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Abstract ─ A large dense fine mesh is used to model 

object with fine structures to guarantee good solution 

accuracy, and this in turn places an inordinately heavy 

burden on the CPU in terms of both memory requirement 

and computational complexity. To analyze the large 

dense complex linear system efficiently, the combined 

MLSSM/MLFMA is used to accelerate the matrix-vector 

multiplication. Multilevel fast multipole algorithm 

(MLFMA) cannot be used to analyze the box’s size of 

tree structure below 0.2 wavelength, because the “low 

frequency breakdown” phenomenon would happen. For 

the large-scale problems, the matrix assembly time of 

multilevel simply sparse method (MLSSM) is much 

longer than that of MLFMA. This combined method 

takes advantage of the virtues of both MLFMA and 

MLSSM, which is more efficient than either 

conventional MLFMA or conventional MLSSM. An 

efficient preconditioning technique based on compressed 

block decomposition (CBD) is applied to speed up the 

convergence rate. Numerical results are presented to 

demonstrate the accuracy and efficiency of the proposed 

method. 

 

Index Terms ─ Compressed Block Decomposition (CBD) 

preconditioner, Multilevel Simply Sparse Method 

(MLSSM), object with fine structures. 
 

I. INTRODUCTION 
The increased power and availability of 

computational resources and acceleration schemes have 

enabled solution of problems with very large number of 

unknowns, varying from few thousands to few millions 

[1]. Another class of problems arises when analyzing 

structures which require a high local density of 

unknowns to accurately capture geometric features. This 

class of problems is referred to as object with fine 

structures problems exhibit multiple scales in length. For 

example, small length scale discretizations are required 

to capture sharp or fine geometric features that are 

embedded within large and smooth geometries 

discretized at a coarser length scale. Generally, the 

characteristic of an object with fine structures problem is 

the concentration of large number of unknowns in 

electrically small domains. All these simulations require 

fast and efficient numerical methods to compute an 

approximate solution of Maxwell’s equations. Numerous 

authors have derived a variety of methods that are  

used for computing the electromagnetic problems. The 

method of moments (MoM) [2-4] is one of the most 

widely used techniques for electromagnetic problems. 

However, for large-scale problems, a great number of 

unknowns are required for modeling objects, which 

always leads to intensive computation and unaffordable 

CPU time. 

The fast algorithms are developed to reduce 

computational cost. The most popular fast solution 

include the multilevel fast multipole algorithm (MLFMA) 

[5-6], has O(NlogN) (where N denotes the number of 

unknowns) complexity for a given accuracy. Though 

efficient and accurate, this algorithm is highly technical. 

It utilizes a large number of tools, such as partial wave 

expansion, exponential expansion, filtering, and 

interpolation of spherical harmonics. However, MLFMA 

becomes numerically unstable and inefficient when 

applied to object with fine structures problems. This is a 

consequence of the fact that Helmholtz MLFMA does 

not smoothly transition to Laplace MLFMA as frequency 

tends to zero. Therefore, when the finest level box’s size 

is below 0.2   (   indicates the incident wavelength), 

MLFMA will suffer from “low frequency breakdown” 

phenomenon [1]. As a result, it cannot be easily applied 

to analyze the object with fine structures problems. 
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In recent years, the matrix decomposition technique 

has been introduced to analyze the electromagnetic 

problems, which exploits the well-known fact that for 

well separated sub-scatterers, the corresponding sub-

matrices are low rank and can be compressed [7-8]. In 

contrast with MLFMA, it is purely algebraic and can be 

easily interfaced to existing MOM codes. MLSSM is a 

popular matrix decomposition technique, which has  

been successfully applied in [9-14] to electromagnetic 

problems. It has no limit of the box’s size and has  

a memory requirement of O(N) and computational 

complexity is proportional to O(NlogN). However, for 

the large-scale problems, the matrix filling time of 

MLSSM is much longer than that of MLFMA.  

In this paper, a hybrid method called combined 

MLSSM/MLFMA is proposed, which uses the main 

framework of MLFMA but adopts the MLSSM to deal 

with the box’s size is below 0.2 . This method takes 

advantage of both MLFMA and MLSSM and is  

more efficient than either conventional MLFMA or 

conventional MLSSM for analyzing the multi-scale 

problems. For the object with fine structures problems, 

the matrix condition number is very large due to the 

mixed discretization. Therefore, the system has poor 

convergence history and requires urgently a good  

solver or preconditioner. In this paper, an efficient 

preconditioning technique based on CBD algorithm [15-

17] is applied to improve the property of electric field 

integral equation (EFIE) formulation. 
 

