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Abstract ─ Among the numerical methods used in 
the electromagnetic modeling of high frequency 
electronic circuits, we include the wave concept 
iterative method. In this paper, we propose to 
improve the convergence speed of this method 
when modeling a complex structure. This method 
requires a maximum number of iterations, noted 
“Nmax”, to achieve the convergence to the optimal  
value. Our goal is to reduce the number of 
iterations calculated by this method to the value 
“Nmin” in order to reduce the computing time and 
to improve the convergence speed. This is done by 
adding a new algorithm based on filtering 
techniques. 

 
Index Terms ─ Adaptive and autoregressive 
Filtering, LMS algorithm, rapid convergence, 
WCIP method. 

 

I. INTRODUCTION 
     The wave concept iterative method (WCIP) has 
shown efficiency in solving problems of 
electromagnetism and analysis of radio frequency 
circuits (RF) [1-4]. Although this method is 
absolutely convergent, the number of iterations is 
relatively high and it needs much time for 
multilayer or complex structures requiring a fine 
mesh as demonstrated in [5-7], the numerical 
complexity is related to the number of cells 
describing the circuit. For example, for structures 
of 512x512 cells, it takes 24 minutes to perform 
1000 iterations. This result is calculated by a 

machine having a microprocessor Intel(R) 
Pentium(R) Dual Core CPU 2x2.16GHz and 3 GB 
of RAM. In this case of complex structures, the 
WCIP method takes much time to give good 
results. To avoid this problem, the techniques of 
adaptive filtering are an effective means to ensure 
a rapid convergence to the optimal value with a 
minimal error. Adaptive filtering is a powerful tool 
in signal processing, digital communications, and 
automatic control [8-10]. This tool has been 
applied in various fields such as system 
identification, prediction, inverse modeling, and 
the interference cancellation. We use the adaptive 
algorithm least mean square (LMS) because it is 
the simplest one in terms of calculation. In 
addition, it is the most efficient algorithm in terms 
of minimization criterion of mean squared error 
[11-12]. To improve the classical WCIP method, 
we use a new algorithm based on adaptive and 
autoregressive filtering. We aim at reducing the 
number of iterations in this method; hence, we 
reduce the computing time and we improve the 
convergence speed of the method.  
 

II. THEORETICAL STUDY 
 

A. Summary of the WCIP method  
     The WCIP method is developed in detail in    
[1-7]. It is an integral method based on the wave 
concept and it is used in solving problems of 
electromagnetic modeling. It is noted "WCIP" 
because it treats the waves instead of 
electromagnetic fields. It is called iterative because 
it establishes a recurrent relation between incident 
and reflected waves. This method is different from 
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the other integral methods (method of moments, 
Galerkin method ...) because it does not use the 
scalar product or the matrix inversion. Thus, the 
method defines two operators; one is defined in the 
space domain and the other in the spectral domain. 
The fast Fourier mode transformation (FMT) and 
the reverse transformation FMT-1 insure the 
transition from one area to another. Applied in 
guided spaces, it allows us to define the impedance 
seen by the source of a waveguide. We use this 
method to study the electromagnetic modeling of a 
frequency selective surface (FSS) having a 
complex structure as in Fig. 1. 
 

 
Fig. 1. Unit cell of an FSS structure. 
 
      The convergence of the WCIP method is 
reached after a maximum number of iterations 
called "Nmax". In our study, we will try to 
minimize the number of iterations calculated by 
this method to the value "Nmin" in order to have a 
fast and better convergence with a minimum 
calculation time. The remaining iterations until 
“Nmax” will be treated by a new adaptive filtering 
algorithm which provides a rapid convergence 
towards the best result with minimum error. This 
reduces the computation time and improves the 
convergence speed of this method. It is important 
to clarify the definition of the term "convergence 
speed" that will be the time to run the number of 
iterations required to converge "close enough" to 
the optimal result.  

 

B. Functional blocks of the new algorithm 
     The new proposed algorithm is composed of 
two functional blocks as illustrated by Fig. 2 
below. The first block is an autoregressive (AR) 
filter and the second is an adaptive filtering block.  

 
Fig. 2. Functional block of the new algorithm. 

