNAL, Vol. 29, No. 9, SEPTEMBER 2014

of 28 for genetic algorithm based coupled field

optimization. Where we are allowed to fork only

one computational kernel and not allowed to fork

that kernel into further parallelizable processes on a

GPU, we delve into important considerations for

choosing which one kernel to fork.

Fig. 1. The typical forward problem.

Fig. 2. The design cycle for inverse problem.

II. GPU COMPUTATION: MEMORY

STUDY
In the CUDA programming model (see Fig. 3),

a kernel is executed by a grid of thread blocks. A

thread block is a batch of threads that can cooperate

sharing data through shared memory and

synchronizing their execution. Threads from

different blocks operate independently.

Figure 4 shows the anatomy of the CUDA

C/C++ program. Serial code executes on a CPU

thread. Parallel code executes in many concurrent

GPU threads across multiple parallel processing

elements. The main limit with GPU computing is

memory [7]. We worked with the 4 GB NVIDIA

system, the best available till recently. Despite this

limit, we have shown that for a single matrix

equation, sizes up to 32768 x 37268 can be

broached (for the first order triangular finite

element magnetostatic and temperature field

devices we were working with [10]) without

running into the limit [1]. This is quite a large

problem and that is why seminal papers on GPU

computation for finite elements do not mention this

limit [2]-simply because they did not run into the

limit. In parallelized genetic algorithm based

optimization in inverse problems however [5,6],

several finite element solutions have to be

performed simultaneously. Memory limits

therefore are critical. In the following sections we

examine these limits with a view to establishing the

practicality of parallelizing finite element

optimization on the GPU for coupled field

problems where the memory load is doubled by the

two-stage finite element problem and exploded

when several two-stage kernels are launched on

parallel GPU threads in genetic algorithm

optimization, because gradient methods of

optimization run into problems of mesh

discontinuity and programming complexities in

keeping track of shape changes [10].

Fig. 3. The CUDA programming model.

Fig. 4. Anatomy of the CUDA C/C++ program.

Device description: dimensions, currents, material, etc.

Analysis technique: closed form, finite elements, etc.

Device performance: force, inductance, electric stress

678 ACES JOURNAL, Vol. 29, No. 9, SEPTEMBER 2014

The test problem we finally take up is that of

reshaping an originally square conductor which is

heated by eddy currents (Fig. 5). The object is to

have a constant temperature along a straight line.

This paper being on parallelizing already forked

kernels, the actual description of the geometry and

analysis by first order triangular finite elements for

the first stage problem from eddy current magnetics

and the second stage by thermal analysis of the

Poissonian temperature system (also with first order

triangles), is left to references [10, 11]. In [11], the

shape is optimized by gradient techniques, and [10]

elaborates on the details of genetic algorithm

optimization which are not taken up here but rather

are left to [10].

Fig. 5. The electro-thermal shape optimization by

two-stage finite element analysis.

In this section, we investigate the standard

sparse and profile matrix storage methods [3,4], in-

order to reduce the matrix storage requirement and

to use those storage scheme representations to get

the solution.

We began this study looking at the largest

single precision matrix sizes we can store on a

single GPU. Besides full matrix storage and even

symmetric matrix storage, which we do not

consider because of the memory need running into

order n2 for an nxn matrix, we looked particularly at

profile storage and sparse storage [3,4]. Our

findings are shown in Table 1. Clearly, neither

sparse storage nor profile storage runs even close to

the 4 GB memory limit (superseded today by the 12

GB limit [7]) at the practically large matrix size of

10,000. However, they could if we were launching

several threads, each with a matrix solution, as

required with the GPU implementation of the

genetic algorithm [5,6,8,10]. Therefore, we will

confine ourselves to the sparse storage scheme, the

better of the storage schemes as seen from Table 1.

Table 1: Storage demand with matrix size for

different storage schemes

Matrix

Size

Storage (MB)

Regular Profile Sparse

100 0.0400 0.0044 0.0065

400 0.0686 0.0413 0.0169

900 3.1070 0.1271 0.0363

1,600 9.7961 0.2870 0.0703

2,500 23.8895 0.5438 0.1137

6,000 137.4435 1.5428 0.2734

8,000 244.2932 2.6614 0.3594

10,000 381.66046 4.0821 0.4502

A further study was done to compare the

performance of different methods with sparse

storage. As seen from Table 1 for sparse storage,

the memory requirement is approximately 0.45

MB, even for the unlikely large matrix size of

10,000 x 10,000. For the two-stage problem

therefore, we still need only 0.45 MB since the eddy

current and thermal problems are solved in

sequence, because the thermal solution needs the

thermal Specific Absorption Rate (SAR) from the

eddy current solution. With 4 GB available,

8000+parallel threads are allowed, corresponding

to a genetic algorithm population of 8000+. Now

that 8 GB is available to us [7], memory we

conclude is not an issue, except for very large

problems or when full storage is used.

