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Abstract ─ A high-order locally corrected Nyström 

discretization for analyzing impressed current cathodic 

protection systems is presented. Non-linear polarization 

curves are incorporated using a Newton-Raphson 

scheme. A Schur complement scheme is introduced  

to handle large domains with small electrodes. The 

methods are characterized in terms of error convergence 

and computation time by comparing to the analytic 

solution for a sphere and hemisphere. 

 

Index Terms ─ Impressed current cathodic protection 

systems, integral equations, locally corrected Nyström 

method. 
 

I. INTRODUCTION 
Hull corrosion of marine vessels has been an area  

of much interest since vessels began to be constructed 

using metal. Various methods are used to mitigate hull 

corrosion including painting the hull with an insulating 

material and using cathodic protection systems. Cathodic 

protection systems are primarily classified as either 

sacrificial or impressed current. In a sacrificial system, a 

more easily corroded metal is used to inject electrons 

into the electrolyte, whereas in an impressed current 

system electrons are injected directly using a battery or 

generator. Cathodic protection system electrodes often 

exhibit non-linear behavior which can be approximately 

modeled using polarization curves.  

In this paper, an overview of the integral 

formulation [1-6] for the analysis of an impressed current 

cathodic protection (ICCP) system is presented. The 

equation is discretized using the arbitrary-order locally 

corrected Nyström (LCN) method [7-9]. The Newton-

Raphson method is used to handle problems with non-

linear polarization curves. A Schur complement-based 

method is discussed to reduce the computational 

complexity of the Newton-Raphson iteration when the  

boundary conditions are mostly constant. Validation and 

convergence of the method is investigated using a sphere 

with non-constant boundary conditions. 

 

II. THEORY 

A. Formulation 
Consider a region V bound by a surface S with 

inward surface normal ˆ
in . The region may represent 

either an internal or an external region, and, if the region 
is external, part of S recedes to infinity. Furthermore, let 
the region be filled with an electrolyte with conductivity 
 . Green’s second identity relates the electric potential 
  in the electrolyte to the boundary potential  and its 

normal derivative ˆ
i  n   as: 
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where the additional unknown   is only included  
for an external problem. The kernel is the static, 
homogeneous Green’s function: 

  
1

,
4

G


 


r r
r r

. (2) 

For both the interior and exterior problems, a meaningful 
solution exists only if the total flux over the boundary S 
is zero  [10]: 

  ˆ 0i

S

dS   n . (3) 

Furthermore, for the linear interior Neumann problem 
[10], the additional constraint: 

   
S

dS C  , (4) 

with constant C  (usually zero) is applied. Enforcement 

of (1) on S produces the integral equation: 
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The hull surface may be split into three parts: an 

insulating part iS  on which ˆ 0i
   n , electrodes 

pS  on which the potential   is known, and electrodes
fS  on which the normal derivative (flux) is known 

ˆ
i
  n . Often electrodes fS  are polarized and are 

specified using a polarization curve P such that, 

  ˆ
i P   n  . (6) 

 

B. Locally corrected Nyström discretization 
The integral Equation (5) with the conditions (as 

necessary) (3) and (4) is discretized using an arbitrary-
order locally corrected Nyström (LCN) method where the 
surface is meshed with either triangle or quadrilateral 
elements of arbitrary order. As an example, the 
discretization of (3) and (5) for the exterior Neumann 
problem with polarized electrodes is: 
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,  (7) 

where the matrix definitions are determined by 
comparing (7) to (3) and (5). Note that the additional 

zero column in the eG  matrix is added so that eH  and 
eG  are of the same dimensions. Also, the xS  entries are 

related to the differential surface areas of the elements at 
the test points and are used to enforce (3). 

