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Abstract—This paper presents an extension of high-
order moment-matching model order reduction to frequency-
dependent impedance boundary conditions. Such boundary
conditions are essential for accurately and efficiently modeling
conductors at high frequency, where skin effect is significant.
These boundary conditions involve complicated transcendental
functions, whereas previous MOR methods assume polyno-
mial dependence. Automatic differentiation is used to easily
and accurately calculate the higher derivatives of such func-
tions. Substantial improvement is shown, not only compared to
discrete frequency sweeps, but also compared to non-moment-
matching S matrix interpolation.

I. INTRODUCTION
Model order reduction (MOR) is a frequently-used tech-

nique to develop efficient approximations to discretizations
of Maxwell’s equations that depend on one or more param-
eters (e.g., frequency or material properties). Although there
are many methods to accomplish this, they can broadly be
classified according to how well the reduced-order solution
matches the full-order solution (order) and how many points
in parameter space the two solutions match (single- vs. multi-
point). High-order methods, in which not only the value but
also the derivatives of the solutions are equal, can be efficient
for systems with smooth parameter dependence because the
incremental cost of each order is a matrix forward-backward
substitution, rather than a factorization [1]. The disadvantage
is that the derivatives of the system matrix with respect to the
parameters must be known.

For signal integrity (SI) analysis of electronic packages and
circuit boards, this presents a problem. Modeling of high-
speed interconnects requires analysis up to tens of gigahertz,
where losses from skin effect significantly affect performance.
One approach to capture this effect is to model the volume
inside the conductors with a mesh fine enough to resolve the
decaying field. The system matrix entries are then second-
order polynomials of frequency and the derivatives are easily
calculated. Alternatively, an impedance boundary condition
(IBC) can be used, but the matrix entries are no longer
polynomials.

This work shows that the accuracy of an IBC can be
achieved with the ease-of-implementation of a polynomial
formulation by using automatic differentiation to calculate the
higher-order derivatives of the surface impedance. This is a
method for transforming the computer code of a function so

that it not only calculates the value of the function, but also
the derivatives with respect to the inputs. In contrast to finite
difference methods, there is no discretization error, only round-
off error. There are also advantages compared to symbolic
differentiation, e.g., it is unnecessary to translate the computer
code into a single mathematical expression.

The resulting method has several advantages for network
analysis compared to S matrix interpolation. First, the use of
higher-order moment-matching allows the same accuracy and
bandwidth to be achieved with fewer matrix factorizations.
Second, the reduced-order model automatically inherits sev-
eral desirable properties form the original system, including
passivity and stability [2]. Third, although not pursued here,
knowledge of the S parameter’s exact derivatives could be used
to provide better error control choosing the moment-matching
points adaptively.

II. BACKGROUND
A. Finite element modeling of SI problems

The finite element method is used to discretize Maxwell’s
equations, as applied to the problem geometry. For non-
dispersive materials and ohmic conductors, this results in a
matrix equation of the form:

A(s)E =
(
S + sY + s2M

)
E = J(s), (1)

where s = jω is the complex frequency, and J and E are
the current excitation and electric field solution vectors. The
matrices S, Y , and M are the stiffness, admittance, and
mass matrices, and depend, respectively, on the materials’
permeability µ, conductivity σ, and permittivity ε. Inside good
conductors, the fields decay exponentially on a length scale
given by the skin depth δ =

√
2/ωµσ (e.g., about 0.3 µm

for copper at 40 GHz). With trace cross sections on the order
of tens of microns or more, this requires an extremely dense
mesh to accurately resolve.

Because the traces and ground planes are typically wide
compared to their thickness, it is common to model them with
a layered media impedance boundary [3]. For a single layer,
this has the form:

ZIBC = Z0
1 + Γe−2γT

1− Γe−2γT
, (2)

where Z0 =
√
µ/ε is the intrinsic impedance, Γ is the reflec-

tion coefficient from the surrounding dielectric, γ = jω
√
εµ

is the propagation constant, and T is the metal thickness. For

ACES JOURNAL, Vol. 33, No. 10, October 2018

1054-4887 © ACES 

Submitted On:September 30, 2018 
Accepted On: October 3, 2018

1072



good conductors, Γ ≈ 1, γ ≈ (1 + j)/δ, and Z0 ≈ γ/σ,
leading to a rather complicated expression for ZIBC . It is
this expression (actually, its inverse) that the matrix entries
now depend on and which must be differentiated for moment-
matching.