III. ELEMENT-BY-ELEMENT FINITE

ELEMENTS
In the mid-1980s, the then new IBM PC 286

had a memory limit of 612 KB, which could not

hold even a trivial matrix in memory. To overcome

this, researchers used the Jacobi method of matrix

solution (also known as Gauss-Seidel by power

systems engineers) in a modified form [3,4].

Practically, the Element-by-Element Finite

Element Method (EbEFEM) does not need a large

amount of memory because it never stores or forms

the global matrix except the diagonal. Generally,

iterative algorithms such as the Jaccobi method,

Conjugate Gradient method, etc., are used to get the

solution of the problem [3]. During the 1980s,

researchers could not represent big problems in

HOOLE, ET.AL.: ELECTROMAGNETIC DEVICE OPTIMIZATION: THE FORKING OF ALREADY PARALLELIZED THREADS 679

very limited memory so they used the EbEFEM

method with an iterative method to represent very

large problems [12]. Mahinthakumar and Hoole

[13] used parallel implementation of the Jacobi

conjugate gradients algorithm for field problems. In

order to reduce the cost of memory, they used

EbEFEM with the Jacobi Conjugate Gradients

algorithm (JEBECG), which is very fast [13].

Figure 6 shows the sequential execution time

against matrix size under for Incomplete Cholesky

Conjugate Gradients (ICCG), Jacobi Conjugate

Gradients (JCG) and Jacobi EbECG (JEbECG) on

a SEQUENT SYMMETRY parallel computer for

matrices from magnetic product design using first

order traingles. Until matrix size 750, the ICCG

method dominates; between 750 and 2500, JCG

dominates rather than the other two methods; and

for matrix size greater than 2500, JEbECG

dominates.

Fig. 6. Sequential execution times for ICCG, ICG,

and JEBECG methods for matrix sizes.

Figure 7 for parallel implementation on the

same shared memory machine using all its 4

processors shows similar findings. One processor

does book-keeping, and with the 3 remaining

processors working in parallel, the speedup is 2 or

less (and not 3 because of communication

bottlenecks). It is critical to note that more

processors are not available for faster computation;

nor to parallelize the genetic algorithm, and in one

such genetic algorithm thread to parallelize matrix

solution.

For matrix size under 500, ICCG dominates;

for matrix size between 500 and 1800, JCG

dominates; and for matrix size greater than 1800,

JEbECG dominates. For simple problems,

conjugate gradient schemes with sparsity

computation or renumbering are suitable. It is not

widely recognized that although renumbering: a) is

necessary only for reducing storage in ICCG and

Cholesky schemes of solution, and b) speeds up

Cholesky by reducing fill-in, we are able to show

that in ICCG it also unintentionally speeds up

computations because the approximate Cholesky

preconditioner gets to be more accurate [3]. For

large problems, the element-by-element scheme is

very profitable because it does not need matrix

formation computation and storage capacity for the

global matrix.

Fig. 7. Parallel execution times for ICCG, ICG, and

JEBECG methods for matrix sizes.

IV. ELEMENT-BY-ELEMENT GAUSS-

SEIDEL METHOD ON THE GPU
First ,we will describe the element-by-element

scheme [8-13] which we are going to exploit for

parallelizing already parallelized kernels. In

solving the finite element matrix equation:

 [𝑃]{𝜙} = {𝑄}, (1)

far more powerful methods exist like the

Incomplete Cholesky-preconditioned Conjugate

Gradients algorithm (ICCG) than the older Gauss-

Seidel iterations. The Gauss-Seidel iterations,

commonly used by power engineers, are an

improvement on the even older Gauss iterations. In

Gauss-Seidel in each iteration m+1 we use the latest

available values of the unknowns ϕ, using equation

i of (1) to compute ϕi, treating only ϕi as the

unknown and all the other variables as known and

given by their latest values, some from the present

iteration m+1 and the rest from the previous

iteration m:

