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Abstract – This paper presents a new parameter-
ized model order reduction technique to efficiently
perform global time- and frequency-domain sensitiv-
ity analysis of electromagnetic systems over the de-
sign space of interest. The partial element equivalent
circuit (PEEC) method is adopted to build the elec-
tromagnetic system model at a set of initial samples
in the design space. The block Laguerre-SVD algo-
rithm is proposed to reduce the size of the original
equations of the PEEC-based equivalent circuit along
with those describing the port voltage and current
sensitivities. Then, a multivariate cubic spline in-
terpolation method is used to build a parameterized
compact model of port voltages and currents along
with their corresponding sensitivities over the entire
design space of interest. Finally, two numerical exam-
ples are presented, which confirm the accuracy and
efficiency of the proposed method.

Index Terms – Parameterized model order reduc-
tion, partial element equivalent circuit, sensitivity
analysis, time- and frequency-domain circuit simu-
lation.

I. INTRODUCTION
The need to improve the performances of electro-

magnetic (EM) structures during their early design
stage has made sensitivity analysis a necessary tool.
The sensitivities represent the system response gradi-
ents in the design parameter space, where the design
parameters are related to the geometry and/or the
materials of the EM structure.

The simplest way to compute sensitivities is rep-
resented by the perturbation method, which requires
to analyze the EM structure for two different val-
ues of each design parameter for a specific nominal
point in the design space. It is computationally ex-
pensive and often inaccurate, therefore impractical

when the number of design parameters to take into
account is large and a global sensitivity analysis over
the design space of interest is required. Recently,
significant progress has been made towards the de-
velopment of sensitivity analysis approaches to be
used along with EM simulators, involving conducting
and dielectric objects, both in time- and frequency-
domain [1–8]. Differential and integral equation-
based methods have been considered for sensitivity
analysis [9, 10]. Typical fields of applications are op-
timization of microwave devices, modeling of signal
integrity (SI)/power integrity (PI) problems, control
of crosstalk for electromagnetic compatibility (EMC)
purposes. These techniques usually turn to be highly
demanding in terms of both CPU time and memory
resources, since they perform the sensitivity analy-
sis using EM solvers and/or manipulating matrices
describing the EM system which are typically very
large.

Among EM methods, the partial element equiv-
alent circuit (PEEC) [11] has gained increasing pop-
ularity because of its ability to transform the EM
system under examination into an equivalent circuit
[11–16] that can be represented by modified nodal
analysis (MNA) matrix circuit equations [17], stud-
ied by means of Kirchoff principles and simulated us-
ing circuit solvers. The PEEC method uses a circuit
interpretation of the electric field integral equation
(EFIE) [18].

In the context of sensitivity analysis, a PEEC-
based method to carry out parameterized sensitiv-
ity analysis of EM systems that depend on multiple
design parameters has been proposed in [19]. The
PEEC method is used to compute state-space matri-
ces of the MNA equations for a set of values of design
parameters (e.g., geometrical and substrate parame-
ters). An interpolation process provides parameter-
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ized models of these matrices as functions of design
parameters [20]. The proposed interpolation scheme
is able to compute derivatives of EM matrices, which
are needed to perform the system sensitivity analysis.
Thus, the algorithm provides sensitivity information
over the entire design space of interest (global sensi-
tivity), and not only around one operating point (lo-
cal sensitivity). Although the method [19] is very ac-
curate and more efficient with respect to the pertur-
bative approach, it suffers from a high computational
cost when the size of the MNA matrices of the PEEC
circuits becomes large. In [21], a parameterized sen-
sitivity analysis based on a parameterized model or-
der reduction (PMOR) technique is presented. The
finite element method is used to generate the equa-
tions of the original network, a multiparameter mo-
ment matching PMOR technique and an adjoint vari-
able method are used to calculate frequency-domain
sensitivities.

