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Abstract� High order techniques are known to be 
effective for the electromagnetic analysis of 
smooth structures. In the following, high order 
representations developed for the current density 
at edges and junctions are incorporated into the 
locally-corrected Nyström method. Conducting 
structures used for purposes of illustration include 
a strip, a structure with three fins and a junction, 
and a hexagonal cylinder. Results suggest that the 
accuracy of the numerical results obtained with the 
new approach is comparable to that obtained for 
problems with smooth surfaces.
 
Index Terms�Edge singularities, high order 
representations, junction conditions, and singular 
basis functions.
 

I. INTRODUCTION
High-order numerical techniques are those in 

which the representation of the primary unknown 
is usually in terms of a polynomial of degree  � 2 
and the convergence rate of the solution is much 
faster than O( 2), where  is the nominal cell 
dimension. These techniques have been effective 
for obtaining high accuracy and rapid convergence 
in numerical solutions of integral equations for 
electromagnetics [1-3], at least for smooth 
structures. Recent publications report a method-of-
moments (MoM) procedure that permits similar 
improvement in accuracy for 2D structures with 
edges where the current density or charge density 
exhibits a singularity [4-5]. That approach used a 
high order representation containing appropriate 
fractional powers of polynomial terms in the cells 
adjacent to an edge where a current singularity 
occurs. For those structures, the rate of decrease in 

the error improves with reduced cell sizes as either 
the basis function or the representation order 
increases. In the following, a similar procedure is 
incorporated into the locally-corrected Nyström 
(LCN) method.   

In Nyström approaches, the representation of 
the unknown quantity is provided indirectly by a 
quadrature rule. Degrees of freedom such as the 
fractional polynomial powers needed for edge 
singularities can be obtained by the use of 
quadrature rules specifically created to incorporate 
those terms. Extensions of the LCN for the special 
case of a knife-edge singularity were previously 
proposed by Gedney et al. [6], Gedney [7], and 
Tong and Chew [8]. The present work differs in 
that it is applicable to corners of any angle, and it 
incorporates quadrature rules that can integrate 
multiple singular terms at each edge in order to 
achieve true high order behavior.  Results indicate 
that as the order of the representation for the 
current density increases, the accuracy of the 
solution improves at the same rates observed for 
smooth geometries. 

The LCN method is usually implemented 
without imposing any condition on the continuity 
of the current density representation across cell 
boundaries. Consequently, one might question the 
extent to which the LCN results near a junction 
between three or more cells (such as the “fin” 
structure in Fig. 1) satisfy Kirchhoff’s current law 
(KCL). In fact, high order behavior is not obtained 
unless the current density is modeled to the same 
accuracy level everywhere. In the following, an 
approach similar to that used at edges is applied to 
model the current density in cells adjacent to 
junctions. 
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Fig. 1. A perfectly conducting structure, consisting 
of 3 fins and a junction. The structure is infinite in 
the  direction, and the angle between adjacent fins 
is 120 degrees. 

 
A preliminary description of the treatment of 

edges, with examples that differ from those 
presented below, was given in [9] and [10]. The 
treatment of junctions using the MoM and LCN 
was briefly discussed in [11]. An extensive list of 
references on the treatment of edge singularities 
was included in [4]; a similarly extensive list of 
references on the LCN approach may be found in 
[10]. 

 
II. SINGULAR REPRESENTATION FOR

EDGES
A solution for the surface current density 

induced on an infinite wedge is developed in [12]. 
Based on those results, a general asymptotic 
expression for the current density as a function of 
� on the face of a wedge (Fig. 2) with interior 
angle �, near the tip (� = 0), can be written for the 
transverse magnetic (TM)-to-  case as, 
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where a cylindrical coordinate system (�, 
, ) is 
employed. In equation (1), 
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A similar expression for the transverse electric 
(TE)-to-  case is, 
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where 	  is defined as, 
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Fig. 2. Wedge tip geometry. 
 