𝜙𝑖
𝑚+1 =

1

𝑃𝑖𝑖
(𝑄𝑖 − ∑ 𝑃𝑖𝑘𝜙𝑘

𝑚+1 −𝑖−1
𝑘=1 ∑ 𝑃𝑖𝑘𝜙𝑘

𝑚𝑛
𝑘=𝑖+1), (2)

680 ACES JOURNAL, Vol. 29, No. 9, SEPTEMBER 2014

with obvious modifications for i=1 and i=n. In this

algorithm, 𝜙i−1 must be computed before 𝜙i. Here

at iteration m+1, computing ϕi in the order i=1 to

n, ϕ is at values of iteration m+1 up to the (i-1)th

component of {𝜙} and at the value of the previous

iteration m for values after i. The original Gauss

iterations (improved by Gauss-Seidel) uses the old

iteration m’s values for computing all ϕi in iteration

m+1 according to:

 𝜙𝑖
𝑚+1 =

1

𝑃𝑖𝑖
(𝑄𝑖 − ∑ 𝑃𝑖𝑘𝜙𝑘

𝑚 −𝑖−1
𝑘=1 ∑ 𝑃𝑖𝑘𝜙𝑘

𝑚𝑛
𝑘=𝑖+1). (3)

This is inefficient in the context of sequential

computations. But in this case of parallelization, if

we can resort to this conventionally inefficient

method, we need not form the matrix [P]. If [D] is

the matrix [P] with all off diagonal elements

eliminated, then the Gauss iterations in this

modified form gives:

 [𝐷]{𝜙}𝑚+1 = 𝑄 − [𝑃 − 𝐷]{𝜙}𝑚. (4)

Thus, without forming [P], the operations of the

right hand side of (3) can be effected by taking each

first order triangular finite element in turn,

computing its local 3x3 Dirichlet matrix [𝑃]𝐿 and

using that because,

 [𝑃] = ∑ [𝑃]𝐿
𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 . (5)

So as each [P]L is formed, the three values of

{ϕ}m may be taken and subtracted as in the right

hand side of (3) or (4) as justified by (5). Only the

diagonal elements of [P] are stored so as to be able

to divide by Pii = Di as required in (3) and (4)

quickly. Figure 8 shows the speedup of the element-

by-element Gauss iterations. The speedup keeps

increasing, seemingly endlessly, as matrix size goes

up.

Fig. 8. Speedup for element-by-element Gauss

iterations with matrix size.

For comparison we also parallelized on the

GPU the ICCG algorithm with matrix storage-

Incomplete Cholesky preconditioning requires [P].

From the results (Fig. 9), it is seen that the speedup

is much lower than by element-by-element Gauss

iterations, and saturates with matrix size because of

the increased communications in forming and

dealing with the matrix that is stored. But these

figures are much faster than the speedup from 6 to

90-something reported by Kiss, et al. [7],

presumably because of programming efficiency.

Fig. 9. Incomplete Cholesky conjugate gradients

algorithm: matrix size vs. CPU time/GPU time.

V. NEW DEVELOPMENT IN CUDA
Thus far, parallelization in CUDA has not

allowed parallelism within parallelism. Although it

is allowed in multiprocessor machines, it was not

very useful in finite element analysis, because

shared memory machines with 4, 8, 16 or rarely 32

processors did not have spare processors to devote

to parallel threads branching off from an already

parallelized thread. (Supercomputers with more

processors are not considered in this discussion

because they are not readily available).

But CUDA 5.0 recently introduced support for

forking into branches an already parallelized

stream. This feature is a major breakthrough of the

CUDA programming paradigm because CUDA

allows many threads to be supported. This in turn

allows a kernel to be launched and synchronized

with new grids directly from the GPU using

CUDA’s standard<<< >>>syntax. A broad subset

of the CUDA runtime API is now available on the

device, allowing launch, synchronization, streams,

events, and more. CUDA Dynamic Parallelism is

available only on SM 3.5 architecture GPUs [14].