In this paper, we propose a new parameterized
model order reduction (PMOR) technique to effi-
ciently perform global time- and frequency-domain
sensitivity analysis of electromagnetic systems over
the design space of interest. The PEEC method is
adopted to generate a set of PEEC MNA equations
and corresponding state-space matrices at a set of de-
sign space points. For each of these points in the de-
sign space, the block Laguerre-SVD algorithm is pro-
posed to reduce the size of the original equations of
the PEEC-based equivalent circuit along with those
describing the port voltage and current sensitivities.
Then, a methodology based on a multivariate cubic
spline interpolation is used to build a parameterized
compact model of port voltages and currents along
with their corresponding sensitivities over the entire
design space of interest. The proposed technique
shows a significantly improved efficiency when per-
forming a global sensitivity analysis with respect to
the method [19], while maintaining a high accuracy.

The paper is organized as follows. Section II
briefly describes the PEEC formulation and the sen-
sitivity formulation while Section III presents the
proposed parameterized model order reduction al-
gorithm. Finally some numerical examples are pre-
sented in Section IV to validate the proposed tech-
nique.

II. PEEC SENSITIVITY
FORMULATION

In what follows, we consider a quasi-static PEEC 
formulation [12]. The Galerkin’s approach is applied 
to convert the continuous electromagnetic problem 
described by the EFIE to a discrete problem in terms 
of electrical circuit quantities, i.e., currents i(t) and
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Fig. 1. Illustration of PEEC circuit electrical quanti-
ties for a conductor elementary cell.

node potentials v(t). An example of PEEC electri-
cal quantities for a conductor elementary cell is il-
lustrated, in the Laplace domain, in Fig. 1 where
the current controlled voltage sources sLp,ijIj and
the current controlled current sources Icci model the
magnetic and electric field coupling, respectively. Let
us denote with nn the number of the nodes and
with nb the number of branches where currents flow.
Among this latter, nc and nd represent the branches
of conductors and dielectrics, respectively. Further-
more, let us assume to be interested in generating
an admittance (Y) representation having np output
currents ip(t) under voltage excitation vp(t). Using
the MNA formulation [17], the following admittance
representation is obtained [20]:

P 0nn,nb
0nn,nd

0nn,np

0nb,nn
Lp 0nb,nd

0nb,np

0nd,nn
0nd,nb

Cd 0nd,np

0np,nn
0np,nb

0np,nd
0np,np

 d

dt


q(t)
i(t)
vd(t)
ik(t)

 =

−


0nn,nn

−PAT0nn,nd
PKT

AP R Φ 0nb,np

0nd,nn −ΦT 0nd,nd
0nd,np

−KP 0np,nb
0np,nd

0np,np

 ·

q(t)
i(t)
vd(t)
ik(t)

+
[
0nn+nb+nd,np

−Inp,np

]
·
[
vp(t)

]
, (1)

ip(t) =

[
0nn+nb+nd,np

−Inp,np

]T
·


q(t)
i(t)
vd(t)
ik(t)

, (2)

where P ∈ Rnn×nn and Lp ∈ Rnb×nb are the co-
efficients of potential and partial inductance matri-
ces, respectively, R ∈ Rnb×nb is a diagonal ma-
trix containing the resistances of volume cells and
Cd ∈ Rnd×nd is the excess capacitance matrix de-
scribing the polarization charge in dielectrics [22].
A ∈ Rnb×nn is the connectivity matrix, while K ∈
Rnp×nn is a selection matrix introduced to define the
port voltages in terms of node potentials:

vp(t) = K v(t). (3)
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In (1), q(t) ∈ Rnn×1 represents the charges on the
conductors, i(t) ∈ Rnb×1 is the vector of volume
currents, vd(t) ∈ Rnd×1 describes the voltage drop
across the excess capacitance and ik(t) ∈ Rnp×1 rep-
resents the port currents. Inp,np

is the identity matrix
of dimension equal to the number of ports and Φ is:

Φ=

[
0nc,nd

Ind,nd

]
. (4)

The vector ip(t) describes the np port currents that
are of opposite sign with respect to ik(t). The system
of equations (1)-(2) is typically ill-conditioned be-
cause the values of charges are usually much smaller
than those of currents and voltages. In order to
mitigate such a problem, a scaling scheme can be
adopted [20]. Equations (1)-(2) can be easily trans-
lated from the Y representation to an impedance (Z)
representation [19] that can be expressed in a com-
pact form as:

C ẋ(t)=−Gx(t) +B ip(t)
vp(t)=LTx(t),

(5)

where C ∈ Rns×ns , G ∈ Rns×ns , B ∈ Rns×np , L =
B, x(t) = [q(t) i(t) vd(t)]

T ∈ Rns×1 and ns = nn +
nb + nd is the number of state variables [19].