To properly model singular edge currents in 
the context of the MoM, reference [4] proposed 
basis functions for use in cells adjacent to 
geometric corners. For cells that are not adjacent 
to a corner of the contour, a Legendre expansion 
of order  is employed. In the corner cells, the 
representation is augmented by including some 
number of terms with non-integer exponents from 
equations (1) or (3). Empirical evidence [4-5] 
suggests that the singular behavior can be confined 
to single edge cells if those cells are sufficiently 
large (perhaps a quarter wavelength in dimension). 
Since the singular representation in equations (1) 
or (3) is sufficient only in a small neighborhood of 
the edge, for large cells it is necessary to mix 
regular (polynomial) terms with the singular terms 
to properly represent currents throughout that cell. 
The authors concluded in [5] that if  polynomial 
terms are used in non-corner cells, the local error 
near the corner can be reduced to the level of the 
error produced in the cells away from the corner 
by combining  regular terms and  singular terms 
in corner cells that are twice the size of the non-
corner cells. The latter approach is used in the 
following to create quadrature rules that can be 
used within a Nyström discretization, and also as 
the basis functions used for local corrections.   

Examples to follow will employ structures 
with interior wedge angles of 0 and 120 degrees.  
From equation (1), the transverse-magnetic-to-  
(TM) current near 0 degree angle involves 
exponents, in increasing order, of 
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For the transverse-electric-to-  (TE) case, the set 
of exponents for a 0 degree angle obtained from 
equation (3) is 
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For the 120 degree case, TM currents require the 
exponents 
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while TE currents require 
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However, using the approach of [5], the 
representation for currents at an edge incorporates 
an equal number of singular terms and regular 
terms. When integer exponents occur in the series, 
and duplicate the regular terms in the basis set, we 
incorporate additional fractional exponents from 
the series in their place. Table I summarizes the 
suggested degrees of freedom for a 0 degree TM 
corner (a knife edge).   

 
Table I: Exponents of the degrees of freedom used 
for a given order, for cells near a 0 degree corner 
(TM case). The corner cells involve twice as many 
degrees of freedom as the other cells, but are to be 
twice as large. 

 
 

Terms with the exponents in Table I are used 
to construct a hierarchical basis set as described in 
[4] and [10]. As an example, the “order-2” 
representations in the end cells for the 0 degree 
TM corner is obtained using the 4 functions 
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where a local coordinate 0 � � 1 is employed 
with  = 0 at the corner, and a basic Gram-
Schmidt procedure is used to produce an 

orthogonal set. (Since the -1/2 term cannot be 
integrated with itself, here basis functions 
incorporating the four terms are orthogonalized in 
the reverse order they appear in equation (5) to 
produce the set of equation (9). In the non-edge 
cells, an order-2 representation is obtained using 
the constant and linear Legendre polynomials, 

       1,  2 �1� �           (10) 

to represent the currents. 
 

III. LCN IMPLEMENTATION
The LCN approach was proposed in [1] and is 

described in many publications, including [10], so 
we omit a review of the technique. Reference [10] 
also describes the details of how we treat the 
electric-field integral equation (EFIE) and 
magnetic field integral equation (MFIE), including 
the Green’s function singularities. 

Two important aspects of an LCN approach 
necessary to implement the singular representation 
described above are a set of basis functions that 
can be used to “locally correct” the kernel of the 
integral operator when the sources reside in a cell 
containing a corner singularity, and a family of 
quadrature rules that can integrate the singular 
functions to high accuracy. The basis functions are 
obtained by combining the degrees of freedom 
associated with a particular wedge angle with 
polynomials, and orthogonalizing those terms 
using a Gram-Schmidt process, as described above 
for a 0 degree angle and discussed in [4] and [10] 
in more generality. Quadrature rules that can 
integrate the singular functions are usually not 
readily available, and for this work are synthesized 
from an expanded set of appropriate degrees of 
freedom, using a procedure similar to that of [13], 
which is also reviewed and explained in [10]. 
Several of these rules are provided below. Since a 

-point quadrature rule can exactly integrate 2  
independent terms, additional degrees of freedom 
from the family of terms for the relevant corner 
angle were employed in the generation of the 
quadrature rules. As in the non-singular case, 
when the quadrature rules are related to the basis 
functions in this manner, the accuracy of the 
overall LCN analysis will be limited by the basis 
functions used within the local correction 
procedure, and not by the quadrature rules. 

