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Abstract − In this paper, a fast and accurate technique for 
solving the inverse scattering problem of two-dimensional 
objects made of perfect conductor is proposed. In this 
technique which is called cascaded particle swarm 
gradient, the solving procedure is properly divided into 
two steps. In the first step, the position and the equivalent 
radius of the unknown objects is estimated while in the 
second step, the accurate shape function of the objects is 
determined. The former step is performed by a global 
optimizer namely particle swarm optimization (PSO) 
technique and the latter is carried out by the well-known 
gradient method. In this work, the forward scattering 
problem is solved by the equivalent source method. 
Several numerical examples are presented to examine the 
proposed algorithm especially in handling the challenging 
multi-object problems with concave shape functions in 
the presence of measurement errors. The results show that 
the proposed algorithm is about 75 times faster than a 
conventional PSO while yielding a higher accuracy. 
 
Keywords: Cascaded particle swarm gradient, inverse 
scattering, and equivalent source method. 
 

I. INTRODUCTION 
 

Inverse scattering problem generally deals with the 
extraction of some features of inaccessible objects from 
the field scattered by them. The information of interest 
usually includes the shape and material characteristics of 
the unknown objects. Inverse scattering has many 
important applications in remote sensing, medical and 
seismic imaging, non-destructive testing, etc. 

The electromagnetic inverse scattering problem is 
inherently ill-posed and non-linear [1, 2]. A large number 
of inversion techniques have been developed to solve a 
variety of electromagnetic inverse scattering problems. 
While One-dimensional (1-D) problems are more of 
theoretical importance, two-dimensional (2-D) problems 
are more realistic and can widely be utilized in practice. It 
can also be extended to the general case of three-
dimensional problems. Here, a 2-D inverse problem for 

perfectly conducting objects will be investigated.  
Reconstruction algorithms are categorized into two 

main classes of analytical and numerical. The numerical 
reconstruction algorithms can be formulated as an 
optimization problem. Therefore, they can be solved 
using either global or local optimizers. The majority of 
proposed numerical inversion algorithms utilize local 
optimization methods. Some of the well-known methods 
of this class are the Newton-Kantorovitch method [3], 
Born iterative method [4], the distorted Born iterative 
method [5], the local shape function [6] and the conjugate 
gradient method [7]. However, all of the above mentioned 
inversion algorithms utilize deterministic optimization 
methods (DOMs) which are based on the gradient 
concept. The DOMs generally need an appropriate 
starting point and a well-behaved cost function to find the 
global extremum although this is not always guaranteed in 
practice. Due to these limitations, new global inversion 
algorithms based on global optimizers are proposed. 
Global optimization methods, including neural networks, 
simulated annealing, genetic algorithm (GA), and particle 
swarm optimization are generally based on evolutionary 
strategies. These optimization methods have numerous 
advantages such as implementation simplicity and 
robustness with respect to initial conditions. However, 
they generally demand a large number of cost function 
evaluations, which is always time consuming. It is 
believed that combined approaches which appropriately 
benefit from both kinds of optimizers and/or adapt 
themselves to the nature of the problem would perform 
more efficiently. For instance, in [8], the cost function 
evaluation part of the PSO is replaced by a gradient 
optimizer to achieve a faster convergence. Moreover, [9] 
has presented a combination of various evolutionary 
strategies and quasi-deterministic optimizers for efficient 
optimizing of frequency selective surfaces. 

In [10], the inverse problem of a 2-D conductor is 
solved using a priori knowledge of the conductor shape 
as an initial guess for the gradient optimizer while in [11], 
GA as a global optimizer is utilized to solve the same 
problem. Considering the nature of this problem, namely 
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the fact that it can be divided into two steps of finding a 
preliminary approximation and extracting exact features, 
it seems likely that a hybrid method which appropriately 
combines local and global optimizers can adapt itself to 
the problem more efficiently.  

