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Abstract ─  As an alternative to the finite-
difference time-domain (FDTD), the finite-
element method (FEM), and the method of 
moments (MoM) based on the surface integral 
equation (SIE), a volume-integral equation (VIE) 
approach using the method of moments and 
conjugate-gradient methods is presented to address 
a wide variety of complex problems in 
computational electromagnetics. A formulation of 
the volume integral method is presented to 
efficiently address inhomogeneous regions in 
multi-layered media. Since volume element 
discretization is limited to local inhomogeneous 
regions, numerical solutions for many complex 
problems can be achieved more efficiently than 
FDTD, FEM, and MoM/SIE. This is the first of a 
series of papers dealing with volume-integral 
equations; in subsequent papers of this series we 
will apply volume-integrals to problems in the 
field on nondestructive evaluation. 
  
Index Terms ─ Aircraft structures, computational 
electromagnetics, electromagnetic nondestructive 
evaluation, volume-integral equations. 
 

I. INTRODUCTION 
The authors of a recent paper [1] claim that a 

surface integral equation formulation that utilizes 
method of moments (MoM) with higher-order 

basis functions may be the ‘best weapon’ for 
solving complex problems in electromagnetics. 
Following [2], only methods based upon finite-
elements (FEM), finite-difference time-domain 
(FDTD), or MoM seem to have been considered as 
candidate techniques. Furthermore, certain 
conclusions are drawn in [2] that suggest that 
MoM is suited only for problems with 
homogeneous materials, or that finite methods are 
better suited to handle arbitrary bodies. By MoM, 
it is clear that both papers’ authors have in mind 
surface-integral equations. In this paper, we apply 
computational electromagnetics in the arena of 
quantitative nondestructive evaluation (NDE), and 
show errors with the conclusions in [1] and [2] 
when volume-integral equations are considered. 

Even though earlier work in formulating 
scattering problems by integral equations [3] 
existed, the emergence of integral equations into 
the arena of contemporary computational 
electromagnetic was through the notion of 
‘moment methods’ in 1968 [4]. Since that time, 
volume-integral equations (in which the unknowns 
are currents distributed throughout a finite volume 
of space) have been applied to scattering problems 
in free-space [5, 6], and even to biomedical studies 
[7]. One reason for the success of volume-integral 
equations in solving these scattering problems is 
that the very large linear systems that are obtained 
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by discretization of these equations can be solved 
with very modest computer resources using 
conjugate-gradient search methods, coupled with 
fast-Fourier transforms (FFT). 

In applying volume-integral equations to 
electromagnetic (eddy-current) nondestructive 
evaluation, we are once again faced with a 
scattering problem, but now the scatterer is 
generally buried within a conducting host, which 
may have a number of layers of different electrical 
properties. Furthermore, the host may be 
anisotropic and magnetic. Even for isotropic 
layered media, the Green’s functions that appear in 
the kernels of the functionals (the integral 
operators) will be considerably more complex than 
those in free-space. Furthermore, there will be 
terms in the volume-integral equation that do not 
appear in free-space. These will be discussed 
briefly in Section II; but for details, the reader is 
invited to study [8] and [9]. By extending the ideas 
of previous researchers to include new kernels and 
functionals for layered media, we have developed 
VIC-3D© [10], a volume-integral code for eddy-
current nondestructive evaluation (NDE), and have 
obtained very good results for a wide range of 
problems using it [8-22]. Validation of the model 
and code against benchmark experiments is 
described in [19-22]. 
 

II. BACKGROUND 
 
A. Volume-integral equations for ferro-
magnetic workpieces [8-9] 

We start with Maxwell’s equations: 
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Now, H = B/μ(r) = B/μh + B/μ(r) − B/μh = B/μh − 
Ma, where μh is the host permeability, and Ma is 
the anomalous magnetization vector. Thus, the 
second of Maxwell’s equations may be written 
 ,)(

a
e

h j MJDB ×∇++−=×∇ ωμ  (2)

which makes clear that the Amperian current, ∇× 
Ma, is an equivalent anomalous electric current 
that arises because of the departures of the 
magnetic permeability of the workpiece from the 
host permeability, μh. J(e), on the other hand, is an 
electric current that includes the anomalous 
current that arises due to differences in electrical 
conductivity; J(e) = σhE + (σ(r) − σh)E = σhE + Ja. 

Because the host conductivity and permeability are 
constant within each plane-parallel layer, they can 
be accounted for by means of Green functions. 
This leaves us with only the anomalous electric 
and magnetic sources to be determined. Even 
though the Amperian current is electrical (because 
it appears as a source term in the second Maxwell 
equation (Ampere’s law)), we will refer to it as 
J(m), to remind us that it is of magnetic origin, and 
to distinguish it from J(e) (which now stands for 
the anomalous electric current, Ja). The important 
point, however, is that because the Amperian 
current behaves as an electrical current, we need 
only use electric-electric Green functions in the 
formulation of the problem. 