 
     The AR filter block is used to model the input 
signal. This modeling is necessary to predict and 
regenerate the missing samples in an uncompleted 
input signal having length equal to “Nmin”. The 

prediction of )(nx
∧

at the instant “n” is from the 
signal at previous time [x(n-1), x(n-2), ...] in 
addition to the value of the white Gaussian noise at 
the same time “n”. Thus the prediction and 

estimation of samples )1( +
∧

nx , )2( +
∧
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∧

nx ... 
can generate the following sequence samples from 
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. We must choose the 
optimal order of the AR model that gives the best 
prediction of the input signal. It remains to 
estimate the coefficients of the AR filter, this is 
obtained from the equations of "Yule-Walker” for 
an AR filter; this uniquely defines the coefficients 
of the AR filter that are the most suitable for 
modeling the input signal. The iterations from “1” 
to “Nmin” are calculated by the classical WCIP 
method. As in the next equation, the prediction of 
the signal samples in the following iterations from 
“Nmin+1” to “Nmax” is realized by the AR filter 
using a Gaussian white noise )(nb : 
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     Concerning the second block, it is an adaptive 
filter whose coefficients are changing in function 
of external signals. A filter is called adaptive if its 
coefficients are modified and updated in each new 
sample of the input signal. As in Fig. 2, we have 
an input x(n), the desired response (reference) d(n) 
and the error e(n) which is the difference between 
d(n) and the filter output y(n). The error e(n) 
serves to control (adjust) the values of filter 
coefficients. To estimate y(n) from x(n) the 
adaptive filter uses the programmable coefficients 
h(n) but to estimate the next sample y(n+1) the 
filter uses the new coefficients h(n+1) which will 
be calculated by an adaptive algorithm as we show 
below. We use the adaptive filter to ensure a rapid 
convergence to the optimal value with a minimum 
square error. 
     In our study, we choose the LMS (least-mean-
square) adaptive algorithm developed by Widrow 
and Hoff in 1959. This algorithm is certainly the 
most popular adaptive algorithm that exists due to 
its simplicity [11-12]. As in Fig. 2, the LMS 
algorithm updates the coefficients )(nh of the 
adaptive filter transfer function in every new 
iteration as in the following relation:  

 
  )()()()1( nenXnhnh µ+=+ .                    (3) 
 

The coefficients TL nhnhnhnh )](),....(),([)( 110 −=  
are defined in the iteration “ n ” and the 
coefficients )1( +nh are defined in the iteration “

1+n ”. The input vector is:
TLnxnxnxnX )]1(),.......,1(),([)( +−−= , L  is the 

order of the adaptive filter, “ µ ” is the adaptation 
step. The error value “ )()()( nyndne −= ” is relative 
to a reference signal )(nd . As below, the value )(ny
is the output in the iteration “ n ”: 

 
 )()()( nXnhny T= .                                    (4) 
 

 The adaptive filter coefficients “
TL nhnhnhnh )](),....(),([)( 110 −= ” are changed in 

each new iteration until they become stable and 
equal to “ opth ”. That’s how we define the stability 

and the convergence of the adaptive filter; it is 
represented by the next equation: 

 

opth{h(n)}lim =
∞→

E
n

.           (5) 

 
We aim at finding the condition of the stability and 
the convergence of the adaptive filter so we have 
to minimize the following function: 

 
2h(n)-1)h(nJ(n) += .             (6) 

 
We consider the following constraint: 

 
)()()1(h T ndnXn =+ .             (7) 

 
The solution of the problem is obtained by the 
multiplier λ of Lagrange. In fact, we want to 
minimize in reference to h(n+1) as in the following 
equations: 
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We obtain the next result:  
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The constraint becomes as in the next equation: 
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Finally, we obtain the equation of the LMS 
algorithm: 
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In fact, to have the best control of the filter 
coefficients updating, we introduce a positive 
factorα , )20( << α : 
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In comparison with equation (3), we obtain the 
following  result:   
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This value µ  is called the adaptation step of the 
LMS algorithm. We consider the condition of α  

)20( <α< . It gives the next relation:                

2
2

0
xLσ

µ << .                               (17) 