Considering now the influence of the design pa-
rameters g = (g1, ..., gM), the formulation (5) be-
comes:

C(g) ẋ(t, g)=−G(g)x(t, g) +B(g) ip(t)
vp(t, g)=LT (g)x(t, g).

(6)

In [19], the sensitivity of the voltage outputs with
respect to M design parameters g = (gm)Mm=1 was
computed deriving (6). Merging the original system
and corresponding sensitivity system, a new full sys-
tem can be written as:[

C(g) 0

Ĉ(g)C(g)

] [
ẋ(t, g)̂̇x(t, g)

]
=−

[
G(g) 0

Ĝ(g)G(g)

] [
x(t, g)
x̂(t, g)

]
+

[
B(g) 0

B̂(g)B(g)

] [
ip(t, g)

îp(t, g)

]
[
vp(t, g)
v̂p(t, g)

]
=

[
L(g)L̂(g)
0 L(g)

]T [
x(t, g)
x̂(t, g)

]
,

(7)

where ·̂ denotes the derivatives with respect to the de-
sign parameters. Equation (7) can be solved, apply-
ing appropriate termination conditions, by the means
of differential equations solvers, upon the knowledge
of the system matrices and their derivatives. How-
ever, the simulations become slow and difficult to
manage when the dimensions of the original PEEC
matrices become large. Therefore, it is fundamental
to obtain a parameterized reduced order model able
to reduce the CPU time effort needed to carry out
the desired simulations.

III. PARAMETERIZED MODEL
ORDER REDUCTION

ALGORITHM
In this section, we describe the proposed PMOR

algorithm applied to the system (7) in order to per-
form parameterized (global) time- and frequency-
domain sensitivity analysis with respect to design pa-
rameters in a more efficient way in comparison with
the technique [19], where a parameterized sensitivity
analysis was performed using interpolation models of
the original PEEC matrices without any order reduc-
tion scheme.

A. Block model order reduction

The first step of the proposed PMOR algo-
rithm is to generate a set of PEEC matrices {P(gk),
Lp(gk),Cd(gk),R(gk)}

Ktot

k=1 corresponding to a set of
Ktot initial samples gk in the design space. We as-
sume that a topologically fixed discretization mesh
is used and that it is independent from the specific
design parameter values as in [19]. When geometri-
cal parameters are modified, the mesh is only locally
stretched or shrunk. Therefore, the PEEC matri-
ces A,Φ,K are uniquely determined by the circuit
topology and do not depend on g. Then, a model
order reduction (MOR) is proposed to generate the
Krylov matrix Kq(gk) of the system (7) for each ini-
tial sample in the design space. In [23, 24], block
structure preserving MOR methods were presented,
where blocks were derived based on the specific ap-
plication. This concept of block structure preserving
MOR is used in this paper to generalize the Laguerre-
SVD MOR (LSVD-MOR) algorithm [25]. The stan-
dard LSVD-MOR is listed in Algorithm 1, where α
is a positive scaling parameter, q − 1 is the order of
approximation and:

Kq =
[
R(0),R(1), . . . ,R(q−1)

]
, (8)

is the Krylov matrix of order q − 1 [25]. The LSVD-
MOR algorithm can be extended to a block LSVD-
MOR method, considering the block form of the
matrices in (7). If we replace the set of matrices
{C,G,B,L} in Algorithm 1 with that block form,
the step k = 0 of the standard LSVD-MOR algo-
rithm can be re-written as:[