In this paper, because of some similarity between the 
scattered fields of the unknown object and those of a 
circular cylinder of an equivalent radius, we first estimate 
the position and the approximate radius of the unknown 
object. Obviously, this searching process must be 
implemented by a global optimizer. In the next step, a 
local optimizer uses the initial position and radius 
obtained by the global optimizer and generates the exact 
shape profile. Here, PSO is used as a global optimizer. 
Afterwards, a well-known quasi-Newton method called 
BFGS (Broyden-Fletcher-Goldfarb-Shanno) [12, 13] is 
used as a local optimizer.  

The paper is organized as follows: In Section II, the 
formulations of forward and inverse problems are briefly 
presented and then the inverse problem is formulated as a 
minimization problem. In Section III, the proposed 
cascaded PSO-Gradient algorithm is demonstrated. 
Section IV presents numerical results for single and 
multiple-object inverse problems with concave profiles 
and noisy scattered information. 

 
II. FORMULATION OF THE PROBLEM 

 
The geometry of a typical 2-D inverse problem is 

depicted in Fig. 1. A perfect cylindrical conductor is 
placed in free space along the z-axis and a set of receivers 
are placed on a surrounding circle. The parametric shape 
function for the object can be described in a local polar 
form as, 
 

( ) 0 0 0, 0 2 , , ,b b b bOρ ρ ϕ ϕ π ρ ϕ′ ′ ′′= ≤ ≤ = ∠ = +ρ ρ ρ (1) 
 
where the subscript b stands for boundary and O ′  is the 
origin of a local coordinate system in which the shape 
function is described. An electromagnetic plane wave 
with zE  component is incident upon the cylinder at the 
incident angle incϕ . Assuming the time harmonic function 
of ,j te ω we express the incident wave by, 
 

  ( ) ( ) ( )cosˆ ˆ, , inc incinc
z

x y sinx y E x y ϕ ϕ+= 0jkincE z = e z (2) 
where 0k is the wave number in free space. Since the 
incident wave can only produce a z-directed surface 
electric current, s

zJ , one can obtain the integral equation 
relating the incident field to the induced current on the 
conductor by applying the PEC boundary condition at the 
surface of the cylinder, i.e., 0t s inc

z z zE E E= + = . Although 

the Method of Moments (MoM) is the prominent 
numerical technique for solving this type of problems, 
[14] gives an easier and faster method to find the 
scattered field based on the equivalent source concept. In 
this method, the perfectly conducting cylinder is replaced 
by a set of longitudinal fictitious electric current filaments 
parallel to the z-axis which are properly positioned inside 
the contour C . 
 

 
Fig. 1. Geometry of the problem. 
 

According to the equivalence theorem if the electric 
field produced by these currents satisfies boundary 
conditions of the perfect conductor object, then the 
scattered field from the conductor object is equal to the 
electric field produced by the currents. The total electric 
field radiated by the currents is given by, 
 

( ) ( ) ( )20
0 0

1 4
s

z m m
m

IN k
E I H k

η
=

= − −∑ρ ρ ρ (3) 

 
where the superscript s  in m

sρ stands for source, η is the 
free space intrinsic impedance, IN  is the number of 

current filaments, ( )2
0H is the Hankel function of second 

kind and zero order and mI and s
mρ represent the 

magnitude and position vector of the current m-th 
filament, respectively. To solve the forward problem, it is 
enough to fulfill PEC boundary condition on the cylinder 
boundary by equating the total radiated electric field from 
current filaments of equation (3) and the incident electric 
field of equation (2) to zero on the surface of the perfect 
conductor. By selecting IN points on the boundary ( b

mρ ) 
and satisfying the boundary condition for these points, 
which is equivalent to the point-matching technique in 
MoM, a set of  IN  linear equations is obtained for the 
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unknown current filaments. Having access to the forward 
scattering problem solution, one can also solve the 
inverse problem. In this problem, the object shape 
function and its associated current filaments must be 
found such that the radiated electric field becomes the 
same as the electric field measured at the observation 
points. The deviation from this ideal case can be 
measured by using a mean square error criterion defined 
as, 
 

( ) ( )
2

1

obs
obs obs obs obs
meas m I m

m

N

e E E
=

= −∑ ρ ρ (4) 

 
where the superscript " "obs stands for the observation, 

obsN is the number of the observation points, obs
mρ is the 

position vector of the m-th observation point, obs
measE is the 

measured electric field and obs
IE is the electric field 

radiated by equivalent current filaments at the observation 
points. Cumulative error e must be minimized to yield a 
satisfactory object reconstruction.  