The region over which the basis functions 
described above are used to “locally correct” the 
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singular kernel is the .  In 
this work, local corrections are used whenever the 
observer or test point is within 0.15 � of any part 
of the source cell, where � denotes the 
wavelength. Otherwise, the actual Green’s 
function is sampled in accordance with the 
classical Nyström procedure. The 0.15 � footprint 
was selected after extensive numerical 
experiments. A more sophisticated scheme would 
adapt the size of the local correction footprint as 
needed to maintain a smooth transition between 
the synthetic and actual kernels. 

To demonstrate the accuracy of the results that 
follow, we solve a 2:1 over-determined system of 
equations using a least-square algorithm [2], and 
calculate the normalized residual error ( ) for 
the result from the residual of the over-determined 
system, as originally suggested by Bunch and 
Grow [14-15]. The  is defined for the TM-to-  
electric-field integral equation (EFIE) on a 
perfectly conducting target as in [2], 
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where { } and { } denote Gauss-Legendre 
quadrature nodes and weights.  is the total 
number of points included in the measure. For a 
global measure of ,  is the total number of 
test points on the target. Alternatively, the  
can be determined on a cell-by-cell basis; in that 
case equation (11) is computed for each cell with 

 equal to the number of test points within that 
cell. As noted above, the number of test points in a 
corner cell is twice the number of test points in 
other cells not adjacent to a corner. For the MFIE 
or the transverse-electric (TE) EFIE, equation (11) 
is modified in an obvious way to implement the 
appropriate residual. 

LCN unknowns are the samples of current 
density at the nodes of a quadrature rule. Since the 
integral equation is enforced at twice as many 
match points as unknowns, the test points are not 
the nodes defining the unknown samples. In this 
study, test points are the nodes of a Gauss-
Legendre rule with the appropriate number of 
points, even in the end cells where a different 
quadrature rule is used to define the LCN 

discretization. Appendix A describes an 
interpolation approach used to distribute the 
weights associated with the identity operator in the 
MFIE.   

The rate at which the global  decreases as 
a function of cell size or number of unknowns can 
be used to judge the extent to which high order 
behavior is exhibited by the results. Consider two 
results, the first yielding 1 with 1 unknowns, 
and the second exhibiting 2 with 2 
unknowns. The incremental slope of the associated 
error curve may be obtained from successive 
results using, 

   �
log
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2
) � log
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(

1
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log
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2
) � log

10
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  (12) 

where the subscript serves as a reminder that the 
expansions are of order . For scatterers with 
smooth surfaces [2], and targets with edges treated 
by the MoM approaches of [4-5], values of 
equation (12) often approximate integers as  
increases. Similar behavior is observed with the 
LCN results. 

We use an over-determined system of 
equations to compute the  and its slope and 
estimate the accuracy of a result. If the error 
estimate is not needed, LCN results can be 
obtained more efficiently with square systems of 
equations [10]. 

 
IV. EXAMPLE: SCATTERING FROM A

CONDUCTING STRIP
To illustrate the approach, consider the 

scattering of a uniform TM plane wave from a flat, 
perfectly conducting strip with width of 7 
wavelengths. The numerical solution is obtained 
by an application of the LCN approach to the 
EFIE. Gauss-Legendre quadrature rules are used 
within the LCN process for interior cells, while the 
special rules generated for knife-edge corners (� = 
0) are used in end cells. These quadrature rules for 

 = 1–3 are given in [10]. End cells are twice the 
dimension of other cells and use twice as many 
degrees of freedom (special quadrature rules for 
Nyström sampling and a number of singular terms 
equal to the number of regular terms in the 
functions used for the local corrections). 

