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Abstract ─ Modal analysis of frequency selective surface 
(FSS) containing ring loops arranged periodically along 
any two skewed coordinates, will be calculated. In 
proposed modal analysis, a compatible set of 
orthonormal mode functions used for ring loops in 
addition to Floquet modes which are used in every 
infinite two dimensional arrays. This set of modes 
provides faster convergence in solving integral equation 
in accordance with this boundary condition problem. 
Calculations are compared with results of CST (Finite
Integration Technique) and HFSS (Finite Element 
Method) full-wave simulators and they are in good 
agreement with each other. 

Index Terms ─ Frequency Selective Surface (FSS), 
ring loop, Substrate Integrated Waveguide (SIW), TE 
and TM polarizations. 

I. INTRODUCTION 
Frequency selective surface (FSS) as spatial filter 

[1-2], should have low insertion loss in passband and 
sharp roll-off rejection in out-of-band. However, these 
two characteristics are sufficient in filter designing, in 
spatial form of filters, stability of these characteristics 
about polarization and angle of incident is more 
important [3]. One of the significant parameters in this 
stability is symmetrical geometry. As circular loop is 
the most symmetrical object in all candidate elements in 
FSS designing, it is preferred to implement a stable FSS 
[4]. 

For the analytical calculation of electromagnetics 
problems such as boundary value conditions, modal 
analysis is the inseparable part of computations [5-6],
so in the analysis of this paper, modal method is 
utilized to extract reflection coefficient. 

Boundary value problem of open ended circular 
waveguide phased array, were solved generally by 
Amitay and Galindo [5]. They used the Ritz-Galerkin 
method to solve the integral equation. 

For the case of ring loops or apertures, if the 
method similar to Amitay and Galindo is utilized, the 
convergence is so slowly [7]. To speed up the  

convergence, in this paper, the fields of ring loop are 
expanded to a set of orthonormal mode functions which 
are compatible with geometry of ring loops and satisfy 
loop boundary conditions [7-8]. 

In this paper, thin perfectly conducting loops 
distributed periodically along any two skewed 
(nonorthogonal) coordinates is exposed with a plane 
wave of arbitrary polarization incident from any 
oblique angle like whatever seen in Fig. 1. The distance 
between loop elements should be less than λ/2. In the 
following parts of this paper, all the details of this 
method will be described and results are compared with 
simulations of CST and HFSS. 
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Fig. 1. Geometry of FSS with ring loops. 

II. THEORITICAL ANALYSIS 
According to Fig. 1, array of ring loops which is 

distributed periodically along skewed coordinates s1 

and s2, is illuminated by a plane wave with propagation 
vector, k̅. The angle between k̅ and the normal to the
surface is θ and between s1 and projection of k̅ is φ.

Near the array of FSS, the electromagnetic fields 
must satisfy the periodicity condition of Floquet 
theorem. By employing this theorem, the scalar wave 
equation (the time dependence is eliminated) is in the 
form of [7]: 

( ) ,pq pq pqj U x V y W z
pq e> � 	 	� (1) 

where 
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2sin cos ,pq
pU k

dx
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�
� 	 �  (3) 
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pq
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W
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� �  �� �
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 (4) 

which 
2 2 2 ,pq pq pqT U V� 	

p and q are Floquet indices. Wpq, the modal propagation 
constants, is positive for propagating modes and 
negative imaginary for evanescent modes. The space 
between elements and the direction of k, determine the 
number of propagating modes. The electric field 
components transverse to the z axis (TE and TM mode 
functions), then can be expressed in terms of ψ as: 

1
ˆ ˆ( ) modes,pq pq

pqTE pq
pq pqx y

V U
x y TE

T Td d
>9 � �  (5) 

1
ˆ ˆ( ) modes.pq pq

pqTM pq
pq pqx y

U V
x y TM

T Td d
>9 � 	 (6)

These fields are related to each other by modal 
impedance, as: 

0 ,pqTE
pq

k
W
;

; � (7) 

0 .pq
pqTM

W
k
;

; � (8) 

A plane wave with unit intensity electric field and 
in direction of (θ, φ), can be expressed as the sum of 
two E and H polarized plane waves. These plane waves, 
correspond to TE and TM Floquet modes with p,q=0.
So we have for incident electric and magnetic fields: 

2

00 00
1

,i
r r

r
E A

�

� 9� (9) 

2
00

00
1 00

ˆ( ),i r
r

r r

A
H z

;�

� &9� (10)

In the above expressions, r designates TE and TM 
modes. A00r is the magnitude of component. With Rpqr
as the reflection coefficient, the scattered fields can be 
expressed as: 

2

1
,s

pqr pqr
p q r

E R
�

� 9���  (11) 

2

1

ˆ( ).pqrs
pqr

p q r pqr

R
H z

;�

� � &9���  (12) 

The unknown reflection coefficient, Rpqr, according 
to orthonormality of modes is: 

*ˆ ,s
pqr pqr pqr

Loop

R z H da;� & �9//  (13) 

*
pqr9 is the complex conjugate of .pqr9  The boundary 

conditions then force that: 
0 ,i sE E over each loop	 �  (14) 

ˆ2 ( ) .i sz H H K over each loop& 	 �  (15) 
Substitution (9), (10) and (13) into (14) yields the 

integral equation: 
2

00 00
1

2
*

1

ˆ .

r r
r

s
pqr pqr pqr

p q r Loop

A

z H da;

�

�

9 �

� 9 & �9

�

��� //
(16) 