To complete the formulation, one should represent 
the shape function of the object in a parametric form. 
Reference [11] suggests a parametric polar form in a local 
coordinate system, i.e., 

 

( ) ( ) ( )
/ 2 / 2

0 0
0 1

cos sin ,
c c

n n
n n

N N
a n b n Oρ ϕ ϕ ϕ ρ ϕ

= =

′= + = ∠∑ ∑ (5) 

 
where cN is the number of trigonometric terms in the 
approximate series. In this way, the cost function e is 
represented as a function of a vector of parameters. This 
vector, X can be presented for shape function (5) as, 
 

0 1 1 2 0 0/ 2 / 2, ,..., , , ,..., , ,Nc NcX a a a b b b ρ ϕ=    . (6) 
 

Therefore, the total number of parameters in equation 
(6) becomes 3cN N= + . The procedure described above 
can easily be extended to a multi-illumination case where 
there exists more than one incident electric field. It can 
also be modified for scattering of multiple objects [10, 
11].  

 
III. CASCADED PARTICLE SWARM-GRADIENT 

OPTIMIZATION 
 

It is clear that e is a function of the profile of the 
cylinder, so the inverse scattering problem is reduced to 
the strategy of finding a proper shape profile (X vector) 
that minimizese . In this paper, a novel cascaded strategy 
provides the proper X in two steps. In the first step, a 

rough approximation of the shape function is acquired 
using PSO and in the second step the gradient optimizer 
provides the exact shape using the rough approximation.      

It is expected that the scattered field of the unknown 
cylindrical object and a circular cylinder have the 
maximum similarity when the circular cylinder is placed 
in the position of the unknown object and have a proper 
equivalent radius. This can be explained with the help of 
an example. Fig. 2 depicts an arbitrary shape function 
given by ( ) ( )0.3 0.05cos(2 ) 0.08sin 3ρ ϕ ϕ ϕ= + +  placed 

in 0.5 0o∠  and its equivalent circular cylinder with the 
same center and equivalent radius. The incident electric 
field is located at 0incϕ = . The magnitude of the scattered 
field of the original object and that of its equivalent 
circular cylinder sampled on a circle with a radius of 2 
wavelengths are plotted in Fig. 3. The similarity between 
the two scattered fields is obvious.  However, it does not 
necessarily mean that there is no other circular cylinder 
leading to a smaller error.  In general, increasing the 
number of incident fields will significantly improve the 
convergence. 
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Fig. 2. Arbitrary shape function and its equivalent circular 
cylinder. 

 
Hence, an initial approximation of the position and 

the shape of the unknown scatterer can be found by 
moving the center of a circular cylinder having a variable 
radius in the search space and comparing the calculated 
scattered field with the measured scattered field of the 
unknown object. This searching step is implemented 
using PSO which is considered as a global optimizer. 
PSO is a multi-agent stochastic algorithm that emulates 
food searching process of natural swarms. PSO has a 
conceptually simple and sensible algorithm based on 
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Newtonian concept of position and velocity. A detailed 
description of this technique can be found in [15, 16].  
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Fig. 3. Absolute value of scattered fields for Fig. 2 
objects. 

 
In the first step of the proposed cascaded algorithm, 

the optimization parameter vector is defined as follows, 
 

( ) ( ) ( )(1) (2) (1) (2) (1) (2)
0 0 0 0 0 0 0 0 0[ , ,..., , , ,..., , , ,..., ]o o oN N NX r r r ρ ρ ρ ϕ ϕ ϕ=  (7) 

 
where ( ) ( )( )

0 0 0, n nnr andρ ϕ are the equivalent radius and the 
polar coordinate components of the n-th unknown object, 
respectively. Then the values of ( ) ( )

00 ,n na ρ , and ( )
0

nϕ in 

equation (6) are replaced by ( )( )
0 0, nnr ρ , and ( )

0
nϕ  

respectively, while other parameters are set to zero. In the 
next step, the initial position and radius of the object 
serves as an appropriate initial guess for a gradient based 
optimizer [10]. The well-known quasi-Newton method, 
BFGS, is adopted for this stage to yield accurate shape 
functions. 