In establishing the volume-integral equations, 
we simply make use of the fact that the total 
electric field and magnetic flux density at a point 
is the sum of the fields due to the probe coil, 
which we call the incident fields, and those due to 
the anomalous currents, J(e) and J(m). 

Hence, we write 
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In arriving at the second equation, we have used 
the fact that B = −(1/jω)∇ × E, and Ma = ((μ(r) − 
μh)/μ(r)μh)B.  

The first part of the first equation in (3) is the 
electric-electric (ee) interaction, and the second 
part is the electric-magnetic (em) interaction. The 
two parts of the second equation are, respectively, 
the magnetic-electric (me) and the magnetic-
magnetic (mm) interactions. We decompose the 
various interactions into the ‘infinite-space’ part, 
designated by the superscript, (0), and the 
‘layered-space’ part, designated by the superscript, 
(s). This is done for convenience in coding and 
problem solving. 
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The electric-electric interaction terms are 
given by: 
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In the Bessel transform, r = [(x – x')2 + (y – y')2]1/2. 
Integral expressions for the various layered-space 
Green functions are given in [8]. Note that the 
terms with the superscript (a) are convolutional 
(Töplitz) in all three spatial variables; whereas, 
those with (b) are convolutional in (x – x') and (y – 
y'), but are correlational (Hankel) in (z – z'), where 
z is normal to the layers of the workpiece (see 
Figure 1). This decomposition is of great 
importance when solving large systems of 
equations, as we shall see later.  

The Töplitz structure, as shown in the top of 
Fig. 1, arises when the path between the source 
point, z', and field point, z, includes reflections 
from both boundaries. The total z−directed path 
length between z' and z is z − z' + 2T for path A, 
and z' − z + 2T for path B. In each case, the length 
includes the difference between the z-coordinate 
of the source and field points. The Hankel 
structure, as shown in the bottom of Figure 1, 
arises when the path between source and field 
points includes reflections from only one of the 

boundaries. The total path length between z' and z 
is 2Z0 − (z + z') for path A, and z + z' −2Z-1 for path 
B. In each case, the length includes the sum of the 
source and field z-coordinates. 

The electric-magnetic interaction terms are 
given by substituting J(m) for J(e) in (4), and 
making use of the fact that J(m) has zero 
divergence. We will not derive them here. 
Likewise, the magnetic-electric operators follow 
directly by taking the curl of (4) [8]. 
 

 
Fig. 1.  Illustrating the difference between Töplitz 
(top) and Hankel (bottom) Green’s functions. 
 
B. Discretization via the method of moments 
(Galerkin) 

Define a regular grid in three-dimensional 
space, with grid spacing δx, δy, δz. Relative to this 
grid we define π(x) to be the unit pulse 
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and πm+1(x) to be the mth-order convolution of π(x) 
(we define π1(x) = π(x)). 

Next, expand the electric current vector as: 
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the expressions for ))(( eq
KLMT  are: 
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where π1M(y/δy) is the Mth unit pulse function, and 
π2K(x/δx) is the Kth tent function, which is the 
convolution of π1K(x/δx) with itself.  

The T(q)(e)(r) are called facet elements, because 
the qth element is constant over the qth facet of the 
KLMth cell. They are often referred to as 
‘divergence-conforming,’ because the divergence 
of the current density is bounded. Facet elements 
have been called ‘volumetric rooftop’ functions in 
[5]. Volumetric rooftop functions have, also, been 
used in [7] and [6].  

We assume that the conductivity is constant, 
with the value 
 cell max min max( ),cVσ σ σ σ= + −  (9)
within each cell of dimension δx ×δy × δz.  σmax 
and σmin are, respectively, the maximum and 
minimum conductivities in the problem, and Vc is 
the conductivity volume-fraction.  

Because J(m)(r) = ∇ × Ma(r), we expand Ma(r) 
in ‘curl-conforming’ edge-elements, which have 
the required differentiability of the curl operation 
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where 
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These functions are called edge-elements because 
the expansion coefficient, )( x

KLMM , is the (constant) 
value of Mx along the x-directed edge, (y = (L + 
1)δy, z = (M + 1)δz). There are similar 
interpretations for )( y

KLMM  and )( z
KLMM .  

We assume that the magnetic permeability is 
constant, with the value 
 cell max min max( ),pVμ μ μ μ= + −  (12)
within each cell of dimension zyx δδδ ×× . μmin and 
μmax are, respectively, the maximum and minimum 
permeabilities in the problem, and Vp is the 
permeability volume-fraction. 

We discretize (3) by employing Galerkin’s 
method, which uses the same vector functions for 
expansion and testing. The spatial derivatives that 
could cause problems are removed by the testing 
process. The procedure for discretization is to first 
substitute (7) and (10) into (3), and then take 
moments of each of the first three equations of (3) 
with the corresponding facet element, and of the 
second three equations with the corresponding 
edge element. The result for the electric equation 
is 
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(13)

where the Q’s are tri-diagonal matrices, the G(0)’s 
the infinite-space matrices, the G(a)’s the 
convolutional layered-space matrices, and the 
G(b)’s the correlational layered-space matrices. The 
infinite-space matrices are convolutional, also. 
The superscript (ee) denotes electric-electric 
matrices, and (em) denotes electric-magnetic 
matrices. The J’s are the unknown electric 
currents, and the M’s are the unknown magnetic 
polarization vectors. The last block in (13) is 
simply a short-hand representation of the three 
blocks above it, except that it represents electric-
magnetic interactions. 