 
C. Newton-Raphson method 

For a non-constant polarization curve  P  , the 

Newton-Raphson method [3] is applied with the iterative 

update 1k k k                such that,  

    
1

,k k f kJ P


             
, (8) 

where the Jacobian matrix  J  at iteration k is:  
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For large problems in which the electrodes only 
cover a small portion of the surface, the Schur 
complement can be applied to avoid factoring a full 
Jacobia n matrix at each iteration. A partitioning of the 
Jacobian matrix amenable to the Schur complement is: 

 

 
  
  

, , ,

, , ,

diag

diag

nc nc nc nc nc nc co

co nc nc co nc co co

G P H H

J

G P H H

    
 

  
    

   

 (10) 

where the superscripts nc and co indicate those portions 

of the matrix corresponding to non-constant and constant 

boundary conditions, respectively. Before the Newton-

Raphson iteration begins, the matrix 
,co coH  is pre-

factored and stored. Then, at each Newton-Raphson step, 

a matrix is only factored that has the dimensions of the 

degrees-of-freedom associated with the electrodes 

having non-constant polarization curves. The above 

Schur complement form is also amenable for use in fast-

direct solvers. 
 

D. Image plane theory 
In the event that one side of the electrolyte is 

completely bounded by a planar, insulating surface, then 
image theory may be applied to reduce the computational 
burden. For external problems, the insulating, planar 
boundary is often unbounded such as when the electrolyte 
fills a half-space that is bounded above by an electrolyte-
air interface. In this case, the use of image theory greatly 
reduces the modeling burden and improves accuracy. 
Otherwise, the half-space must be truncated and placed 
inside a finite box for computation, which introduces 
truncation error into the solution. In addition, note that 
using a truncated box model changes an exterior problem 
into an interior one. 

When image theory is applied, the planar, insulating 
surface is not meshed and no degrees-of-freedom are 
assigned to it. Instead an image Green’s function,  

      im im, , ,G G G   r r r r r r , (11) 

is used in (1) and (5) in place of G . Here, im
r  is the 

reflection of r  across the image plane. In addition, care 

must be taken in computing the   ˆ, iG   r r n  term as 

well since the normal vector must also be imaged 

appropriately. The image Green’s function produces an 

electric potential   that is an even function about the 

image plane. This in turn leads to an electrolyte current 

 J   whose normal component at the bounding 

electrolyte-insulator interface is zero. 
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III. RESULTS 
For initial validation, an exterior Neumann problem 

comprising a one meter sphere with boundary condition 
[2]: 

   cos , 0f

i
P

n
  


     


, (12) 

representing a cathodic surface was analyzed. The 
analytic solution is: 

    23 cos / 3r   r , (13) 

with 3   . The discretization in (9) was used and 

the Newton-Raphson iteration converged in one step. 
The sphere was discretized with 10th order quadrilateral 
elements and two meshes of 24 cells and 96 cells were 
analyzed for various LCN basis orders.   

The RMS relative error in the surface potential at the 
system quadrature points versus basis order is plotted  
in Fig. 1. The relative error decreases as the basis order 
increases, but the convergence can stagnate due to the 

integration of the normal derivative   ˆ, iG   r r n  in the 

self-term on curved surfaces [6, 11]. In practice, lower 
errors can be achieved if a local adaptive integration 
error tolerance is used for the problematic integrals and 
a tighter error tolerance is used elsewhere. The scheme 
used in this paper is to use a relatively tight error 
tolerance everywhere and then relax the error tolerance 
on-the-fly and re-integrate only for those integrals that 
are observed not to converge. 

To validate the image plane method, a one meter 
sphere centered at the origin and floating in an electrolytic 

half-space of conductivity 1  S/m   for 0z   and 

0 S/m   for 0z   was investigated using the boundary 

condition: 

      cos sinf

i
P

n
 


    


, (14) 

for 
2


   . The analytic solution is: 

     23 cos sin / 3 ,
2

r


         , (15) 

where again 3   . The problem was solved in three 

ways: imaging the hemisphere so that the model is a full 
sphere in an infinite electrolyte, modeling the hemisphere 
only using the image Green’s function, and boxing the 
electrolyte with a larger outer hemispherical surface and 
treating the problem as an interior problem. In the latter 
case, as depicted in Fig. 2, the modeled surface includes 
the original hemispherical surface, an outer hemispherical 
surface, and an annular surface at the electrolyte-air 
interface that connects the two hemispheres. The 

   cos sin   variation in (14) is used since the  cos   

variation in (12) does not produce a potential   that is 
symmetric about the electrolyte-air interface as required. 