B. Projection-based model order reduction

A projection-based reduced order model is obtained by
Galerkin-testing the N ×N system matrix A with the N ×M
reduced-order basis vectors V :

Â(s) = V HA(s)V. (3)

The reduced-order matrix equation is then:

Â(s)Ê = V HJ, (4)

E ≈ V Ê. (5)

Because M � N , this equation can be solved much
more rapidly than the original. In order for Ê and E to
match up to the p-th order at frequency s0, it can be
shown that it is sufficient that the column space of V
equal span

(
E|s0 ,E′|s0 , . . . ,E(p)|s0

)
[4]. Applying the Leib-

nitz product rule to AE = J shows that these are given by:

E(p) = A−1

[
J(p) −

p∑
k=1

(
p

k

)
A(k)E(p−k)

]
. (6)

C. Automatic differentiation

Automatic differentiation consists of analyzing each line of
code that involves a dependent variable, for example ZIBC ,
and augmenting it with a line that calculates the derivative
with respect to the independent variable (frequency) as well
[5]. Thus, for example, calculation of δ would include:

δ′(f) =

(
1

fπµσ

)−1/2
· −1

f2πµσ
. (7)

The power of automatic differentiation is that this augmenta-
tion can be done automatically, either by source code transla-
tion or operator overloading. Furthermore, the process can be
applied recursively to obtain arbitrarily high orders.

To see how this can be accomplished, consider first the
simplest case, computing only the first derivative. Using the
overloading approach, this means that every value u that
depends on frequency is replaced by a class that contains both
the value and its derivative with respect to frequency: 〈u, u′〉.
Then, the basic mathematical operators are overloaded to use
this new class. For example, multiplication and the exponential
function become:

〈u, u′〉 × 〈v, v′〉 = 〈uv, uv′ + u′v〉, (8)
exp〈u, u′〉 = 〈expu, u′ expu〉. (9)

To extend this to higher orders, the derivatives themselves
can be treated as value were above, up to some maximum
order, and the rules applied recursively. This can be illustrated

by working out the exponential function up to second order
and verifying that it indeed gives the correct result:

exp〈u, u′, u′′〉 = 〈expu, 〈u′, u′′〉 × exp〈u, u′〉〉
= 〈expu, 〈u′, u′′〉 × 〈expu, u′ expu〉〉
= 〈expu, u′ expu, [(u′)2 + u′′] expu〉.

(10)

In general, when applying a unary function f to a value and
its n first derivatives, the chain rule provides:

f
〈
u, u(1), u(2), . . . , u(n)

〉
=
〈
f(u), f ′

〈
u, . . . , u(n−1)

〉
×
〈
u(1), . . . , u(n)

〉〉
. (11)

Notice that the argument to f ′ has one lower order, so
that eventually we reach the scalar case the the recursion
terminates.

There are two significant advantages to this approach. The
first is the ease of understanding and maintaining the code. If
we define “reduction” and “differentiation” operators as:

u ≡
〈
u, u(1), . . . , u(n)

〉
, (12)

Ru ≡
〈
u, u(1), . . . , u(n−1)

〉
, (13)

Du ≡
〈
u(1), . . . , u(n)

〉
, (14)

then many functions can be programmed using expressions
that look nearly equivalent to what one might find in a math
textbook, for example,

expu = 〈expu, exp(Ru) · Du〉, (15)
sinu = 〈sinu, cos(Ru) · Du〉, (16)
cosu = 〈cosu,− sin(Ru) · Du〉, (17)

up =

{
〈up, p · (Ru)p−1 · Du〉 if p 6= 0

〈1,0〉 if p = 0.
(18)

The second advantage is ease of testing. Simply comparing
the first derivative, calculated using recursive automatic differ-
entiation, with a few values calculated manually is sufficient
to verify the code’s correctness, because this simple test
nonetheless achieves 100% code coverage.

Set against this, the primary disadvantage is efficiency.
Multiplication can be done quadratically in terms of the
maximum order, using the Leibniz rule, making the entire
recursion cubic. There are two ways to mitigate this. One
is to obtain and learn one of the many third-party automatic
differential libraries, such as those listed at www.autodiff.org
[6]. These use more optimized algorithms, but few, if any,
support complex numbers, making IBC calculations difficult.
The second is to note, as explained in detail below, that deriva-
tive calculation can be made a minuscule part of the overall
computation, so that an especially efficient implementation is
actually unnecessary.

Because many of the system matrix entries have the same
frequency dependence, up to a multiplicative constant, it would
be inefficient to calculate them entry by entry. Rather, the
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Fig. 1. Insertion loss for two different conductor models:
(dashed red) volume conductor for traces, PEC for ground
(solid blue) IBC for both.

matrix can be decomposed into a linear combination of scalar
functions and constant matrices:

A(s) =
∑
i

φi(s)Ai. (19)

The number of functions is typically less than a few dozen,
e.g., one IBC-related function for each unique pair (T, σ).
The derivatives φ(p)i can therefore be rapidly calculated, even
with an unoptimized implementation, at which point evaluat-
ing A(p)(s) becomes trivial. Furthermore, this decomposition
permits rapid online computation of the reduced-order matrix
Â, by precomputing each V HAiV .