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10

Sp
ee

d
-u

p

Matrix Size x 10000

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000

Sp
ee

d
 -

u
p

Matrix Size

HOOLE, ET.AL.: ELECTROMAGNETIC DEVICE OPTIMIZATION: THE FORKING OF ALREADY PARALLELIZED THREADS 681

Since SM3.5 still has not come to PCs, we

merely stick here to the single forking approach in

determining what part of a kernel on a forked thread

is to be further forked. In our work, we use the

genetic algorithm where the object function

corresponding to every member h̅ of a population

has to be computed many times to find the

minimum. The many members h̅ form the genetic

search space. Since h̅ consists of dimensions and

materials of a particular design being examined for

its goodness [15], for those dimensions a mesh is

constructed, the finite element problem solved and

the object function evaluated. The object function

itself is computed from a finite element solution

involving a matrix equation. Thus, we may treat the

object function computation as a kernel and launch

it on multiple threads, each for a different member

of the population. Then, within that thread, as

things are now on a PC, we can parallelize the

matrix equation solution at a speedup of 147 and

more by ICCG (Fig. 9) and even more by Gauss

(Fig. 8). Alternatively, we may do the object

function evaluation for each member of the

population in sequence and in that process

parallelize the matrix computations. Let the

population number be n. Say the object function

evaluation for each member of the population takes

t0 + tm in time where tm is the time for the matrix

solution and t0 the time for other operations.

Therefore, if we parallelize the operations for

different members of the population, evaluating

time for all object functions corresponding to the

entire population would still be, neglecting

coordination time,

 𝑡 = 𝑡𝑜 + 𝑡𝑚 , (6)

since these are done simultaneously. Here, we

assume that the work for each member of the

population being done in parallel, the time for

combining results and other communications is

negligible.

On the other hand, if we parallelized the matrix

computation, the evaluation of the object function

has to be in sequence since we cannot have forking

from a parallelized kernel. The total time would

then be the number of members in the population

multiplied by the time for computing the object

function for each member of the population:

 𝑡 = 𝑛 (𝑡0 +
𝑡𝑚

147
). (7)

Here, we have assumed that the speedup of 147

we have obtained for matrix solution by ICCG (Fig.

9) for matrix size upward of 10,000 would be

achievable. A decision on which of the processes is

to be parallelized would depend on considerations

like this. However, we have not seen such

considerations in the literature. On this basis, we

found it better with a population size of 512 we

were dealing with [10] to parallelize the population

evaluation. The results are in Fig. 10, where the

speedup saturates around 28 because of

communication issues as the population rises.

Fig. 10. Speedup: GA optimization GPU time/CPU

time with population size.

VI. CONCLUSIONS
GPU parallelization is far superior to using

multiprocessor machines because unlimited threads

can launch computational kernels in parallel. While

multiprocessor machines can fork a thread already

running in parallel, they lack the processors that can

be allocated. Although GPU cards till now did not

allow a forked process to be further parallelized,

this is being addressed by new architectures, such

as the SM 3.5 architecture GPU [14]. For the vast

majority of PCs with a GPU card but with dynamic

parallelism not available, we have presented the

methodology for deciding which one of the

processes should be implemented in parallel to

obtain the best speedup.

In GPU computing, the memory of the

NVIDIA GPU is limited and this affects

optimization work rather than the direct problem,

because of the need to keep several copies of the

matrix of coefficients in each genetic algorithm

thread. The sparse storage scheme is the most

efficient way to represent the matrix for finite

element optimization. With it, only very large

problems will find memory an obstacle, and for that

class of problems, the element-by-element method

0

5

10

15

20

25

30

40 140 240 340 440 540

R
at

io
 G

P
U

/
C

P
U

 T
im

e

Population Size

682 ACES JOURNAL, Vol. 29, No. 9, SEPTEMBER 2014

can be used.

If we use element-by-element FEM, practically

unlimited size of problems can be solved without

storing any matrix. GPU computation for finite

element optimization by the genetic algorithm

affords significant speedup. Element-by-element

GPU matrix solution has even better speedup

without saturating.

ACKNOWLEDGEMENTS
This work was funded in part by the US Army’s

Tank, Automotive Research, Development and

Engineering Center (TARDEC), under contract

number W911NF-11-D-0001. This paper has been

approved by the US Army’s Tank, Automotive

Research, Development and Engineering Center

(TARDEC) with the statement: “UNCLASSIFIED:

Distribution Statement A. Approved for public

release.”