The surfaces in each of the three models were 
meshed using 8th-order quadrilateral elements with  

meshes of various densities and the problem was solved 
using Newton-Raphson iteration for various basis orders. 
For the boxed-electrolyte model, the problem was solved 
for outer hemispheres with radii of 8 m, 16 m, 32 m, and  
64 m. To keep the problem size manageable, the outer 
hemispherical surface used a fixed, coarse discretization. 
The computed electrostatic surface potential and (1) were 
used to determine the electrostatic potential at various 
points in the electrolyte.   

 

 
 

Fig. 1. Relative RMS error between computed and 

analytic surface potential   solutions versus basis  

order for a one meter sphere meshed with 10th order 

quadrilateral elements. 

Conducting 

Surface

Boxed 

Electrolyte

 
 

Fig. 2. Hemispherical conducting surface surrounded by 

a hemispherical-boxed electrolyte. 

 

 
 
Fig. 3. Error convergence versus number of unknowns 

for various basis orders p for full sphere model of a 

hemisphere in an electrolytic half space. 
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Fig. 4. Error convergence versus number of unknowns 

for various basis orders p for image plane Green’s 

function model of a hemisphere in an electrolytic half 

space. 

 
 

Fig. 5. Fill times versus number of degrees of freedom 

for full sphere model (solid lines) and half-sphere with 

image plane Green’s function model (dashed lines). 

 
 

Fig. 6. Surface potential using image plane Green’s 

function model for conducting hemisphere at surface of 

semi-infinite electrolyte. 
 
The relative RMS error between the computed 

potential in the electrolyte and the analytic solution is 
plotted versus number of degrees of freedom in Fig. 3 for 
the fully imaged sphere and in Fig. 4 for the half-sphere 
with image plane Green’s function. As can be seen from 
the data, the convergence is the same for both models, 
but the image plane model requires only half the number 
of degrees of freedom. Again for each basis order, 
meshes with an increasing number of elements were 
analyzed. The matrix fill times versus number of degrees  

for these two models are plotted in Fig. 5. The use of the 
image Green’s function is clearly more efficient in terms 
of both the number of degrees of freedom and the 
computation time. Finally, the surface potential over the 
hemisphere surface computed using the image plane 
Green’s function model is depicted in Fig. 6 for a mesh 
of 384 cells and using 2nd order bases. 

 

 
 
Fig. 7. Error convergence versus number of unknowns 

for various basis orders p for electrolyte boxed with outer 

hemispheres of radius a = 8 (solid line), a = 16 m (dashed 

line), a = 32 m (dotted line), and a = 64 m (dashed-dotted) 

line. 

 
 
Fig. 8. Fill times versus number of unknowns for various 
basis orders p for electrolyte boxed with outer 
hemispheres of radius a = 8 (solid line), a = 16 m (dashed 
line), a = 32 m (dotted line), and a = 64 m (dashed-dotted) 
line. 
 

For the last model where the electrolyte is boxed 
with a finite-radius hemisphere, the error convergence 
and fill times versus basis order are plotted in Fig. 7 and 
Fig. 8 respectively. Except for the original conducting 
hemisphere, the remaining surface mesh is assigned an 
insulating boundary condition. Hence, the Newton-
Raphson iteration can be greatly accelerated using the 
Schur complement method outlined in II.C.  However, in 
these cases, the matrix fill time dominates the computation 
time. One observes that the use of a truncated box around 
the electrolyte severely degrades the error convergence as 
well as drastically increases the number of unknowns and 
the computation time. The minimum error is limited by 
the radius of the outer hemisphere. Hence, the advantages 
of using image theory are readily apparent. 
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VI. CONCLUSION 
A high-order electrostatic analysis of an impressed 

current cathodic protection systems was presented. 

Suitable boundary integral equation formulations were 

given for both interior and exterior domains, and 

appropriate constraints to remove any null spaces were 

discussed. The integral equations were discretized using 

the locally corrected Nyström method, and problems 

with nonlinear polarization curves were solved using the 

Newton-Raphson method. The methods were validated 

by comparison of computed solutions to analytic solutions 

for a sphere and hemisphere in an electrolytic half-space 

and higher-order solution convergence was observed. 
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