After evaluating the performance of individual parts 
of algorithm, they are unified to establish a cascaded 
operation which we have named as cascaded particle 
swarm gradient method. 

  
IV. NUMERICAL RESULTS AND DISCUSSION 

 
To examine the proposed method and to show its 

accuracy and convergence, several numerical experiments 
have been performed. The following mean square error 
function has been defined to quantitatively measure the 
accuracy of the shape functions, 

 

( )
( )

1 22
, ,

2
1 1 ,

1 o I
opt trueN N
n m n m

trueI o n m n m

SE
N N

ρ ρ

ρ= =

 − =  
  

∑∑ . (8) 

In all these experiments, the dimensions are 
normalized to the wavelength and the observation points 
are placed on a circle with a radius equal to 2 
wavelengths. In addition,  , ,obs I cN N N  are set to 30, 20 
and 6, respectively. The search ranges for 0 0 0, ,r ρ ϕ  are 
whit in 00.1 1r≤ ≤ , 00 1.5ρ≤ ≤  and 00 360oϕ≤ ≤ . SNR and 
PSO iterations are also selected to be 20dB and 200, 
respectively. As a first example, the shape function used 
in [11] is selected. The shape profile is given 
by ( ) ( )0.3 0.05sin 2ρ ϕ ϕ= +  in local polar coordinate 

whose center is placed at 0.5 90o∠ . Moreover, two 
incident electric fields are assumed with incidence angles 
equal to 0 and π . Additive white Gaussian noise 
(AWGN) is added to the measured data with SNR=20dB. 
In [11], a real coded genetic algorithm is proposed for the 
profile reconstruction of the 2-D conducting objects. It 
optimizes the whole X vector, namely 9 parameters in this 
case, simultaneously. In our method, however there are 
only 3 parameters for position and equivalent radius to be 
optimized using a global optimizer in the first step and 7 
parameters for coefficients of the shape function in 
equation (6) in the second step. PSO converged after 200 
iterations to the values 0 00.4987, 89.96oρ ϕ=  =  

0 0.3040,r = and BFGS started with these initial values as 
initial and converged after 13 iterations. 

Besides, a simple PSO code is utilized to solve the 
same problem. It should be mentioned that the range of 
variables in (6) is defined in such a way that both methods 
search over the same area. Figure 4 shows the true profile, 
the equivalent circular cylinder found by PSO, the final 
PSO-BFGS reconstructed profile and the simple PSO 
reconstructed one. Figure 5 shows the convergence of 
cascaded PSO-gradient for the shape of Fig. 5 compared 
with the ordinary PSO. 

While the cascaded PSO-BFGS solves the problem 
in just 12 seconds with SE=1.6% it takes 15 minutes for 
the ordinary PSO to converge with SE=3%. This indeed 
shows the superiority of the proposed method over an 
ordinary PSO. PSO-BFGS is about 75 times faster than 
the ordinary PSO and provides a slightly better accuracy 
in this particular example.  To examine robustness of the 
algorithm against noise, the above example is solved for 
various amounts of added noise. Figure 6 shows the SE 
versus SNR. Achieving a SE of 10.12% at SNR=2.5dB 
demonstrates the excellent noise immunity of the 
proposed technique.  

As the second example, two objects of shape 
functions ( ) ( )0.3 0.05sin 3ρ ϕ ϕ= +  and 

( ) ( )0.3 0.05sin 2ρ ϕ ϕ= +  are selected and placed at 

0.5 90o∠ and 0.5 270o∠ locations, respectively. The 
existence of two objects with concave shapes makes this 
example more challenging compared to the previous one. 
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Again two angles of incidence namely zero and π are 
selected. The SNR of the measured data was set to 20dB. 
After 750 iterations, the first step of the algorithm 
converged to values of ( ) ( )1 1

0 00.307, 0.513,r ρ= =  
( )1
0 89.7oϕ = for the upper object and ( )2

0 0.306,r = for the 
( ) ( )2 2
0 00.497, 269.7oρ ϕ= =  lower one. 
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Fig. 4. True, initial guess, and reconstructed profile with 
PSO-BFGS and ordinary PSO. 