G+ αC 0

Ĝ+ αĈG+ αC

] [
R

(0)
11 R

(0)
12

R
(0)
21 R

(0)
22

]
=

[
B 0

B̂B

]
. (9)

After some manipulation it follows:[
R

(0)
11 R

(0)
12

R
(0)
21 R

(0)
22

]
=

[
G−1

N 0

Ĝ−1
N G−1

N

] [
B 0

B̂B

]
=

[
G−1

N B 0

Ĝ−1
N B+G−1

N B̂G−1
N B

]
=

[
R

(0)
1 0

R
(0)
2 R

(0)
1

]
, (10)
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where we have defined GN and ĜN as
GN=G+ αC

ĜN=Ĝ+ αĈ.
(11)

At the step k = 0, the Krylov matrix Kq is composed
of two components:{

R
(0)
1 =G−1

N B

R
(0)
2 =Ĝ−1

N B+G−1
N B̂.

(12)

The first component is related to the Krylov matrix
of the original system (5) for k = 0, while the second
one is the derivative of this first component:

R
(0)
2 = R̂

(0)
1 . (13)

This means that the Krylov matrix of the original
system and its derivative are enough to finalize the
first step of the block LSVD-MOR algorithm. The
other steps for for k > 0 lead to:[

G+ αC 0

Ĝ+ αĈG+ αC

][
R

(k)
11 R

(k)
12

R
(k)
21 R

(k)
22

]
=

[
G− αC 0

Ĝ− αĈG− αC

][
R

(k−1)
11 R

(k−1)
12

R
(k−1)
21 R

(k−1)
22

]
. (14)

Likewise, after some manipulations:[
R

(k)
11 R

(k)
12

R
(k)
21 R

(k)
22

]
=

[
G−1

N 0

Ĝ−1
N G−1

N

] [
GR 0

ĜRGR

][
R

(k−1)
11 R

(k−1)
12

R
(k−1)
21 R

(k−1)
22

]
=

[
G−1

N GR 0

Ĝ−1
N GR +G−1

N ĜRG
−1
N GR

][
R

(k−1)
1 0

R
(k−1)
2 R

(k−1)
1

]
,

(15)

where we have defined GR and ĜR as:
GR=G− αC

ĜR=Ĝ− αĈ.
(16)

The blocks of the Krylov matrix for k > 0 are also
composed of two components:

R
(k)
1 =G−1

N GRR
(k−1)
1

R
(k)
2 =G−1

N GRR
(k−1)
2 +(

Ĝ−1
N GR +G−1

N ĜR

)
︸ ︷︷ ︸

Ĝ−1
N GR

R
(k−1)
1 . (17)

As previously, equation (17) shows that the first com-

ponent R
(k)
1 is the component of the Krylov matrix

of the original system (5) for k > 0, and the second

component R
(k)
2 is the corresponding derivative:

R
(k)
2 = R̂

(k)
1 . (18)

According to Algorithm 1, the Krylov matrix Kq

reads:

Kq =

[
R

(0)
1 0 R

(1)
1 0 . . .R

(q−1)
1 0

R
(0)
2 R

(0)
1 R

(1)
2 R

(1)
1 . . .R

(q−1)
2 R

(q−1)
1

]
, (19)

and by a column permutation:

Kq =

[
R

(0)
1 . . .R

(q−1)
1 0 . . . 0

R
(0)
2 . . .R

(q−1)
2 R

(0)
1 . . .R

(q−1)
1

]
, (20)

whereR
(i)
1 = R(i) is the i-th component of the Krylov

matrix of the original system and R
(i)
2 = R̂(i) is its

derivative (see (13) and (18)). For each initial sam-
ple gk the corresponding Krylov matrix Kq(gk) is
computed using the block LSVD-MOR method.

