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Abstract – This paper presents an approach for the design
of wire antennas based on fractal interpolation func-
tions (FIFs). The interpolation points and the contrac-
tion factors of the FIFs are chosen as free parameters
to modify the antenna geometry. The proposed struc-
tures’ gain and radiation pattern can be optimized using
FIF parameters. Producible prefractal antennas obtained
in the intermediate iterations of fractal generation have
compact sizes compared to classical counterparts. The
error in prefractal geometry and the original fractal is
bounded, and can be determined in terms of the finest
producible detail’s dimensions. The emerging structures
have multiband behavior due to their self-similar and
symmetric nature. To illustrate the approach, we have
provided finite element based simulations for several pre-
fractal antennas. |S11|, the gain, the radiation efficiency,
the radiation patterns, and feed point impedances for the
demonstrated antennas are calculated numerically. The
results indicate that produced antennas can be used in
applications that require limited mechanical size, multi-
ple operating bands, and controlled radiation patterns.

Index Terms – Fractal antenna, fractal interpolation
functions, iterated function systems.

I. INTRODUCTION
Recent developments in wireless communications

systems require more compact, wider bandwidth, multi-
band, and low-cost antennas. Fractal antennas can
fulfill these requirements due to scale invariance, self-
similarity, and space-filling properties of the fractals [1].
These properties enable the miniaturization of antenna
structures [2–5]. The fractal structures can be designed
to increase the effective physical length of the anten-
nas to achieve multiband behavior in a limited space [6–
8]. Basic fractal geometries such as Koch and Hilbert
curves, and Sierpinski carpet have been studied for their
radiation characteristics in the literature widely [9–15].
Comprehensive and up-to-date reviews can be found in
[16, 17].

However, the studies rarely relate the mathemati-
cal properties of fractals to the antenna radiation char-
acteristics. One approach is to optimize the antenna
geometry over the fractal dimension using genetic algo-
rithms [18, 19] directly. The authors present the rela-
tion between the resonant frequencies and the fractal
dimension of the parameterized Koch curves in [20]. In
general, the studies in the literature focus on predefined
well-known fractal templates such as variants of the infa-
mous Koch curve or the Sierpinski carpet. On the other
hand, restricting the geometry a priori limits the practical
applications.

As a novel approach, we present fractal wire antenna
geometries based on the FIFs. In contrast to the literature,
we don’t assume a predefined topology in this study, and
the designer is in full control of the antenna’s shape by
setting a few interpolation points and contraction factors.
The interpolation points and the contraction factors of
the FIFs can be used to optimize the antennas for a spe-
cific purpose. Then, we investigate the effects of fractal
parameters on antenna radiation properties, namely the
resonant frequencies, the bandwidth, the radiation pat-
terns, gain, and input impedance.

Fractal interpolation is a technique used to construct
continuous functions whose graphs are fractals based on
iterated function systems (IFS) [21, 22]. Following the
pioneering research, FIFs have been applied in geometric
design, signal processing, and wavelet theory in the con-
text of engineering, physics, and chemistry [23, 24]. FIFs
provide non-smooth alternatives to traditional smooth
interpolation techniques and are more suitable for irreg-
ular curves that display self-similarity.

Fractal interpolation is an iterative procedure, and
each iteration can be considered a prefractal. The vari-
ous antennas can be constructed associated with each of
the prefractals. The skeleton of the antenna geometry can
be determined by the given interpolation points. Addi-
tionally, the FIFs have free parameters that can be used
to manipulate the geometry to alter the fractal dimension
and the symmetry of the structure. The antenna can be
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optimized by changing the interpolation points and the
free parameters. Therefore, it can be constructed with-
out a predefined fractal template in order to optimize the
antenna performance. Note that several structures such as
the Koch curve can also be obtained by specific choice of
FIF parameters.

To demonstrate the proposed approach, we gener-
ated a simple curved wire dipole antenna using FIFs
based on affine transformations. The parameters of affine
transformations consist of contraction factors on the hor-
izontal axis and scaling factors on the vertical axis, which
simply controls the antenna geometry.

The scattering parameter |S11|, the input impedance,
the gain, and the bandwidth of the constructed structure
are calculated via extensive numerical simulations.