 
This condition ensures the LMS algorithm 
convergence and the adaptive filter stability. So 
the best choice of the adaptation step µ  provides 
the stability and the convergence of the LMS 
algorithm to the optimal results with minimal error 
as in equation (17). This choice of the adaptation 

step µ  depends on the power 2xσ  of the input 
signal and the adaptive filter order L . Thus, the 
performance of the LMS algorithm depends on 
three factors: the adaptation step µ , the power of 
the input signal, and the order L  of the adaptive 
filter. 
     As shown in Fig. 3, the idea is to add to the 
classical WCIP algorithm a new algorithm 
describing an AR filter and an adaptive filter based 
on the LMS algorithm. Thus, the algorithm of the 
new method will be noted as an adaptive wave 
concept iterative process (A-WCIP). We introduce 
an input sequence that has a length equal to 
“Nmin”, the iterations of this sequence are 
calculated by the WCIP algorithm.  

The new “A-WCIP” algorithm predicts the 
result of the remaining iterations until achieving 
the convergence to the optimal value with “Nmax” 
iterations. 
 

 
Fig. 3. The new “A-WCIP” approach.  
 

The best conditioning of our system is done 
first by a good selection of the optimal order “m” 
of the AR filter. Then, it is done by a good choice 
of the adaptation step “ µ ” of the LMS algorithm, 

which depends on the input energy 2xσ  and the 
order “ L ”of the adaptive filter. We conclude that 
the conditioning of this system is mainly based on 
the nature of the input signal. This is an important 
point of our approach because it ensures that the 
system is adapted to all types of input signals that 
vary from one frequency to another, especially that 
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we are testing a wide frequency range. This 
provides stability and convergence of our system, 
whatever the conditions of the input signal. 
     Therefore, with the new algorithm, we improve 
the convergence of the classical iterative method 
which will calculate only a limited number of 
iterations equal to "Nmin". The number "Nmax" of 
iterations needed to reach the convergence will be 
achieved by the new A-WCIP algorithm which is a 
very rapid algorithm. Thus, an important gain in 
computing time will be accomplished by this new 
approach. 

 
III. SIMULATIONS AND RESULTS 

     The input signal )(nx in the last theoretical part 
will be designated in the next part by the 
coefficients of the diffraction matrix S11 or S21. 

 

A. Convergence improvement 
     In Figs. 4 and 5, the coefficients S11 and   S21 are 
represented as a function of the number of 
iterations by both methods (“WCIP” and “A-
WCIP”) in order prove that the new method gives 
also good results.  
     First, the classical WCIP method uses only the 
WCIP algorithm to calculate “Nmax=200” 
iterations. We conclude that the maximum number 
of iterations necessary to achieve the convergence 
is equal to 200 iterations. This number is relatively 
high because the electronic circuit studied has a 
complex structure. So in this case to have good 
results, the wave iterative method needs a big 
number of iterations (Nmax=200 iterations). Thus, 
this method takes much time to obtain the optimal 
result. So to reduce the computing time necessary 
to have a good result, we need to reduce the 
number of iterations calculated by the WCIP 
algorithm to the value “Nmin”. The remaining 
iterations are calculated by the new “A-WCIP” 
algorithm, which does not take much time to reach 
the convergence. 
     Then, we use the new “A-WCIP” method to 
calculate the same maximum number of iterations 
(Nmax=200 iterations). This new method is 
composed of two algorithms: the classical WCIP 
algorithm to which we add the new filtering 
algorithm. In the new “A-WCIP” approach, the 
number of iterations calculated by the classical 
WCIP algorithm is reduced to “Nmin=50” 
iterations. The maximum number of iterations is 

achieved by the new filtering algorithm 
(Nmax=200). The adaptive filter takes the output 
of the AR filter as input. As a result, the final 
output of the global new system “A-WCIP” must 
converge to the optimal values of S11 and S21 with 
minimum errors. 
 

Fig. 4. Variation of S11 by both methods.  
 

 
Fig. 5. Variation of S21 by both methods.   
           
     Here, we compare the results given by the two 
methods in order to prove that the new “A-WCIP” 
method provides good results. Of course, the new 
approach is faster than the classical one because it 
uses the WCIP algorithm to calculate “Nmin=50” 
iterations and it uses the filtering algorithm to 
calculate the remaining iterations until reaching 
the number “Nmax=200”.  However, the classical 
method uses only the WCIP algorithm to calculate 
200 iterations which takes much time.   