To compute the reduced system of (7), an or-
thonormalization step is applied to the Krylov matrix
Kq using a Singular Value Decomposition (SVD) al-
gorithm to obtain the projection matrix:

V→ VΣUT = SVD(Kq) , (21)

that is then used for the congruence transformations
to compute the reduced matrices. In order to pre-
serve the block structure of the system (7), the pro-
jection matrix V ∈ R2ns×nr is partitioned in a block
fashion [23,24]:

V =

[
V1

V2

]
, (22)

where nr = q · np denotes the column size of the
Krylov matrixKq. The projection matrix blocks may
not have a full column rank nr, in particular the first
block V1, due to the presence of a block of zeros.
An orthonormalization step is applied to V1 in or-
der to obtain a matrix Ṽ1 whose columns span the
same space as the columns of V1, while having how-
ever a full column rank [24]. The same operation is

performed on V2 to obtain Ṽ2. The second block V2

has generally full column rank nr. After this step the
column size of the two blocks Ṽ1 and Ṽ2 may differ
with respect to the column size of V1 and V2. How-
ever, this does not influence the reduction of the full
system (7). Finally the projection matrix is written
as [23,24]:

Ṽ =

[
Ṽ1 0

0 Ṽ2

]
. (23)

In order to reduce the overall system in (7), the pro-
jection matrix (23) is used to compute the reduced
matrices by congruence transformations:[

Cr,1 0

Ĉr,2Cr,2

]
=

[
ṼT

1 0

0 ṼT
2

][
C 0

ĈC

][
Ṽ1 0

0 Ṽ2

]
[
Gr,1 0

Ĝr,2Gr,2

]
=

[
ṼT

1 0

0 ṼT
2

][
G 0

ĜG

][
Ṽ1 0

0 Ṽ2

]
[
Br,1 0

B̂r,2Br,2

]
=

[
ṼT

1 0

0 ṼT
2

][
B 0

B̂B

]
[
Lr,1L̂r,2

0 Lr,2

]
=

[
ṼT

1 0

0 ṼT
2

][
LL̂
0L

]
.

(24)

Algorithm 2 lists the steps of the proposed block
LSVD-MOR method to perform in order to obtain
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Fig. 2. Example of sampling design space grid.

the set of reduced matrices for the reduced sys-
tem. Concerning the proposed PMOR algorithm, the
block LSVD-MOR method is used to to generate the
Krylov matrix Kq(gk) of the system (7) for each ini-
tial sample in the design space.

B. Interpolation models
Once the set of matrices {P(gk),

Lp(gk),Cd(gk),R(gk),Kq(gk)}
Ktot

k=1 is available,
the corresponding interpolation models are built.
Figure 2 shows an example for the case of one
design parameter. Each interpolation model is built
starting from a set of samples indicated with red
dots (◦) in Fig. 2. For each (◦) sample in the
design space, a set of PEEC matrices and a Krylov
matrix are computed and the corresponding models,
that cover the entire design space, are built by the
means of an interpolation scheme. For interpolation
purposes the multivariate cubic spline interpolation
method [26], which is well-known for its stable
and smooth characteristics, is used. The proposed
interpolation scheme is continuous in the first and
second order derivatives and can be used in the
general case of an M-dimensional (M-D) design
space.

First, the interpolation models{
P(g),Lp(g),Cd(g),R(g)

}
are computed while

guaranteeing positive definiteness and semidefi-
niteness matrix properties [19, 20]. At this step,
according to Algorithm 2, it could be possible to
compute a set of reduced matrices for each point
of interest in the design space by using the block
LSVD-MOR method previously described. However,
to improve the efficiency of the proposed PMOR
method, we choose to create an interpolation model
for the Kq(g) matrix, starting from the correspond-
ing data samples Kq(gk). From the model Kq(g),
the values of the projection matrices V1(g) and
V2(g) can be computed for each point of interest in
the design space.

Inspecting equation (19), only the inter-

polation models of the matrices {R(i)
1 (gk)}

q−1
i=0

and {R(i)
2 (gk)}

q−1
i=0 (namely {R(i)

1 (g)}q−1
i=0 and

{R(i)

2 (g)}q−1
i=0 ) are sufficient to obtain the interpo-

lation model Kq(g). Furthermore, there is still
one degree of freedom about how to compute the

matrices {R(i)
2 (g)}q−1

i=0 :

1. As described in Algorithm 2;

2. directly as derivative of {R(i)

1 (g)}q−1
i=0 (see (13)

and (18)).