REFERENCES

[1] S. Sivasuthan, V. U. Karthik, and S. R. H. Hoole,

“CUDA memory limitation in finite element

optimization to reconstruct cracks,” pp. 1967-1974

in D. E. Chimenti, L. J. Bond, and D. O. Thompson

(eds.), 40th Annual Review of Progress in

Quantitative Nondestructive Evaluation, AIP

Conference Proceedings 1581, American Institute

of Physics, Melville, NY, 2014.

[2] C. Cecka, A. J. Lew, and E. Darve, “Assembly of

finite element methods on graphics processors,”

IJNME, vol. 85, no. 5, pp. 640-669, 2011.

[3] S. R. H. Hoole, “Computer aided analysis and

design of electromagnetic devices,” Elsevier, NY,

1989.

[4] D. R. Kincaid, J. R. Respess, D. M. Young, and R.

G. Grimes, “Algorithm 586: ITPACK 2C: a

FORTRAN package for solving large sparse linear

systems by adaptive accelerated iterative methods,”

ACM Trans. Math. Software, vol. 8, no. 3, pp. 302-

322, 1982.

[5] M. L. Wong and T. T. Wong, “Implementation of

parallel genetic algorithms on graphics processing

units,” pp. 197-216 in M. Gen, D. Green, O. Katai,

B. McKay, A. Namatame, R. A. Sarkar, and B. T.

Zhang (eds.), Intelligent and Evolutionary Systems,

Book Series: Studies in Computationl Intelligence,

vol. 187, Springer, 2009.

[6] D. Robilliard, V. Marion-Poty, and C. Fonlupt,

“Genetic programming on graphics processing

units,” Genetic Programming and Evolvable

Machines, vol. 10, no. 4, pp. 447-471, 2009.

[7] http://www.newegg.com/Product/Product.aspx?Ite

m=N82E16814133494, Downloaded July 1, 2014.

[8] S. Sivasuthan, V. U. Karthik, A. Rahunanthan, P.

Jayakumar, R. Thyagarajan, L. Udpa, and S. R. H.

Hoole, “GPU computation: why element by element

conjugate gradients?,” Sixteenth Biennial IEEE

Conference on Electromagnetic Field Computation,

Annecy France, May 25-28, 2014.

[9] I. Kiss, S. Gyimothy, Z. Badics, and J. Pavo,

“Parallel realization of element-by-element FEM

technique by CUDA,” IEEE Trans. Magnetics, vol.

48, no. 2, pp. 507-510, 2012.

[10] V. U. Karthik, S. Sivasuthan, A. Rahunanthan, R. S.

Thiyagarajan, P. Jeyakumar, L. Udpa, and S. R. H.

Hoole, “Faster, more accurate parallelized inversion

for shape optimization in electroheat problems on a

graphics processing unit (GPU) with the real-coded

genetic algorithm,” ECE Dept., Michigan State

University, available from authors, (also COMPEL-

Paper under advanced stage of review).

[11] T. Pham, S. Ratnajeevan, and H. Hoole,

“Unconstrained optimization of coupled magneto-

thermal problems,” IEEE Trans. Magnetics, vol. 31,

no. 3, pp. 1988-1991, 1994.

[12] J. T. Hughes, I. Levit, and J. Winget, “An element-

by-element solution algorithm for problems of

structural and solid mechanics,” Comp. Meth. in

App. Mech. & Eng., vol. 36, no. 2, pp. 241-254,

1983.

[13] G. Mahinthakumar and S. R. H. Hoole, “A

parallelized element by element jacobi conjugate

gradients algorithm for field problems and a

comparison with other schemes,” Int. J. App.

Electromag. in Matl., vol. 1, no. 1, pp. 15-28, 1990.

[14] http://docs.nvidia.com/cuda/cuda-toolkit-release-

notes/index.html.

[15] E. R. Laithwaite, “The goodness of a machine,”

Electron. & Power, vol. 11, no. 3, pp. 101-103,

1965.

S. Ratnajeevan H. Hoole is a

Professor of Electrical and

Computer Engineering at Michigan

State University. He has previously

served as Member of the University

Grants Commission of Sri Lanka

where with six others he regulated

the administration of all 15

Universities in that country. He also briefly was Vice

Chancellor, University of Jaffna. A Fellow of the IEEE,

he holds a Ph.D. degree from Carnegie Mellon

University and a higher doctorate, the D.Sc. (Eng.)

degree, from London. Besides Engineering, he has

contributed much to the learned literature in the

humanities and social sciences.