Here we replace the induced current, ˆ sz H� &  with 
another set of orthonormal mode functions which are 
compatible to geometry of loops and satisfy boundary 
conditions, as: 

2

1

ˆ ( ) .s
mnl mnl TEM TEM

m n l
z H B B> >

�

� & � 	���  (17) 

l=1 and l=2 designate TE and TM mode 
respectively, then ̅ψmnl and ̅ψTEM for a ring loop can be 
expressed as [9]: 

'

' ' '

ˆ ( )sin

ˆ ( )cos ,

TE
mn n cmn

cmn n cmn

n Z k n

k Z k n

> 7 7 �
7

� 7 �
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(18) 

'ˆ ( )sin

ˆ ( )cos ,

TM
mn cmn n cmn

n cmn

k Z k n
n Z k n

> 7 7 �

� 7 �
7

�

	
 (19)

$ %1
ˆ ˆcos sin ,

ln
TEM x y

b
a

> � �
7

� 	  (20)

which [10]: 
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kcmn is the mth root of: 

' ' ' ' ' ' ' '( ) ( ) ( ) ( ) 0.n c n c n c n c
b bY k J k J k Y ka a� �

And kćmn is the mth root of: 
( ) ( ) ( ) ( ) 0.n c n c n c n c

b bY k J k J k Y ka a� �

If both sides of (16) multiplied by the complex 
conjugate of ̅ψmnl and ̅ψTEM, after that the products are 
integrated over the ring loop, the results are [7]:
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where 
* * ,MNL
pqr MNL pqr

Loop

C da>� �9//  (23)

* * .TEM
pqr TEM pqr

Loop

C da>� �9// (24)

The integral equation can be rewritten as: 
$ % $ %.mnl

MNL mnl mnlZ B D' ( �) * (25)
Which Z is a square matrix in which the row index 

is designated by M,N,L and the column index is 
designated by m,n,l. As there is no mn=00 mode, the 
TEM mode is called 00 mode (Don’t care l) in matrix 
implementation. The matrix elements are given by: 

2
*

1
,mnl MNL mnl

MNL pqr pqr pqr
p q r

Z C C;
�

' ( �) * ���  (26)

and

$ %
2

*
00 00

1
.mnl

mnl r r
r

D A C
�

� � (27)

mnl
pqrC is the coupling coefficient between modes in 

the both sides of interface and it can be seen as scalar 
products of these modes. Keep in mind that: 

r=l=1 related to TE modes. 
r=l=2 related to TM modes. 

mn=00 related to TEM mode. 
After a lot of mathematics calculations the close 

form of these integrals extract as bellow: 
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To calculate the reflection coefficient Rpqr, first, the 
unknown coefficient Bmnl and BTEM should be evaluated 
from (25) and then these values substituted in (17). The 
number of modes for each region should be chosen 
carefully which only the significant modes are assigned 
[7]. 

III. RESULTS 
According to the formulation achieved in the 

previous section, and for the case of geometry of Fig. 1,
and for all Floquet modes which Tpq (transverse wave 
number) in them are less than 10 times the k (wave 
number) and for 12 lowest modes for circular loop, the 
reflection coefficient, is calculated. Increasing the 
number of modes cause to obtain more accurate 
response in the expense of times (Because the output of 
integral equation is a multiterminal network and there 
are a lot of nested loop in it, therefore it grows rapidly).
For a new geometrical parameters and frequency band, 
sometimes it is time consuming procedure to find the 
optimized number of modes (often up to 9 and less than 
14). But by determining the optimized number, for a 
wide range of parameters and frequency bands in the 
vicinity of that case, it can be ok. 

The geometrical parameters of a sample FSS array 
are described in Table 1.  

Table 1: Geometrical parameters for FSS array 
Parameter Value Parameter Value
a 5 (mm) b 6 (mm)
dx 15 (mm) dy 15 (mm)
α 90°

The results are plotted in Fig. 2, for normal 
incidence (TE or TM plane wave) in compare with CST 
and HFSS simulators. In Fig. 3, the reflection 
coefficient for some θ and TE polarization is plotted. 
Also in Fig. 4, it is repeated for TM polarization. As it 
is clear in both polarizations, by increasing θ the 
resonant frequency reduced somewhat. 

8 9 10 11 12 13
0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (GHz)

Re
fle

ct
io

n 
Co

ef
fic

ie
nt

 

 

Modal Analysis
CST Simulation
HFSS Simulation

Fig. 2. Comparison of reflection coefficient between 
modal analysis, CST and HFSS simulation.
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Fig. 3. Reflection coefficient for some angles of 
incidence and TE polarization.

8 9 10 11 12 13
0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency(GHz)

R
ef

le
ct

io
n 

C
oe

ff
ic

ie
nt

 

 

TM 1o

TM 15o

TM 30o

TM 45o

Fig. 4. Reflection coefficient for some angles of 
incidence and TM polarization.
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IV. CONCLUSION 
Modal analysis of a FSS containing ring loops is 

formulated and calculated. For this geometry, a set of 
orthonormal mode functions compatible with circular 
loop were defined to replace the induced current. This 
replacement and setting an optimized number of modes 
can cause to faster convergence than a simple integral 
equation with just Floquet modes.

The results were compared with CST and HFSS 
simulators and relatively good agreement was achieved. 
Also, as the ring element has the best geometrical 
symmetry, the frequency response for proposed FSS 
has stable characteristics about incident polarization 
and angle up to 45°.
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