The magnetic equation is similar to (13), and 
is given by: 
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where B(i) is the incident magnetic flux density due 
to the coil, the superscript (mm) stands for 
magnetic-magnetic interactions, and (me) stands 
for magnetic-electric interactions. The magnetic-
magnetic Q matrices are a little more complicated 
than the electric-electric ones. The important point 
is that the electric-magnetic, magnetic-electric, 
and magnetic-magnetic matrices can be computed 
from the electric-electric. 
 
C. Solution strategies 

The discretized equations that are obtained by 
applying the method of moments to integral 
equations involve dense matrices; hence, it is 
important to develop efficient algorithms for 
solving the discretized equations. For relatively 
small problems (~ 3000 unknowns), we use the 
LU factorization (direct method) of the system 
matrix, but if the problem is too large to 
accommodate the LU factorization, we employ the 
iterative conjugate gradient algorithm [23]. All of 
the examples that will be shown in subsequent 
papers in this series will use the conjugate gradient 
algorithm. One advantage that accrues to the direct 
method, when it is feasible, occurs when (13) and 
(14) have multiple left-hand sides, as occurs when 
the probe coil is scanned past a flaw. The solution 
is then computed serially for each incident field 
vector after the factorization step.  

We take advantage of the convolutional and 
correlational structure of the matrices of (13) and 
(14) by using three-dimensional FFT’s [9] to 
evaluate the vector-matrix products. The use of 
FFT’s drastically alters the conclusions reached in 
an analysis like that in [26], reducing ~ N3 
operations to ~ N2log(N). This is obviously 
important when we have multiple left-hand sides 
in (13) and (14). 
 
D. Calculating the change in impedance due to 
flaws in ferromagnetic bodies 

The development of the equations relies on the 
reaction and reciprocity theorems [24], as 
described in [8]. 
 
E. Spatial decomposition via volume-integral 
equations [25] 

If the flaw extends over two or more layers 
with different electrical constitutive properties, as 
in Figure 2, then (13) and (14) still hold in each 
layer (with different matrices), but now [E(ix), E(iy), 
E(iz)] depend upon the coil current plus anomalous 
currents in other layers. This leads us to consider 
the volume-integral relation for transfer between 
region 0 (‘source’) and region q (‘field’) 
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where r ∈ q and r'∈ 0. The superscript (e) denotes 
electrical anomalous currents and (m) denote 
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magnetic anomalous currents that arise from the 
presence of permeable material. The numerical 
superscripts on the various Green’s functions refer 
to certain properties of these functions, and are not 
important to the discussion. 

Taking moments of (15), using the same 
testing functions described above (with lower-case 
indices), yields 
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where the transfer matrices satisfy 
)0(

,;,
)0(

,
q

MmLlKk
q

KLMklm TT −−= ; i.e., they are Töplitz (2D-
convolution) in (X, Y). Thus, one can still use two-
dimensional FFTs to efficiently execute the 
computations. The superscript (ee) on the transfer 
matrices denotes ‘electric-electric,’ which means 
that these matrices ‘transfer’ an electric current in 
region 0 into an electric field in region q. Similar 
transfer matrices exist for transferring a magnetic 
current in region 0 into an electric field in region 
q, as well as transferring an electric current into a 
magnetic field and a magnetic current into a  
magnetic field. All of these other transfer matrices 
 

 
Fig. 2.  A flaw in multiple layers. 
 
can be deduced from the electric-electric ones, but 
the development is lengthy and will not be 
included here. 
 

III. COMMENTS AND CONCLUSIONS 
We have formulated the volume-integral 

approach in terms of the Galerkin variant of the 
method of moments, in which the unknown 

anomalous currents and the testing functions are 
expressed in terms of basis functions that are 
defined on a regular grid. This results in operators 
that have very special structures; they are either 
three-dimensional convolutions, or two-
dimensional convolutions and one-dimensional 
correlations, which means that we can use three-
dimensional FFTs to accelerate the matrix-vector 
operations occurring within a conjugate-gradient 
search algorithm. The use of a highly irregular 
mesh in the finite-element technique does not 
allow a similar advantage in the solution process. 
In the next paper and the remaining ones in this 
series, we will show how this formulation 
produces extremely efficient solutions of complex 
problems. 

We have not gone into certain technical 
details, such as comparing operation counts for a 
direct matrix-vector multiply versus an FFT-
assisted operation. Recent texts, such as [27-29], 
deal with these issues in more generality, while 
[30] deals with other fast algorithms for 
computational electromagnetics. 
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