We have observed that even the simple structure
can show multiband behavior for prefractals obtained
at each iteration. Using the proposed procedure, the
designer has flexibility in the determination of the
skeletal structure of the antenna first. Afterwards, the
vertical scaling parameters that are particularly sig-
nificant on fractal properties can be used to opti-
mize the antenna for a specific application. By means
of this flexibility, the technique can be extended to
design effective antennas confined in a limited space
especially.

II. FRACTAL INTERPOLATION
Let the set of interpolation points, {[xi,yi]

T ∈ R2 :
i = 0,1,2, ...,N} where x0 < x1 < · · · < xN be given,
and the continuous function h : [x0,xN ] 7→ R that satis-
fies h(xi) = yi, be the interpolation function.

We can construct an IFS from a set of contractive
shear transformations wi : R2 → R2, i = 1,2, . . . ,N, of
the form

wi

([
x
y

])
=

[
αi 0
βi γi

][
x
y

]
+

[
ui
vi

]
, (1)

such that its attractor is the graph of continuous function
h. Clearly, 0 ≤ |αi|, |γi|< 1, ∀i. The contraction factor of
wi is than σi = max{|αi|, |γi|}, and the contraction factor
of the IFS is σ = maxi σi.

Following the steps in [23] and choosing γi’s as free
parameters, one can construct wi’s in such a way that the
line segment between [x0,y0]

T and [xN ,yN ]
T is mapped

to the line segment between [xi−1,yi−1]
T and [xi,yi]

T .
Therefore, the parameters must be chosen to satisfy

αi =
xi − xi−1

xN − x0
, ui =

xNxi−1 − x0xi

xN − x0
,

βi =
yi − yi−1

xN − x0
− γi

yN − y0

xN − x0
, (2)

vi =
xNyi−1 − x0yi

xN − x0
− γi

xNy0 − x0yN

xN − x0
.

Denoting F as the space of continuous functions
h : [x0,xN ]→R such that h(x0) = y0 and h(xN) = yN with

a metric d(h,g) = max{|h(x)−g(x)|, h,g ∈ F}, lets us
define a transformation T : F → F that satisfies

(T h)(x) = βil−1
i (x)+ γih(l−1

i (x))+ vi, (3)
li(x) = αix+ui i = 1,2, . . . ,N,

for x ∈ [xi−1,xi]. T is a contraction in the metric space
F with contraction factor σT = max{|γi|} and has a
unique fixed point h∗, i.e. (T h∗)(x) = h∗(x),∀x ∈ [x0,xN ]
[22]. For any h[0] ∈ F , the sequence of functions for
k = 1,2, . . .

h[k](x) = (T h[k−1])(x) ∀x ∈ [x0,xN ], (4)
converges to h∗, i.e.,

lim
k→∞

h[k](x) = h∗(x), ∀x ∈ [x0,xN ] . (5)

Furthermore, the points on the attractor of the IFS is
determined by the function h∗ since
(T h)(αix+ui) = βix+ γih(x)+ vi, ∀x ∈ [xi−1,xi]. (6)

We consider each set {[x,h[k](x)]T ∈ R2,∀x ∈
[x0,xN ]} associated with h[k] as a prefractal and a candi-
date antenna. Given the transformations wi, and h[0](x)≡
0, we can construct the geometry of the antenna using
(3) and the random iteration algorithm for IFS [22]. The
convergence rate to final attractor depends on the con-
traction factor σT . Given 0< ε ≪ 1, the convergence can
be assumed if

d(h[k],h[k−1])≤ σ
k−1
T d(T h[0],h[0])

= σ
k−1
T max

x∈[x0,xN ]

{∣∣∣∣βi
x−ui

αi
+ vi

∣∣∣∣
}N

i=1
≤ ε, (7)

is satisfied. Clearly, σT depends on the number of inter-
polation points and chosen γi; hence the designer has two
means of controlling how fast the convergence to h∗ is.
ε can be chosen according to the finest detail that can
be manufactured in practice, and the necessary number
of iterations, k, in (3) determined accordingly. We also
have

d(h∗,h[k])≤ σT

1−σT
d(h[k−1],h[k]), (8)

in order to measure how close the prefractal associated
with h[k] is to the fractal associated with h∗.