 
B. Comparison in terms of computing time  
     In the next paragraph, we use the classical 
WCIP method to calculate 1000 iterations 
(Nmax=1000) and we use the new “A-WCIP” 
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method to calculate the same number of iterations 
(Nmax=1000, Nmin=400). In Table 1, we observe 
an important gain in convergence time when 
calculating S11 and S21 values after 1000 iterations 
by the two methods. This gain of time is provided 
by the new “A-WCIP” method because we add a 
rapid adaptive filtering algorithm “LMS” in this 
method. The mesh used in this structure is 
512x512 cells. We use a machine having a 
microprocessor Intel(R) Pentium(R) Dual Core 
CPU 2x2.16GHz and 3GB of RAM. 
 
Table 1: Comparison of time between the two 
methods  

The used 
method 

Computing 
time (mn) 

“A-WCIP” 10 mn 
“WCIP” 24 mn 
Gain of Time 58,33% 

 
C. Comparison in terms of the average error  
     In Table 2, we represent the values of the 
average error calculated on the reflection and 
transmission coefficients S11 and S21. The band of 
frequency is from 10GHz to 15GHz. The error is 
calculated when using the new “A-WCIP” filtering 
method in comparison with the classical WCIP 
method. We choose two different values of 
"Nmin" (25 and 50). The number "Nmin" 
represents the minimum number of iterations 
calculated by the WCIP algorithm in the new “A-
WCIP” method. The maximum number of 
iterations is equal to 200 iterations. We find that 
the average error in comparison with the classical 
WCIP method is limited. This proves the 
effectiveness and robustness of our approach. 
Finally, we ensure the convergence to an optimum 
result very close to the desired value with a 
minimum average error in each frequency. 
 
Table 2: Comparison in terms of the average error 

Nmax Nmin 
Average  
error  
S11 (dB) 

Average  
error  
S21 (dB) 

200 25 2,782 0,893 
200 50 1,646 0,399 

 
 
 

D. Variation of S11 and S21 calculated by the 
new method in function of frequency 

     In Figs. 6 and 7, we represent the variation of 
the coefficients S11 and S21 in function of 
frequency. These coefficients are calculated by our 
new “A-WCIP” method. These results are 
compared with those calculated by the classical 
“WCIP” method in order to prove that our results 
are close to the best and optimal results. The 
maximum number of iterations calculated by the 
two methods is equal to 200 iterations 
(Nmax=200). In the new method, we test two 
values of “Nmin” (25 and 50 iterations) and we 
obtain good results in comparison with the WCIP 
method.  

Fig. 6. S21 and S11variations in function of 
frequency with Nmax= 200, Nmin= 25 iterations. 
 
     Thus in our new A-WCIP method, the WCIP 
algorithm is used to calculate only 25 or 50 
iterations and the following iterations are 
calculated by the adaptive filtering algorithm until 
achieving 200 iterations. In the classical WCIP 
method, we use only the WCIP algorithm to 
calculate all the 200 iterations. If we compare the 
two methods, we conclude that the number of 
iterations in the classical WCIP algorithm is 
reduced from 200 to 25 iterations in the new 
approach. Thus, we achieve our principal goal 
which is the reduction of the number of iterations 
in the WCIP algorithm. That is why we obtain a 
good reduction of computing time in the new A-
WCIP method. Finally, we obtain a fast 
convergence with minimum average error. 
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Fig. 7. S21 and S11variations in function of 
frequency with Nmax= 200, Nmin= 50 iterations. 
 

IV.  CONCLUSION 
     In our study, the convergence speed of the 
classical WCIP algorithm has been improved. In 
the new “A-WCIP” method, the WCIP algorithm 
has to calculate only a minimum number “Nmin” 
of iterations that can be reduced from 200 to 25 
iterations. The remaining iterations after “Nmin” 
are treated by the new filtering algorithm to 
achieve the convergence to the optimal value after 
“Nmax=200” iterations. Thus, we have a very fast 
convergence in comparison with the classical 
WCIP method in which the WCIP algorithm 
calculates all the 200 iterations. Finally, a very 
significant reduction in computing time has been 
obtained. Thus, we ensure a rapid convergence 
with a limited average error hence the efficiency 
and robustness of our new approach. 
 

REFERENCES 
[1]  N. Sboui, A. Gharsallah, H. Baudrand, and A.  