 
Fig. 5. Convergence of the cascaded PSO-BFGS 
compared with an ordinary PSO for the reconstruction of 
the shape function of Fig. 4. 

 
These values were used as the initial guess for the 

gradient algorithm which converged after 19 iterations. 
Figure 7 shows the true profiles, the equivalent circular 
cylinders found by PSO, and the final reconstructed 
profiles. Figure 8 presents the cost function variations 
during cascaded PSO-BFGS iterations. Clearly, the 
proposed method can effectively solve the inverse 
problem in the case of multi-scatterers. The total 
computation time for achieving SE=6.05%   is less than 
two minutes on a P4-3.2 GHz PC. It should be noted that 
the deviation observed at the bottom of the upper object is 
due to the multi-scattering effect. 
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Fig. 6. Variations of SE versus SNR. 
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Fig. 7. True, initial, and reconstructed profiles of two 
scatterers using cascaded PSO BFGS. 

 
To investigate the performance of the two parts of the 

algorithm against concavity, a statistical experiment is 
carried out.  The ratio of 0na a  or 0nb a can be changed 
to obtain a variety of profiles with different concavities. 
Different values of 2 0a a  and 3 0b a  can produce three 
types of profiles, namely elliptical, tri-lobe and their 
combination. The PSO part is operated 1000 times for 
different profiles of each type. For each type, the most 
concaved shape profile for which the performance of the 
PSO part is still acceptable and the obtained equivalent 
circle is depicted in Table. 1. The percentage of PSO 
failed hits, denoted by the FP parameter, demonstrates the 
performance of PSO in finding the equivalent circle for 
each profile. The FP values presented in the table.1 
demonstrates the satisfactory performance of the PSO part 
in finding a proper initial guess even for very  concave 
shape functions. 
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Fig. 8. Convergence of the proposed method in 
reconstruction of the profiles of Fig. 7. 

 

It is important to address the performance of the 
Gradient part against concavity of the shape profile. To 
do this, the initial circles from Table. 1 are used in the 
BFGS algorithm as the starting point and the final shape 
functions are obtained. The obtained shape functions from 
gradient part are also depicted in Table. 1 (thick dashed 
lines) and the corresponding shape errors (SE) are also 
presented. Unsurprisingly, the gradient part fails to give 
an accurate shape function for the tri-lobe profile; 
however, the result is still similar to the original shape. A 
quasi-gradient approach to address this problem is now 
under investigation. 

Furthermore, the angle of incidence is an important 
issue in multi-objects cases. For instance, the algorithm 
will fail if we set the incident angles around 

2 3 2orπ π in the second example. The numerical results 
indicate that the suitable combination of the global and 
local optimization techniques as achieved in the proposed 
method has improved the accuracy and reduced the 
computation time significantly while avoiding the well-
known disadvantages of both techniques. 

 
 Table 1. Obtained shape functions from gradient part. 
 

 2

0

a
a

 3

0

b
a

 Profile FP(%) SE(%) 

3 0.2 0 

 

11.9 6 

8 0 0.75 

 

12.8 32.3 

10 0.25 0.25 

 

8.5 23.3 

True shape function (thick solid line) 
corresponding equivalent circle (thin solid line) 
Estimated shape function (thick dashed line) 

V. CONCLUSION 
 

In this paper, a cascaded PSO gradient optimization 
method suitable for solving the inverse scattering problem 
of 2-D perfect conductors is presented. The versatility of 
the proposed method is shown by applying it to 
challenging case of multi-objects with concave shapes 
and noisy data. The numerical results show satisfactory 
performance of the proposed method considering the 
important criteria of computation time and the achieved 
accuracy. 
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