A high accuracy reference solution for the 
induced current  on a conducting strip can be 
obtained in terms of an eigenfunction series of 
Mathieu functions [16]. To assess the accuracy of 
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the current density, Fig. 3 shows the error as a 
function of position on a strip modeled with 26 
cells for two cases (the results are actually the 
superposition of the currents on either side of the 
strip). In the first case (the upper plots in Fig. 3), 
the end cell discretizations are obtained from the 
conventional LCN quadrature (Gauss-Legendre) 
rules, with the local correction provided by 
Legendre polynomial functions. In other words, no 
special edge treatment is applied. In the second 
case, the representation in the end cells is provided 
using quadrature rules that can integrate the 
mixture of exponents appearing in equation (5), 
and the local corrections are obtained using 
functions such as those in equation (9). 

Figure 3 shows that if the conventional LCN 
representation is used in the end cells, there is no 
significant improvement in the results beyond 
order = 2. However, when the singular 
representation is used in the end cells, there is a 
continuous improvement in the accuracy of the 
results as  increases, and the average error has 
improved by a factor of 10–9 for  = 8. We define 
the global normalized error in the current density 
( ) as, 
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2
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�
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max
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where { } and { } denote Gauss-Legendre 
quadrature nodes and weights. Figure 4 shows the 
global  as a function of the number of 
unknowns and the order . As expected for higher 
order representations, these curves decrease with a 
steeper slope as  increases, despite the 
singularities at the strip ends. Although the slopes 
become somewhat erratic for higher values of , 
they appear to approach integer values for lower  
values and generally decrease as  increases. 

Figure 5 shows results for the same strip when 
illuminated by a normally-incident TE wave, 
obtained from the LCN solution of the EFIE. The 
singular representations employed for the TE 
polarization are based on the exponents in 
equation (6), and do not include the -1/2 term used 
for the TM case. The basis functions and 
quadrature rules may be found in [10] up to  = 3.  
Although the edge singularity is weaker in the TE 
case and the current density is bounded, a 
polynomial representation cannot reduce the error 

by more than a factor of 10–2. However, the 
singular expansions facilitate a continuous 
improvement as the order increases, and reduce 
the average error by 10–8 for  = 8. 
 

 
 

Fig. 3. Error in the current density as a function of 
position and order , for a perfectly conducting 71 
strip illuminated by a normally-incident TM plane 
wave. 26 cells are used to model the strip, with the 
end cells twice as large as the others. The upper 
figure shows the error when the end cells are 
treated with the same representation used in other 
cells; the lower figure shows the error when the 
singular representation is used in the end cells. 
 
V. EXAMPLE: SCATTERING FROM A

CONDUCTING 3-FIN STRUCTURE
Figure 1 shows a “3-fin” structure consisting 

of three perfectly conducting strips connected at 
the origin. For TE excitation, current is expected 
to flow across the junction between the strips.  
Since the LCN representation does not impose 
explicit current continuity between junctions, this 
structure provides a test bed for the satisfaction of 
Kirchhoff’s current law at the junction. In fact, 
both the open ends of the strips and the junction 
ends of the strips must be treated specially to 
obtain high order accuracy in this case. The 3-fin 
will be treated using the EFIE. 
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Fig. 4. (a) Global normalized error in the current 
density, , as a function of degrees of freedom 
and representation order , for a perfectly 
conducting 7 � strip illuminated by a normally-
incident plane TM wave and  (b)  slopes of the 

 curves in (a). 

 
 

Fig. 5. Error in the TE current density as a 
function of position and , for a perfectly 
conducting 7 � strip illuminated by a normally-
incident plane wave. 26 cells are used to model the 
strip, with the end cells twice as large as the 
others. The upper figure shows the error when the 
end cells are treated with the same representation 
used in other cells; the lower figure shows the 
error when the singular representation is used in 
the end cells. 

