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Abstract�Efficient and unsplit-field higher-order 
PML formulations using the stretched coordinate 
perfectly matched layer (SC-PML) formulations 
and the bilinear Z-Transform (BZT) method are 
presented for truncating the finite-difference 
time-domain (FDTD) lattices. This method is 
completely independent of the material properties 
of the FDTD computational domain and hence can 
be applied to the modeling of arbitrary media 
without any modification because of the D-B 
constitutive relations used. The higher-order PML 
has the advantages of both the conventional PML 
and the complex frequency-shifted PML 
(CFS-PML) in terms of absorbing performances. 
Two 3D FDTD simulations of the metal plate 
buried in dispersive soil space FDTD domains have 
been carried out to validate these formulations. It is 
shown that the proposed PML formulations with 
the higher-order scheme are efficient in terms of 
attenuating both the low- frequency propagating 
waves and evanescent waves and reducing 
late-time reflections.

Index Terms�Bilinear Z-transform (BZT) method, 
finite-difference time-domain (FDTD), and 
perfectly matched layer (PML).

I. INTRODUCTION
Since the introduction of the perfectly matched 

layer (PML) absorbing boundary condition by 
Berenger [1], various modified PMLs have been 

presented to terminate the finite-difference time- 
domain (FDTD) lattices. Among the various 
implementations of PMLs, the stretched coordinate 
PML (SC–PML) by Chew and Weedon [2] has the 
advantage of simple implementation in the corners 
and edges of PML regions. Furthermore, Ramadan 
applied Z-transform to implement PML [3]. 
Recently, complex frequency-shifted PML 
(CFS–PML), introduced by Kuzuoglu and Mittra 
[4] and implemented by simply shifting the 
frequency- dependent pole off the real axis and into 
the negative-imaginary half of the complex plane, 
has drawn considerable attention due to the fact that 
this PML is efficient in attenuating low-frequency 
evanescent waves and reducing late-time 
reflections [5]. However, the CFS-PML would 
have a poor absorption of low-frequency 
propagating waves as shown in [6-8]. To overcome 
the limitations of both the conventional PML and 
the CFS-PML, the higher-order PML was proposed 
by Correia, which retains the advantages of both the 
CFS-PML and conventional PML in [8]. It has 
shown that the 2nd-order PML is highly effective in 
absorbing both evanescent and low-frequency 
propagating waves in both open-region and 
periodic problems in [9]. In [9], the 2nd-order PML 
based on the SC-PML was implemented by using 
the split-field PML formulations and the auxiliary 
differential equation (ADE) method. However, 
besides the drawback of more requirements of the 
memory and the computational time, the 
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higher-order PML implementation proposed in [9] 
was difficult to be extended to the case with more 
than two poles because the polynomial expansion 
was employed. 

In this paper, efficient and unsplit-field 
higher-order PML formulations are proposed based 
on the SC-PML formulations and the bilinear 
Z-transform method. The proposed BZT PML 
algorithm is different from the proposed PML 
algorithm in [9] and [12-19], the proposed BZT 
PML algorithm is based on D-B formulations, and 
consequently, the proposed higher-order PML 
formulations require less memory and 
computational time as compared with that in [9]. 
Two 3D numerical simulation for the metal plate 
buried in dispersive soil space FDTD domains are 
given to validate the proposed formulations, as the 
investigation on the performance of the 
higher-order PML for dispersive soil half-space 
problem is very rare in the literatures. Only the 
2nd-order case is described in this paper, but this 
approach is easy to be applied to any number of 
poles.

II. FORMULATION
In the SC-PML regions, the -projection of 

Ampere’s law for the frequency-domain modified 
Maxwell’s equations can be written as, 
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To make the PML completely independent of 
the material properties of the FDTD computational 
domain, equation (1) can be written in terms of the 
electric flux density D as,

0
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where "� , "  is the relative permittivity of 
the FDTD computational domain. Consequently, 
this PML can be applied to truncate arbitrary media 
and all that is needed is to modify "�  under 
consideration. The method is available in [11] to 
obtain E from D. $ ( ,or )$ � is the complex 

stretched coordinate variable.
For the conventional PML, $ is defined as,

0/$ $ $% & !"� �                     (3) 

where 0$& '  is the conductivity profile different 

from zero only in the PML region to provide 

attenuation for the propagating waves and 1$% '  is 

different from 1 only in the PML region to attenuate 
the evanescent waves. 