The latter option is based on the interpolation model

{R(i)

1 (g)}q−1
i=0 that can provide derivatives with re-

spect to g. This choice is preferred since it allows

storing only the model {R(i)

1 (g)}q−1
i=0 and then saving

memory resources, while keeping a similar accuracy.
Using the interpolation models{

P(g),Lp(g),Cd(g),R(g)
}

and {R(i)

1 (g)}q−1
i=0 ,

it is possible to obtain a set of PEEC matrices
and a set of projection matrices V1(g) and V2(g)
for each point of the design space. Applying the
congruence transformations, the sets of reduced
matrices {Cr,i(g),Gr,i(g),Br,i(g),Lr,i(g)}i=1,2 and{
Ĉr,2(g), Ĝr,2(g), B̂r,2(g), L̂r,2(g)

}
are computed.

The reduced version of (7) can be written as:[
Cr,1(g) 0

Ĉr,2(g)Cr,2(g)

] [
ẋr(t, g)̂̇xr(t, g)

]
=

−
[
Gr,1(g) 0

Ĝr,2(g)Gr,2(g)

] [
xr(t, g)
x̂r(t, g)

]
+

[
Br,1(g) 0

B̂r,2(g)Br,2(g)

] [
ip(t, g)

îp(t, g)

]
[
vp(t, g)
v̂p(t, g)

]
=

[
Lr,1(g)L̂r,2(g)

0 Lr,2(g)

]T [
xr(t, g)
x̂r(t, g)

]
. (25)

These reduced matrices are used to perform both
time- and frequency-domain sensitivity analysis, with
appropriate termination conditions.

IV. NUMERICAL EXAMPLES
Two numerical examples are proposed to vali-

date the proposed PMOR technique for sensitivity
analysis. Parameterized time- and frequency-domain
sensitivity analyses are performed with the proposed
PMOR technique and the results are compared with
the approach proposed in [19] and with the pertur-
bative approach (with respect to each parameter gm)
that in time- and frequency-domain reads:

v̂p,gm(t, g) =
vp(t, g1, .., gm +∆gm, .., gM )− vp(t, g)

∆gm
,

(26)

Ẑgm(s, g) =
Z(s, g1, .., gm +∆gm, .., gM )− Z(s, g)

∆gm
,

(27)
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wherem = 1, . . . ,M , M and ∆gm represent the num-
ber of parameters and the increment, respectively.
The accuracy of the perturbative approach depends
on the choice of the increment ∆gm: if the increment
is not small enough, the estimation of the derivative is
not accurate, while if the perturbation is very small
compared with the nominal value, numerical prob-
lems may occur due to numerical noise. This may
lead to inaccurate computation of the system sensi-
tivities. In contrast, thanks to the interpolation mod-
els, the methods presented in this paper and in [19]
lead to more accuracy and numerical stability, since
the derivatives are computed from continuously dif-
ferentiable polynomials built by means of spline func-
tions. The method [19] is denoted as Full Parameter-
ized while the proposed method is denoted as Block
PMOR in what follows.

In the numerical results (see Tables 1-2), for the
Full Parameterized and Block PMOR models, the
model evaluation CPU time indicates the average
time needed to evaluate the corresponding param-
eterized models in a point of the validation grid in
order to obtain a set of PEEC matrices. Moreover,
for the Block PMOR model, the SVD operation is
also part of the model evaluation. For the Perturba-
tive Approach, the model evaluation CPU time refers
to the average time needed to compute a set of PEEC
matrices by a PEEC solver at and around a point in
the validation grid, which are then used for a finite
difference calculation. Once the parameterized mod-
els are evaluated, or PEEC matrices have been com-
puted (perturbative approach), they can be used to
carry out sensitivity analysis in frequency- and time-
domain. For each of the three methods, the average
time needed to perform the sensitivity analysis in a
point of the validation grid is denoted as simulation
CPU time.