Note that the selection γi’s has a significant impact
on the overall topology of the FIF, as depicted in Fig. 1.

The fractal dimension, D, of the final attractor of the
associated IFS satisfies

D = 1+





log(∑
N
i=1 |γi|)

log(N) ,
N
∑

i=1
|γi|> 1

0, otherwise.
(9)

Hence 1 ≤ D < 2 if the interpolation points are
spaced equally. Clearly, we have absolute control of the
fractal’s dimension and the complexity [22].

If γi = γ = 0, ∀i, h∗ corresponds to the linear inter-
polator. Besides, the small contraction factor (σT →
0) yields 1D fractals without much detail, and associ-
ated prefractals are not of much interest. The choice of
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Fig. 1. FIF’s corresponding to prefractals for the parameters in Table 1. The red dots indicate interpolation points. The
fractal dimensions for γi = γ ≤ 0.25, γ = 0.4, and γ = 0.8 are D = 1, D ≈ 1.34, and D ≈ 1.84 for the graph of h∗(x)
respectively.

Table 1: The parameters of FIF wire prefractal antennas for γ = 0.2 and 0.4 in Fig. 1
Parameter Value Description

N 5 Number of interpolation points
[

zi
yi

]
, i = 1,2, ...,5

[
0.5
0

]
+

[
0 5 10 15 20
0 10 0 −10 0

]
Interpolation points (mm), yi =
h[k](zi)

αi, i = 1,2,3,4 0.25 z-scaling factor

βi, i = 1,2,3,4
yi − yi−1

20
y-scaling factor

ui, i = 1,2,3,4 zi−1 z-translation
vi, i = 1,2,3,4 yi−1 y-translation

r0 0.005 Radius of the antenna wire (mm)
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∑
N
i=1 |γi|> 1 results in fractals with self similar and sym-

metric structures with fine details. On the other hand,
|γi| → 1 implies ∑

N
i=1 |γi| → N and as a result D → 2.

The attractor associated with the underlying IFS has finer
details in this case. However, the details of the associ-
ated prefractals may not be suitable for manufacturing
for large k.

The parameter ε in (7) can be chosen with respect to
the finest producible detail. Hence, k can be determined
automatically. Then the error estimate between the pre-
fractal at kth iteration and the attractor can be estimated
by (8). Although the fractal structures are more interest-
ing in terms of radiation properties as D → 2, the prac-
tical realization can be cumbersome for a given accu-
racy due to large number of required iterations, yielding
extremely fine details.

The main advantage of using FIF as the basis for the
structure of the antenna is its flexibility. The designer can
optimize the structure by a few number of points on the
structure ({xi,h(xi)}N

i=1) and altering the free parameters
({γi}N

i=1) for desired radiation properties.

III. ILLUSTRATIVE EXAMPLE
To illustrate the approach, we present FIF perfectly

conducting thin wire prefractal antennas oriented along
z-axis embedded in yz-plane as a proof of concept.

The simulations were carried out using Ansoft High
Frequency Structural Simulator (HFSS)™, on an Intel
Xeon based workstation with 32 physical cores and 256
Gb of memory.

The antennas have been fed through a gap of 1 mm
located at the origin with a 50 Ω lumped port. The com-

fif_dipole - D04_N10 - Modeler Sunday, December 24, 2023

(a)

fif_dipole - D04_N10 - Modeler Sunday, December 24, 2023

(b)

Fig. 2. HFSS 3D model for γ = 0.4, k = 10. (b) Corresponding mesh. yz-plane is set to be a perfect electric symmetry
boundary to for a smaller FEM model. The other outer surfaces of the mesh region is set to be radiation boundaries.

mon parameters for the design are listed in Fig. 1. The
prefractal curves that form the antennas are obtained by
running iterations in (4) with Julia programming lan-
guage [25]. The generated curves are imported to HFSS
for further processing. A circle of radius r0 = 5 µm has
been extruded along the imported path to create the 3D
model. The 3D model is simplified to exclude irrele-
vant details with respect to operating wave length. The
3D models are simulated using finite element method
(FEM). The mesh used in FEM has been fine-tuned with
adaptive meshing. Only half z ≥ 0 plane is considered
with an electric symmetry boundary at xy-plane (Fig. 2
(a)). The largest FEM model had 852,603 mixed order
tetrahedral elements for the case with γ = 0.4 and k = 10
(Fig. 2 (b)).