With the CFS scheme, $ is defined as, 

0/ ( )$ $ $ $% & � !"� � �                   (4) 

where $�  is assumed to be positive real. 

The idea of the higher-order PML was 
proposed in [9] by generalizing this metric for the 
case where more than one pole was present. For the 
2nd-order PML, $ is defined as, 
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Transforming equation (2) from the frequency 
domain to the -domain, we obtain, 

1

0
1

( ) ( )"
� ##�

� * � *
/ # #

         (6) 

where /  is the time step and ( )$ , ( , )$ � , is 

the -transform of 1/ $, which can be obtained by 
first transforming 1/ $ to the s-domain using the 
relation !0 , and then applying the bilinear 
transform method [10] using the relation 
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Substituting equation (7) into equation (6), we 
obtain,
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Introducing four auxiliary variables $ and

$ ( , )$ � ,
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Considering that the 1�  operator corresponds to a 
single-step delay in the discrete time domain, 
equation (9) to equation (12) can be written in the 
FDTD form, respectively, as equation (13) to 
equation (16), where 
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Equation (8) can be written as, 
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where 1 2 0/ "� / / and 1 2 0/ "� / / .

/  and /  are space step. A similar method can be 
used for other regions of SC-PML. 

In order to perform a comparison between the 
proposed higher-order PML formulations and the 
higher-order PML formulations proposed in [9] in 
terms of the amount of the auxiliary variables, we 
assume an FDTD computational domain of L × M × 
N cells with W-cell thick PML used on each one of 
the sides of domain. In the SC-PML region, the 
higher-order PML formulations proposed in [9] 
totally requires 288W3 + 112(LW2+MW2+NW2) + 
40(LMW+LNW+MNW) auxiliary variables, 
however, the proposed higher-order PML 
formulations totally requires 192W3 + 64(LW2+
MW2+NW2) + 16(LMW+ LNW+ MNW) auxiliary 
variables. As a result, the proposed higher-order 
PML formulations save 96W3 + 48(LW2 +MW2+
NW2)+24(LMW+LNW+MNW) auxiliary 
variables as compared with the higher-order PML 
formulations proposed in [9]. Saving auxiliary 
variables multiply by each variable, which occupies 
number of bytes in memory, which can be 
concluded that the proposed higher-order PML 
formulations save memory as compared with the 
higher-order PML formulations proposed in [9]. 
Obviously, if an FDTD computational domain (L, 
M, and N) is constant, saving memory will increase 
as the increase of PML layers. Similarly, if PML 
layers are constant, saving memory will increase as 
the increase of FDTD computational domain (L, M, 
and N). 

It is obvious that, because of no polynomial 
expansion, the proposed implementation of the 
higher-order PML is easier than that in [9] to be 
extended to the case with more than two poles. 

III. NUMERICAL RESULT
To show the validity of the proposed 

formulations, we implement a 3D FDTD simulation 
for the metal plate buried in an inhomogeneous, 
dispersive, and conductive soil half-space problem 
in a highly elongated FDTD grid. The metal plate 
size is 40� 10� 2. The dielectric constant of soil is 
specified as the second-order Debye model with an 

added conductivity term ( )" ! � 0/" & !"� �

2
1 /(1 )!3��� � , where "

�
� 4.15 is the 

infinite frequency permittivity, 
1
=1.8 and

2
=0.6

are the pole amplitudes, 
1
3 =3.79 nsec and 

2
3 =0.151 nsec are the relaxation time and & =1.11
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ms/m is the conductivity. The half-space occupies 
50 % of the vertical height of the horizontally 
elongated simulation region. The space is 
discretized with the FDTD lattice with / =/  = /z
= 0.05 m and time step is / = 77 ps. The simulation 
is done with a 126� 46� 26 grid including 10-cell 
thick PML layers, as shown in Fig. 1. Assuming 
that the origin is at a corner of the FDTD grid, a 
vertically polarized point source located at (13, 13, 
13) (above the soil) is excited by a differentiated 
Gaussian pulse with a half pulse bandwidth � 1155
ps. Within the PML, &$ and %$ are scaled using a 
fourth-order polynomial scaling and �$ is a 
constant. The relative reflection error (in decibels) 
versus time is computed at an observation point 
located at (113, 33, 12) using error (decibels) 