III. RESULTS AND CONCLUSIONS
A. Long microstrip

To demonstrate the benefit of MOR with IBCs, a simple
test project consisting of a very long trace, as might be found
on a PCB, is used. The trace is 127 µm wide, 48 µm thick,
and 30 cm long. The ground plane underneath is 33 µm thick,
separated by 69 µm-thick FR4 (εr = 4.4, tan δ = 0.02). The
S parameters are extracted to 40 GHz using the Sentinel-PSI
solver in ANSYS SIwave, which uses a 5th-order moment
matching algorithm.

Four different analysis methods are considered. The first is
using IBC on both the trace and ground plane and using the
MOR with automatic differentiation described above. Second,
MOR is also used, but with the simplest conductor modeling
that gives a polynomial system matrix and a similar number
of unknowns. In particular, the trace is modeled as a volume
conductor and the ground plane is PEC; note that the mesh
is not heavily refined, so this is expected to result in less
loss. Third, IBCs are again used on all metals, but S matrix
interpolation is used for the frequency sweep. Finally, for
reference, the IBC results are calculated without any fast-
sweep algorithm.

The resulting insertion loss is shown in Fig. 1. As expected,
the model using volume conductivity and PEC shows signifi-
cantly less loss at high frequency, up to 10 dB at 40 GHz. The

Table 1: Performance Results

Sweep Freq. Time Memory % Error
Model Method Samples (min.) (GB) RMS/Peak

IBC MOR 33 33.9 9.00 0.06/0.48
σ/PEC MOR 31 27.6 8.50 65/105
IBC S interp. 262 112.3 3.93 3.6/18.5
IBC none 800 344.9 3.95 —/—
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Fig. 2. Error in S matrix for long microstrip, using S matrix
interpolation versus high-order moment matching MOR.

performance measurements are shown in Table 1. The error is
defined as ||S − Sref ||F /||Sref ||F . Two conclusions can be
drawn. First, for a problem with a given number of unknowns,
the addition of IBCs has no significant impact on the runtime
of the MOR algorithm, compared to the polynomial case.
Second, the use of higher-order moment matching allows for a
significantly reduced number of frequency samples compared
to S matrix interpolation. In addition, Fig. 2 shows the error
in the two frequency sweep methods. It can be seen that the
MOR results has much more spacing between the nulls at the
sample points (where the error is exactly zero), demonstrating
the utility of high-order moment matching in providing more
bandwidth per sample.

B. Flip-chip package
Figure 3 shows a more complicated example, a flip-chip

package with four layers, four signal conductors, and three
power/ground nets. The fact that some parts of the signal
traces lack a nearby ground reference, combined with the
many cutouts in the ground plane, lead to many dips in the
insertion loss. This is a challenging situation for methods that
interpolate the S parameters based on value alone, without any
knowledge of the derivatives.

Table 2 shows the performance results, while Figs. 4 and 5
illustrate the insertion loss and S parameter error, respectively.
Once more, the superior runtime and accuracy performance,
at the cost of more memory, can be seen. In this case, the
error nulls at the sample frequencies are not evident because
of numerical non-reproducibility, caused by, e.g., differing
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unknown ordering and using SIMD instructions on unaligned
data [7]. Nevertheless, besides the number of samples being
smaller, the fact that the average error level is lower also
implies larger bandwidth per sample, because the error does
not increase as rapidly when the frequency moves away from
a sample. With higher-order moment matching, not only is
the error zero at the samples, but its derivatives are also
(apart from numerical rounding). It is also worth noting that
of the 6.5 minutes spent computing the frequency sweep, a
mere 21 ms was spent performing automatic differentiation.
This validates the earlier observation that, for this particular
application, a simple and understandable implementation may
be preferable to a highly-optimized one.

Table 2: Flip-Chip Performance Results

Sweep Frequency Time Memory % Error
Method Samples (minutes) (GB) RMS/Peak

MOR 8 6.5 7.7 0.006/0.06
S interpolation 92 20.6 3.0 0.05/0.7
none 400 91.2 3.1 —/—

(a) First layer (b) Second layer

Fig. 3. First two layers of flip-chip package. The four signal
nets are in the upper left-hand corner of the first layer. Note
the cross-hatched grounds in the corners of the seconds layer,
a source of additional reflections.
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Fig. 4. Package insertion loss for each signal net.
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Fig. 5. Error in S matrix for flip-chip package, using S matrix
interpolation versus high-order moment matching MOR.
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