The resonant frequencies, 10 dB bandwidths, peak
gains, and feed point impedances are listed in Table 2.
The radiation efficiencies have been confirmed to be
unity in all cases listed, as the antennas have been
assumed to be perfect electric conductors. The frequency
sweep analysis in the range of 0.8GHz ≤ f ≤ 8GHz is
shown in Fig. 3. Note that the case with k = 1 corre-
sponds to linear interpolation over the set {xi,h(xi)}N

i=1,
and its shape is independent of the contraction factors
{γi}i=1N . It is a simple bend wire dipole antenna. The
decrease in the first mode’s frequency and the emergence
of several other modes is apparent with respect to the ref-
erence bend wire dipole.

When the contraction factor is close to 0, the pre-
fractals in each iteration converge to a simple wire
antenna with slight decrease in the resonant frequencies
for increasing k (Table 2). This is expected since the
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Table 2: The properties of the simulated FIF wire prefractal antennas
γ k Frequency[GHz] Bandwidth [MHz] Gain Impedance [Ω]

- 1 1.807 126 0.47 67.2− j2.0
5.277 146 1.36 53.3− j0.0

0.2
3 1.653 108 0.40 64.4− j1.4

4.838 115 1.27 45.5− j0.1

10
1.602 90 0.38 64.2− j0.5
4.636 94 1.01 46.6− j0.1

0.4

3

1.088 56 0.2 57.4− j0.8
3.043 37 0.42 34.4− j0.1
4.832 49 2.09 78.9− j0.4
6.484 47 2.09 83.5+ j0.1

10

0.866 42 0.13 55.2− j0.9
2.468 28 0.29 35.4+ j0.3
3.824 39 1.40 62.3− j2.8
5.058 45 1.90 46.8− j1.2
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Fig. 3. |S11| versus the frequency f for varying k and γ .
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Fig. 3. |S11| versus the frequency f for varying k and γ. ( ) and ( ) indicates the prefractal and the
reference bend wire antenna corresponding to k = 1 case, respectively.

interest. The choice of
∑N
i=1 |γi| > 1 results in

fractals with self similar and symmetric structures
with fine details. On the other hand, |γi| → 1

implies
∑N
i=1 |γi| → N and as a result D → 2.

The attractor associated with the underlying IFS
has finer details in this case. However, the details
of the associated prefractals may not be suitable for
manufacturing for large k.

The parameter ε in equation (7) can be chosen
with respect to the finest producible detail. Hence,
k can be determined automatically. Then the error
estimate between the prefractal at kth iteration and
the attractor can be estimated by equation (8).
Although the fractal structures are more interesting
in terms of radiation properties as D → 2, the
practical realization can be cumbersome for a given
accuracy due to large number of required iterations,
yielding extremely fine details.

The main advantage of using FIF as the basis
for the structure of the antenna is its flexibility. The

designer can optimize the structure by a few number
of points on the structure ({xi, h(xi)}Ni=1) and
altering the free parameters ({γi}Ni=1) for desired
radiation properties.

III. ILLUSTRATIVE EXAMPLE
To illustrate the approach, we present FIF

perfectly conducting thin wire prefractal antennas
oriented along z-axis embedded in yz-plane as a
proof of concept.

The simulations were carried out using Ansoft
High Frequency Structural Simulator (HFSS)™, on
an Intel Xeon based workstation with 32 physical
cores and 256 Gb of memory.

The antennas have been fed through a gap of
1 mm located at the origin with a 50 Ω lumped
port. The common parameters for the design are
listed in Table 1. The prefractal curves that form
the antennas are obtained by running iterations in
equation (4) with Julia programming language [25].
The generated curves are imported to HFSS for
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interest. The choice of
∑N
i=1 |γi| > 1 results in

fractals with self similar and symmetric structures
with fine details. On the other hand, |γi| → 1

implies
∑N
i=1 |γi| → N and as a result D → 2.