 
Suppose that each strip of the 3-fin is 7 � in 

width, and each is divided into cells with the end 
cells and junction cells twice as large as the others. 
The same singular representations are used in the 
end cells as used for the single TE strip in the 
preceding section; representations in the junction 
cells are based on terms with exponents in 
equation (8) from the wedge solution for a 120 
degree interior angle. Orthogonal basis functions 
used for the local corrections for the 120 degree 
TE case are given by the set in Table II. 

In Table II, functions 1 and 2 are used for 
local corrections in cells adjacent to the fin 
junction for  = 1. 1 through 4 are used for  = 
2, etc. Table III presents quadrature rules for 
implementing the Nyström discretization in the 
junction cells, assuming  = 0 denotes the corner. 
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Since the 3-fin structure does not have an exact 
solution, we use the  to judge the relative 
accuracy of the results. Figure 6 shows the  as 
a function of position along one of the three fins of 
the structure, for four situations. In the first (upper 
plot), a conventional nonsingular representation is 
used in all cells of the model. In the second, a 
conventional representation is used in all cells 
except the edge cells, which are treated using a 
singular representation for a knife edge.  In the 
third, a conventional representation is used in all 
cells except the junction cells, where the singular 
representation for a 120 degree wedge is 
employed. Finally, the fourth case (bottom plot) 
employs the singular representation for the knife-
edge in the edge cells and the singular 
representation for the 120 degree wedge in the 
junction cells. 

 
Table II. Basis functions for 120 degrees, TE case. 

 
 

From Fig. 6, it is apparent that the overall 
accuracy does not improve substantially beyond  
= 2 unless the edge cells employ the singular 
representation, and that true high order behavior 
requires that the junction cells also use the 
enhanced treatment. Figure 7 shows the global 

 as a function of the total number of degrees 
of freedom in the representation, when both edge 
cells and junction cells employ the singular 
representations. As in the previous cases, the  
data show increasing slopes with order  and the 
slopes approximate integer values. 

Table III. Weights and nodes associated with the 
generalized quadrature rule for the TE case, wedge 
angle = 120 degrees. 

 
 

At the junction of the 3-fin, the currents 
flowing into the center point should add to zero, to 
satisfy Kirchhoff’s current law for the TE case.  
Figure 8 shows the sum of the currents at the 
center, as a function of degrees of freedom (as the 
cells are refined) and order , when both edge cells 
and junction cells employ the singular 
representations. From the figure, it is apparent that 
the satisfaction of KCL improves with increases in 
both mesh density and in the order . 

 

 
 

Fig. 6. Local  results for one fin of the 3-fin 
structure when illuminated by a TE wave 
propagating 20 degrees from the -axis, for four 
different combinations of representations. 
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Fig. 7. Global NRE results for the 3-fin when 
illuminated by a TE wave propagating 20 degrees 
from the x-axis. 

 
 

Fig. 8. Sum of the junction currents for the 3-fin, 
illustrating the extent to which KCL is satisfied as 
cells are refined for various representation orders 

. 
 

In summary, study of the 3-fin structure 
suggests that junction continuity can be ensured to 
high order only if the proper junction behavior is 
incorporated into the representation in the cells at 
the junction. Treatment using regular cells on 
either side of a junction will suffice only in the 
case of two coplanar cells. On the other hand, if it 
is desired to insulate two cells from each other (an 
infinitesimal gap), end conditions equivalent to 
those used at the ends of a TE strip will be 
required to model that behavior to high order. 