10( ) 20 log (| ( )� � _ max( ) | / | |) where

( )  is the field computed using the test domain, 

and ( )  is the reference field based on an 

extended lattice, and _ max is the maximum value 

of the reference solution over the full-time 
simulation. For the 2nd-order PML, the relative 
reflection error between the formulations in [9] and 
the proposed formulations is first computed over 
1500 time steps for 1 opt 0.175 /150$& �� / , 1$% =1,

1 0$� � , 4
1 1 opt$ $& & �� , 2 10.0055 ,$ $� &� �

2
2 2 opt ,$ $& & �� 2

2 2 opt1 ,$ $% % �� � 2 opt 10$% � and

2 opt 4 /150$& �� / . Where the opt& is chosen 

as opt ( 1) /150& �� � / and �  is zero at the 

interface of the PML and the FDTD computational 
domains and 1 at the end. This same example is 
repeated with the SC-PML ( 0$� � max 11% �  and 

max 0.18 S/m& � ) and the convolution PML in [5] 
( 0.0055$� � , max 0.24 S/m& � and max 7% � ). In 

this paper, & and %  are evaluated as the average 
value in the cell around the index location [1]. 
These optimum parameters are chosen empirically 
to obtain the lowest reflection. The results are 
illustrated in Fig. 2.

The maximum relative reflection errors of the 
conventional SC-PML, the CPML, the 2nd-order 
PML in [9], and the proposed 2nd-order PML are 
-45dB, -52dB, -62dB and -70dB, respectively. It 
can be concluded from Fig. 2 that the absorbing 
performance of the proposed 2nd-order PML 
formulations have 18 dB and 25 dB improvement in 

terms of the maximum relative error as compared 
with the CPML and the SC-PML, respectively, and 
holds much lower reflection error for the late-time 
region than the CPML and the SC-PML. Table I 
and II are using different perfectly matched layer 
algorithm procedures, which occupy of memory 
and different time steps, and computational time, 
respectively. Obviously, when FDTD 
computational domain is invariant, saving memory 
will increase with the increase of PML layers and 
saving time will increase with the increase of time 
steps.

Soil

PML 

PML 

Excite source

Observation P

X

Z

Metal Plate

Fig. 1. A metal plate buried in an inhomogeneous, 
dispersive, and conductive soil half-space problem. 

Table I: Memory requirements (bytes) for the 
different PML implementations. 

 PML 
layers=10 

PML
layers=16 

2nd-order PML in 
[9] 

49,506K 105,509K 

Proposed 2nd- 
order PML 

30,848K 65,244K 

CPML 24,084K 49,664K 
SC-PML 24,084K 49,672K 

In the second numerical example, in order to 
validate the proposed formulations, the problem of 
the electromagnetic scattering by a highly 
elongated object is studied. Particularly, a thin 100 
mm� 25 mm plate is immersed in a background 
media [5] with constitutive parameters " and& . For 
the purposes of this study, constitutive parameters 

for soil are assumed, giving & =0.273 and " =7.73.

The plate is illuminated by a vertically polarized 
electric current element placed just above one 
corner of the plate. The current source is given a 
differentiated Gaussian time signature with a 6 GHz 
bandwidth. The simulation is done with a 
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126 51 26� �  grid including 10-cell-thick PML 
layers placed only three cells from the scatter on all 
sides with the space steps / = / = /  = 5 mm, as 
shown in Fig. 3. Within the PML, &  and %  are 
scaled using an th order polynomial scaling. It is 
noted that � is not scaled, and is constant through 
the PML. 

Table II: Computational time (s) for different PML 
implementations (PML layers = 10). 

 Time steps
=2000

Time steps 
=4000

2nd-order PML in 
[9] 

757.90 1390.48 

Proposed 2nd- 
order PML 

484.18 828.30 

CPML 312.48 625.08 
SC-PML 314.55 626.53 

100 300 500 700 900 1100 1300 1500
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-110
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  E
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(d

B
) SC-PML

CPML
2nd-order PML in [9]
Proposed 2nd-order PML

Fig. 2. The relative reflection error of the 
conventional SC-PML, the CPML, the 2nd-order 
PML in [9] and the proposed 2nd-order PML for a 
metal plate buried on an inhomogeneous, 
dispersive, and conductive soil half-space problem. 