Gharbi, ‘‘Glabal Modeling of Microwave  Active 
Circuits by an Efficient Iterative Procedure,” IEE 
Proc-Microw. Antenna Propag., vol. 148, no. 3, 
June 2001. 

[2] N. Sboui, A. Gharsallah, H. Baudrand, and A. 
Gharbi, ‘‘Design and Modeling of RF MEMS 
Switch by Reducing the Number of Interfaces,’’ 
Microw. and Opt. Technol. Lett vol. 49, no. 5, pp. 
1166-1170, May 2007.  

[3]  N. Sboui, L. Latrach, A. Gharsallah, H. Baudrand, 
and A. Gharbi, “A 2D Design and Modeling of 

Micro strip Structures on Inhomogeneous 
Substrate,” Int. Journal of RF and Microwave 
Computer –Aided Engineering, vol. 19, no. 3, pp. 
346-353, May 2009. 

[4]  N. Sboui, A. Gharsallah, H. Baudrand, and A. 
Gharbi, “Global Modeling of Periodic Coplanar 
Waveguide Structure for Filter Applications Using 
an Efficient Iterative Procedure,” Microwave and 
Opt. Technol. Lett, vol. 43, no. 2, pp. 157-160, 
2004. 

[5]  N. Sboui, A. Gharsallah, A. Gharbi, and H. 
Baudrand, “Analysis of Double Loop Meander 
Line by Using Iterative Process,” Microw. Optical 
Technical Letters, vol. 26, pp. 396-399, June 2000. 

[6]  L. Latrach, N. Sboui, A. Gharsallah, H. Baudrand, 
and A. Gharbi, “A Design and Modelling of 
Microwave Active Screen Using a Combination of 
the Rectangular and Periodic Waveguides Modes,” 
Journal of Electromagnetic Waves and 
Applications, vol. 23, no. 11-12, 2009.  

[7]  L. Latrach, N. Sboui, A. Gharsallah, H. Baudrand, 
and A. Gharbi, “Analysis and Design of Planar 
Multilayered FSS with Arbitrary Incidence,” 
Applied Computational Electromagnetic Society 
Journal, vol. 23, no. 2, pp. 149-154, June 2008.  

[8]  W. Byrne, P. Flynn, R. Zapp, and M. Siegel, 
“Adaptive Filter Processing in Microwave Remote 
Heart Monitors,” IEEE Trans. on Biomed. 
Enginee., vol. BME-33, no. 7, July 1986. 

[9]   J. Luukko and K. Rauma, “Open-Loop Adaptive 
Filter for Power Electronics Applications,” IEEE 
Trans. on Indust. Electronics, vol. 55, no. 2, Feb. 
2008. 

[10] A. Ogunfunmi and A. M. Peterson, “On the 
Implementation of the Frequency-Domain LMS 
Adaptive Filter,” IEEE Trans. On Circuits, 
Systems-II Analog, and Digital Signal Processing, 
vol. 39, no. 5, May 1992. 

[11] M. Godavarti and O. Alfred Hero, “Partial Update 
LMS Algorithm,” IEEE Trans. on Signal 
Processing, vol. 53, no. 7, July 2005. 

[12]  J. Daniel Allred, H. Yoo, V. Krishnan, W. Huang, 
and V. David Anderson, “LMS Adaptive Filters 
using Distributed Arithmetic for High 
Throughput,”  IEEE Trans. on Circuits and 
Systems-I REGULAR PAPERS, vol. 52, no. 7, 
July 2005. 

 

-35

-30

-25

-20

-15

-10

-5

0
10 11 12 13 14 15

[S
] 

dB
 

Ghz 

S21 : A-WCIP S11 : A-WCIP

S11 : WCIP S21 : WCIP

847 ACES JOURNAL, VOL. 26, NO. 10, OCTOBER 2011

http://www.ingentaconnect.com/search/article?author=baudrand&year_from=1998&year_to=2009&database=1&pageSize=20&index=1
http://www.ingentaconnect.com/search/article?author=baudrand&year_from=1998&year_to=2009&database=1&pageSize=20&index=1
http://www.ingentaconnect.com/search/article?author=baudrand&year_from=1998&year_to=2009&database=1&pageSize=20&index=1
http://www.ingentaconnect.com/content/vsp/jew
http://www.ingentaconnect.com/content/vsp/jew