 

VI. EXAMPLE: SCATTERING FROM A
HEXAGONAL CONDUCTING

CYLINDER
Several examples of the LCN treatment of 

conducting cylinders with edges are illustrated in 
[10], including cylinders with triangular and 
square cross sections. As a final example, we 
consider the LCN solution of the MFIE for a 
perfectly conducting hexagonal cylinder, when 
each face of the cylinder is 3.5 � in width, and a 
TM wave is incident symmetrically upon one of 
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the corners between faces. The corners of the 
hexagon exhibit 120 degree wedge angles, and 
orthogonal basis functions used for the local 
corrections for the 120 degree TM case are given 
by the set in Table IV. In Table IV, functions 1 
and 2 are used for local corrections for  = 1, 1 
through 4 are used for  = 2, etc. Table V 
presents quadrature rules for implementing the 
Nyström discretization in the edge cells, assuming 

 = 0 is the corner. 
 
Table IV: Basis functions for 120 degrees, TM 
case. 

 
 
Table V. Weights and nodes associated with the 
generalized quadrature rule for the TM case, 
wedge angle = 120 degrees. 

 
 

Figure 9 shows the global NRE data for this 
problem, while Fig. 10 shows the NRE as a 
function of position for various values of order .  
On each face of the hexagonal cylinder, the error 
is relatively uniform, and improves with 
increasing . A plot of the magnitude of the 
current density on three of the six faces of the 
hexagonal cylinder is shown in Fig. 11. 

 
 

Fig. 9. Global NRE for the hexagonal cylinder, 
obtained by solving the TM MFIE with LCN. 

 

 
 

Fig. 10. Local NRE for the hexagonal cylinder 
example. 
 

VII. CONCLUSIONS
A technique for representing edge and 

junction effects has been incorporated into the 
locally-corrected Nyström method. This procedure 
is shown to produce high order behavior for 
problems with singularities in the current or 
charge density at bends or corners. Results having 
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more than 8 digits of agreement with exact 
solutions were obtained for the strip examples.  
Current and charge must also be properly modeled 
at junctions to maintain high accuracy. For the TE 
case, where current flows across a junction, as the 
accuracy of the results improves with 
representation order the extent to which 
Kirchhoff’s current law is satisfied also improves. 

The treatment of more complicated (non-
symmetric) junctions remains a topic for future 
work. It is expected that it may be necessary to 
incorporate fractional exponents for the full set of 
wedge angles to properly model the currents in 
that situation. 
 

 
 

Fig. 11. LCN solution for the current magnitude 
obtained from the MFIE for a perfectly conducting 
hexagonal cylinder, when each face of the cylinder 
is 3.5l in width, and an TM wave with unit  is 
incident symmetrically upon one of the corners 
between faces. The solution for  = 8 is shown 
over one half of the computational domain. 
 

APPENDIX A. INTERPOLATION
TECHNIQUE USED TO IMPLEMENT

IDENTITY OPERATORS WHEN
OBSERVATION POINTS DO NOT
COINCIDE WITH QUADRATURE

NODES
When the observation points coincide with 

quadrature nodes, the Nyström treatment of 

equations such as the MFIE that have an identity-
type operator is obvious: the unknown samples 
become part of the discrete equation. When 
observation points do not coincide with quadrature 
nodes, the basis set used to implement local 
corrections may be used to provide an 
interpolation. Suppose that the current density ( ) 
is defined at samples { 1, 2, …, }. We seek the 
coefficients {� } in the expression 
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If the samples { ( )} are known, we obtain a set 
of coefficients {� } from the system, 
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where { } are the basis functions. The matrix 
operator M used on the left-hand side of (A.3) is 
the same system used in the local correction 
process for the cell in question [10]. Although the 
{ ( )} are not known, in principle we can use the 
coefficients {� } to determine, 
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    (A.4) 
where we solved equation (A.3) to obtain 
b � M�1s .  By equating (A.1) and (A.4), we obtain 
the coefficients in equation (A.1) as, 
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.    (A.5) 

These coefficients {� } are the weights used to 
distribute the identity operator among the current 
density samples when the observation point 0 is 
not in the set { 1, 2, …, }. 
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