Numerical simulations have been performed on a
Linux platform on an AMD FX(tm)-6100 Six-Core
Processor 3.3 GHz with 16 GB RAM.

A. Metallic enclosure coupled to a transmis-
sion line

In the first example a metallic enclosure cou-
pled to a transmission line is studied. The cross
section is shown in Fig. 3. The geometrical di-
mensions are wc = 1mm, dc = 5mm, sl = 1mm,
dl = 30mm. A set of PEEC matrices is com-
puted over a grid of 6 × 6 values of the conductor
length lc ∈ [25− 65] mm and sc ∈ [7− 22] mm in
order to build the aforementioned parameterized re-
duced order model. Furthermore, a parameterized
full model has been built by means of the method [19]
for the comparison. The order of the full models
is 2870 while the reduced order is 471. Parame-

sl

dc

wc

sc

dl

dl

Fig. 3. Metallic enclosure coupled to a transmission
line (example A).

Table 1: Simulation time comparison (Example A).
The CPU time information related to time- and
frequency-domain analysis refers to an average value
of the CPU time needed to perform the sensitivity
analysis in a point of the validation grid

Block
PMOR

Full
Parameterized

Perturbative
Approach

Model eval 13 s 12 s 618 s
Time Simulation 6 s 161 s 48 s

Total 19 s 173 s 666 s
Model eval 13 s 12 s 618 s

Freq Simulation 37 s 639 s 944 s
Total 50 s 651 s 1562 s

terized time- and frequency-domain sensitivities are
performed over a validation grid of 5 × 5 values of
lc ∈ [29− 61] mm and sc ∈ [8.5− 20.5] mm. The ob-
tained results are then compared with the ones ob-
tained by the perturbative model (26), (27). For the
time-domain results, the bottom conductor is excited
by a smooth pulse voltage source with amplitude 1V,
rise/fall times τr = τf = 1.5 ns, width 6 ns and in-
ternal resistance RT = 50 Ω. All the ports are termi-
nated on 50 Ω resistances.

Figures 4-5 and 6-7 show time- and frequency-
domain results that confirm the high accuracy of the
proposed approach. Table 1 clearly shows the compu-
tational advantage of the proposed PMOR technique:
the CPU time required to perform both time- and
frequency-domain sensitivity simulations is consider-
ably improved with respect to the two other com-
pared approaches for a sensitivity analysis around a
nominal design point and therefore also for a global
sensitivity analysis. It is important to note that the
Block PMOR and Full Parameterized methods re-
quire a one-time effort to build the corresponding pa-
rameterized models that then allow global sensitivity
simulations. This CPU time for the Block PMOR
method is equal to 8236 s and for the Full Parame-
terized method is equal to 7513 s.
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Fig. 4. Time-domain voltage sensitivity with respect
to lc at the port 1 (example A).
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Fig. 5. Time-domain voltage sensitivity with respect
to sc at the port 2 (example A).
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Fig. 6. Magnitude of the sensitivity of Z11 with re-
spect to sc (example A).
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Fig. 7. Magnitude of the sensitivity of Z12 with re-
spect to lc (example A).
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h
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Fig. 8. Three conductors microstrip (example B).

B. Three conductors microstrip

Three coupled microstrips are modeled in this ex-
ample and Fig. 8 shows the corresponding cross sec-
tion. The geometrical dimensions are wc = 178µm,
tc = 35µm, d = 3mm and the length of the lines
is l = 40mm. The parameterized reduced order
and parameterized full models have been built start-
ing from a set of PEEC matrices computed over
a grid of 6 × 6 values of sc ∈ [0.1− 0.4] mm and
h ∈ [0.1− 0.3] mm. The order of the full models
is 3360 while the reduced order is 577. Parame-
terized time- and frequency-domain sensitivities are
performed over a validation grid of 5 × 5 values of
sc ∈ [0.13− 0.37] mm and h ∈ [0.12− 0.28] mm.
The obtained results are then compared with the per-
turbative approach (26), (27). For the time-domain
results, a smooth pulse voltage source with amplitude
1V, rise/fall times τr = τf = 1.5 ns, width 6 ns and
internal resistance RT = 50 Ω is applied on the first
conductor. All the ports are terminated on 50 Ω re-
sistances. Time-domain sensitivity results are shown
in Figs. 9, 10 while frequency-domain sensitivity re-
sults are shown in Figs. 11, 12. As in the previous
example, the results confirm the high accuracy of the
proposed method. Table 2 shows the simulation time
comparison that clearly confirms that the proposed
PMOR method considerably reduces the CPU time
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Fig. 9. Time-domain voltage sensitivity with respect
to sc at the port 1 (example B).
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Fig. 10. Time-domain voltage sensitivity with respect
to h at the port 3 (example B).