Fig. 3. Shows the FDTD grid geometry in this 
simulation. 

To study the reflection error due to the 
proposed PMLs, a reference problem is also 
simulated. To this end, the same mesh is extended 
75 cells out in all dimensions, leading to a 272 �
201 � 176 cell lattice. The proposed PMLs are used 
to terminate this lattice with optimal PML 
parameters to minimize any spurious reflection. 
The fields within the lattice are then excited by an 
identical source, and the time-dependent fields are 
recorded within the region representing the original 
lattice. The relative reflection error (in dB) versus 
time is computed at an observation point in the 
corner of the computational domain using 

xref x_refmax10( )=20 log ( ( ) ( ) )� where

( ) represents the time-dependent discrete 

electric field of the observation point, 
xref

( ) is a 

reference solution based on an extended lattice, and 

x_refmax
represents the maximum value of the 

reference solution over the full-time simulation. 
The relative error computed is recorded in Fig. 4. 
The relative reflection error is first computed over 
1800 time iterations. This same example is repeated 

with SC-PML ( $� =0 max% =14 and max& =2.290

S/m) and the convolution PML (CPML) [5] 

( $� =0.04 max% =11 and max& =4.198 S/m). For 

the 2nd-order PML including the proposed PML 
formulations and the formulations in [9], the 
following parameters are chosen: 

1$% =1, 1 0$� � , 1 opt 0.175 150$& �� / ,
4

1 1 opt$ $& & �� , 2 opt 14$% � ,   2
2 2 opt1$ $% % �� � ,

2 10.04$ $� &� � , 2 opt 4 150$& �� / and
2

2 2 opt$ $& & �� , where �  is zero at the interface of 

the PML and the FDTD computational domains and 
1 at the end. In all computations of this paper, & and 
% are evaluated as the average value in the cell 
around the index location [1]. These optimum 
parameters are chosen empirically to obtain the 
lowest reflection.

These results are illustrated from Fig. 4. The 
maximum relative reflection errors of the 
conventional SC-PML, the CPML, the proposed 
2nd-order PML and the 2nd-order PML in [9] are 
-50dB, -86dB, -93dB, and -93dB, respectively. It 
can be concluded from Fig. 4 that the absorbing 
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performance of the proposed 2nd-order PML 
formulations has more 7dB and 43dB improvement 
in terms of the maximum relative error as compared 
with the CPML and the SC-PML, respectively, and 
holds much lower reflection error for the late-time 
region than the SC-PML. 
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Fig. 4. The relative reflection error of the 
conventional SC-PML, the CPML, the 2nd-order 
PML in [9] and the proposed 2nd-order PML. 

Tables III and IV are using different perfectly 
matched layer algorithm procedures, which occupy 
memory and different time steps, which occupy of 
computational time, respectively. Obviously, when 
FDTD computational domain is invariant, saving 
memory will increase with the increase of PML 
layers and saving time will increase with the 
increase of time steps. 

Table III: Memory requirements (bytes) for the 
different PML implementations. 

 PML 
layers=10 

PML
layers=16 

2nd-order PML in 
[9] 

43,803K 98,748K 

Proposed 2nd- 
order PML 

31,288K 65,832K 

CPML 25,343K 53,323K 
SC-PML 26,332K 55,428K 

IV. CONCLUSION
Efficient and unsplit-field higher-order PML 

formulations based on the SC-PML and the bilinear 
Z-transform method has been presented. It can be 
shown in the numerical simulation that the 
proposed 2nd-order PML formulations hold good 

absorbing performance in terms of attenuating both 
the low-frequency propagating waves and 
evanescent waves, and also require less memory 
and computational time as compared with that in 
[9]. 

Table IV: Computational time (s) for the different 
PML implementations (PML layers=10). 

 Time steps 
=1000

Time steps 
=2000

2nd-order PML in 
[9] 

707.37 1443.65 

Proposed 2nd- 
order PML 

500.98 1031.18 

CPML 378.07 777.51 
SC-PML 381.70 780.51 
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