The attractor associated with the underlying IFS
has finer details in this case. However, the details
of the associated prefractals may not be suitable for
manufacturing for large k.

The parameter ε in equation (7) can be chosen
with respect to the finest producible detail. Hence,
k can be determined automatically. Then the error
estimate between the prefractal at kth iteration and
the attractor can be estimated by equation (8).
Although the fractal structures are more interesting
in terms of radiation properties as D → 2, the
practical realization can be cumbersome for a given
accuracy due to large number of required iterations,
yielding extremely fine details.

The main advantage of using FIF as the basis
for the structure of the antenna is its flexibility. The

designer can optimize the structure by a few number
of points on the structure ({xi, h(xi)}Ni=1) and
altering the free parameters ({γi}Ni=1) for desired
radiation properties.

III. ILLUSTRATIVE EXAMPLE
To illustrate the approach, we present FIF

perfectly conducting thin wire prefractal antennas
oriented along z-axis embedded in yz-plane as a
proof of concept.

The simulations were carried out using Ansoft
High Frequency Structural Simulator (HFSS)™, on
an Intel Xeon based workstation with 32 physical
cores and 256 Gb of memory.

The antennas have been fed through a gap of
1 mm located at the origin with a 50 Ω lumped
port. The common parameters for the design are
listed in Table 1. The prefractal curves that form
the antennas are obtained by running iterations in
equation (4) with Julia programming language [25].
The generated curves are imported to HFSS for

indicates the prefractal and the reference bend
wire antenna corresponding to k = 1 case, respectively.

physical length of the antenna increases with successive
iterations of FIF as well. More interesting results are
observed when γ = 0.4. Several new bands of operation
with excellent matching emerge as k increases. Besides,
the deviation in resonant frequencies is more pronounced

compared to γ = 0.2. For larger contraction factors, the
antenna is still confined to the same space compactly,
although it is electrically longer.

The normalized radiation patterns for γ = 0.4 are
presented in Fig. 4. The multi-directional radiations
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Fig. 4. The H-plane ( : φ = 0◦), and E-plane ( : φ = 90◦) normalized radiation patterns for the first four modes
in frequency range 0.8GHz ≤ f ≤ 8GHz with γ = 0.4.
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patterns emerge for various operating frequencies. Note
that although the antenna’s orientation was kept fixed
along z-axis, the radiation patterns are almost perpendic-
ular in mode 1 ( f = 0.866 GHz) and mode 4 ( f = 5.058
GHz) for k = 10 and γ = 0.4. The fractal structure allows
such possibilities, which would not be available in clas-
sical wire antennas.

IV. CONCLUSION
In this article, we propose an approach based on

FIFs to design fractal wire antennas. In this approach
the geometry need not be predetermined, but can be
altered flexibly, in contrast to the fractal antenna stud-
ies in the literature. The geometry of the antenna can
be controlled by the free parameters, i.e., the interpola-
tion points and the contraction factors of the FIF. There-
fore, the antenna’s radiation properties can be controlled
directly. The FIF parameters can be adjusted to optimize
the performance for the desired antenna properties in
terms of gain, radiation pattern, and matching. Further-
more, the optimization can be carried out for multiple
bands of operation under spatial constraints.

One of the advantages of the proposed approach is
the possibility to bound errors between the prefactals
obtained in the intermediate iterations of fractal gen-
eration and ideal fractals. This is particularly impor-
tant because it is impossible to manufacture the infinite
details of the ideal fractal. We can determine the required
number of iterations a priori for a given manufacturing
tolerance based on the constructiveness of the underlying
transformations leading to FIF for given antenna perfor-
mance measures.

The fractal nature of the designed geometries allows
the apparent electrical length of the antenna to be larger
than the equivalent dipole fitted to the same limited
space. In other words, the antenna size can be miniatur-
ized relative to classical structures while operating at low
frequencies. Additionally, the self-similarity of the gen-
erated fractals results in multiband behavior. These prop-
erties render proposed antennas suitable for mobile and
wearable wireless applications that require long-range
communication especially.
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