required for a sensitivity analysis with respect to the
other two methods around a nominal design point
and therefore for a global sensitivity analysis. As in
the previous example, an initial computational effort
is required to compute the Block PMOR and Full
Parameterized models that is equal to 9306 s for the
Block PMOR and to 8456 s for the Full Parameter-
ized method.

V. CONCLUSIONS
In this paper we have presented a new PMOR

technique to perform both time- and frequency-
domain global sensitivity analysis of PEEC circuits.
It is based on the PEEC method, the block Laguerre
SVD model order reduction technique and interpola-
tion schemes. Two numerical examples confirm the
high modeling capability and the improved efficiency
of the proposed approach with respect to existing sen-
sitivity analysis methods.
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Fig. 11. Magnitude of the sensitivity of Z13 with
respect to h (example B).
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Fig. 12. Magnitude of the sensitivity of Z44 with
respect to sc (example B).

Table 2: Simulation time comparison (Example B).
The CPU time information related to time- and
frequency-domain analysis refers to an average value
of the CPU time needed to perform the sensitivity
analysis in a point of the validation grid

Block
PMOR

Full
Parameterized

Perturbative
Approach

Model eval 11 s 10 s 699 s
Time Simulation 9 s 275 s 48 s

Total 20 s 285 s 747 s
Model eval 11 s 10 s 699 s

Freq Simulation 52 s 591 s 857 s
Total 63 s 601 s 1556 s

ACES JOURNAL, Vol. 31, No.10, October 20161177



VI. APPENDIX
This appendix illustrates the pseudo-code of the

Laguerre-SVD and the Block Laguerre-SVD algo-
rithms.
Algorithm 1 Laguerre-SVD Algorithm

Select values for α and q
R(0) ← (G+ αC)R(0) = B
for k = 1→ q − 1 do
R(k) ← (G+ αC)R(k) = (G− αC)R(k−1)

end for
Kq =

[
R(0),R(1), . . . ,R(q−1)

]
VΣUT ← SVD [Kq]
Cr ← VTCV, Gr ← VTGV
Br ← VTB, Lr ← VTL

Algorithm 2 Block Laguerre-SVD Algorithm

Select values for α and q
GN ← G+ αC, GR ← G− αC
ĜN ← Ĝ+ αĈ, ĜR ← Ĝ− αĈ

R
(0)
1 ← G−1

N B

R
(0)
2 ← Ĝ−1

N B+G−1
N B̂

for k = 1→ q − 1 do

R
(k)
1 ← G−1

N GRR
(k−1)
1

R
(k)
2 ←

(
Ĝ−1

N GR +G−1
N ĜR

)
R

(k−1)
1 +

G−1
N GRR

(k−1)
2

end for

Kq =

[
R

(0)
1 . . .R

(q−1)
1 0 . . . 0

R
(0)
2 . . .R

(q−1)
2 R

(0)
1 . . .R

(q−1)
1

]
nr = q · np

V← VΣUT = SVD(Kq)

V =

[
V1

V2

]
for i = 1, 2 do
If rank Vi = rVi

< nr determine an ns × rVi

matrix Ṽi with colspan Ṽi = colspan Vi and
rank Ṽi = rVi

end for

Ṽ =

[
Ṽ1 0

0 Ṽ2

]
Apply congruence transformations (24)
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