HOOLE, ET.AL.: ELECTROMAGNETIC DEVICE OPTIMIZATION: THE FORKING OF ALREADY PARALLELIZED THREADS 683

Sivamayam Sivasuthan was born

in Sri Lanka, and received his B.Sc.

degree First Class Hons. in

Computer Science from the

University of Jaffna. He has been

reading for a doctoral degree in

Electrical and Computer

Engineering at Michigan State

University since January 2012. His thesis focuses on

exploiting graphics processing units to parallelize finite

element optimization.

Victor U. Karthik was born in Sri

Lanka, and received his B.Sc. Hons

in Electrical and Electronics

Engineering from the University of

Peradeniya, Sri Lanka. He has been

reading for a doctoral degree in

Electrical and Computer

Engineering at Michigan State

University since January 2012. His thesis focuses on the

genetic algorithm to optimize electro-heat problems for

application in machine design and hyperthermia.

Arunasalam Rahunanthan has a

Ph.D. degree in Mathematics from

the University of Wyoming and a

B.Sc. Engineering degree from the

University of Peradeniya in Sri

Lanka. He is currently an Instructor

in the Department of Mathematics

and Computer Science at the

Edinboro University of Pennsylvania. His research

interests include numerical methods for ODEs and

PDEs, mathematical modeling of multiphase flows in

multiscale porous media using Graphics Processing

Units (GPUs) and Bayesian inference for quantifying

uncertainty in problems related to subsurface flows.

Ravi Thyagarajan currently serves

as Deputy Chief Scientist at the U.S.

Army Tank Automotive Research,

Development and Engineering

Center (TARDEC), and was

selected to the Researcher Review

Board as a Senior Technical

Specialist in June 2012.

His research pursuits are in the areas of underbody

blast modeling and design, occupant protection and fast-

running modeling methodologies. He received his Ph. D.

degree in Applied Mechanics from Caltech, and has over

15 years of prior experience in the automotive industry

at Ford and Visteon, where he was involved in all aspects

of product development of automotive interiors. His

automotive experience includes leadership roles in

concept-to-launch product design, human

factors/ergonomics development, as well as in the

standardized application of CAE tools during the overall

design engineering process, for which he won several

awards, including the President’s level Customer-Driven

Quality award.

He is a past recipient of the Forest R McFarland

Award from SAE, holds two patents and has co-authored

over 40 technical papers. He received the Army Materiel

Command (AMC) Systems Analysis awards in 2010 and

2012, for pioneering application of modeling and

simulation methodologies in underbody blasts. He is also

a Member of the Army Acquisition Corps, and is a

Certified Acquisition Professional in Systems

Engineering (SE), Program Management (PM) and

Science & Technology (S&T) Management.

Paramsothy Jayakumar is a

Senior Research Scientist, SAE

Fellow, and a member of the

Analytics Team at the U.S. Army

Tank Automotive Research,

Development, & Engineering

Center (TARDEC) in Warren,

Michigan. Prior to joining U.S.

Army TARDEC, he worked for BAE Systems, Ford

Motor Company, Altair Engineering, and Engineering

Mechanics Research Corporation in the areas of

multibody dynamics software development, vehicle

dynamics modeling & simulation consulting, simulation

technology development, durability load simulation,

vehicle instrumentation & loads measurement, and road

load engineering.

Jayakumar has written more than 100 journal and

conference papers. His research in terramechanics and

multibody dynamics won the best paper awards at the

NDIA’s Ground Vehicle Systems Engineering and

Technology Symposium in 2011 and 2012. He holds a

U.S. patent for a system for virtual prediction of road

loads and tire modeling. He was also instrumental in

developing seven SAE standards for tire testing for the

purpose of tire modeling for which he received the SAE

2014 James M. Crawford Technical Standards Board

Outstanding Achievement Award.

Jayakumar is a member of the U.S. Army

Acquisition Corps, an Honorary Fellow of the

Department of Mechanical Engineering at the University

of Wisconsin-Madison, and an Associate Editor for the

ASME Journal of Computational and Nonlinear

Dynamics. He received his M.S. and Ph.D. degrees in

Structural Dynamics from Caltech, and B.Sc. Eng.

(Hons, First Class) from the University of Peradeniya,

Sri Lanka.

684 ACES JOURNAL, Vol. 29, No. 9, SEPTEMBER 2014