II. MLSSM ALGORITHM 
The impedance matrix filled by MLSSM is carried 

out based on the same multilevel spatial decomposition 

of MLFMA. The single level of SSM is presented in [18] 

and the MLSSM is shown in [9-14]. The structure of the 

MLSSM representation is given in a multilevel recursion 

manner [9-14]: 

  1
ˆ H

l l l l lZZ U Z V  , (1) 

where Zl is the reduced order impedance matrix and 

consists of only far interactions at level l+1, which will 

be compressed in the coarser levels recursively up to 

level-3. There is no level L+1 near interactions at the 

finest level L (where L denotes the number of the levels). 

Thus, ZL is the impedance matrix Z. In (1), ˆ
lZ
 
is the 

sparse matrix containing all near-neighbor interactions at 

level l of the oct-tree which were not represented at finer 

level of the oct-tree. Ul and Vl are the new basis and 

testing function matrices, respectively, which are block 

diagonal unitary matrices that compress interaction 

between sources in non-touching groups at level l. The 

following is the procedure in details. Suppose that the 

object is decomposed in 4-level oct-tree, the impedance 

matrix can be expressed as: 

 4 4 4 4 3 4
ˆ ˆfar H
Z Z ZZ U Z V   , (2) 

where 

 3 3 3 3 3 2 3
ˆ ˆfar H
Z Z ZZ U Z V   . (3) 

The forms of matrices lU , 1lZ   and 
H

lV  are shown 

in Figs. 1 and 2 at levels 4 and 3, respectively. 

 
 

(a) (b) (c)  
 

Fig. 1. Level 4 SSM matrices: (a):
 4U , (b): 3Ẑ , and (c):

4 .HV  

 
 

(a) (b) (c) 

 

 

Fig. 2. Level 3 SSM matrices: (a): 3U , (b):
2

Ẑ , and (c):

3 .HV  

 

The major requirements of the MLSSM memory is 

to store the matrices ˆ
lZ , 

lU , and H

lV  at all levels. The 

matrix-vector multiplication of MLSSM is very similar 

to MLFMA in manner, which has O(NlogN) complexity 

for a given accuracy. 

 

III. COMBINED MLSSM/MLFMA 

ALGORITHM 

A. MLSSM/MLFMA algorithm 

MLFMA [5-6] has been widely used to solve the 

electromagnetic scattering of complex object with the 

surface integral equation approach. When it is applied to 

analyze the scattering from the multi-scale objects where 

dense discretization is necessary to capture geometric 

features accurately, the memory usage of MLFMA is 

very large. It is because of that the box’s size of tree 

structure cannot be set to less than 0.2 , the number of 

unknowns in the near-field boxes is very large. The near-

field matrices of MLFMA is filled by direct method. 

Therefore, the near-field of MLFMA needs large 

memory requirement for large-scale problems.  

In this section, a hybrid method called combined 

MLSSM/MLFMA algorithm is proposed, which uses the 
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main framework of MLFMA. The framework of the 

hybrid method is shown in the Fig. 3, the box’s sizes 

below the dotted line are less than 0.2  and are filled by 

MLSSM algorithm, the box’s sizes up the dotted line are 

larger than 0.2  and are filled by MLFMA. 

 

 
 

Fig. 3. The framework of combined MLSSM/MLFMA 

algorithm. 

 

Using the combined MLSSM/MLFMA for filling 

the impedance matrix Z, a fast matrix-vector production 

algorithm (MVP) can be obtained as follows: 

Subroutine MVP, 

(1) The direct MVP algorithm is used to the near 

interaction impedance matrix; 

Begin :3: 1l L  , 

(2) From l = L : LMLFMA+1, 

MLSSM is applied to speed up MVP; 

End. 

(3) From l = LMLFMA: 3, 

MLFMA is used to speed up MVP; 

End. 

End. 

This new method takes advantages of the virtues of 

both MLFMA and MLSSM, which uses MLFMA to 

reduce the matrix assembly time of MLSSM and utilizes 

MLSSM to alleviate the near-field pressure of MLFMA. 

The efficiency of the method is demonstrated by the 

numerical results. 

 

B. CBD preconditioner 

In order to accelerate the convergence rate of the 

Krylov iteration, the linear system is transformed into an 

equivalent one: 

 [ ][ ][ ] [ ][ ]M Z I M V , (4) 

where [ ]M  referred as the preconditioner for the 

impedance matrix [ ]Z . The product matrix [ ][ ]M Z  has 

much better spectral property than original matrix [ ]Z , 

which leads to a greatly reduced number of iterations. 

Since the sparse near-field matrix is the best available 

approximation to the coefficient matrix [ ]Z , it makes 

sense to use near-field matrix to construct a preconditioner. 

In this paper, an efficient CBD preconditioner [19] is  

applied to form the matrix [ ]M . 

 

IV. NUMERICAL RESULTS 
In this section, a number of numerical examples are 

presented to demonstrate the efficiency of the proposed 

method for analyzing the object with fine structures. All 

the computations are carried out on a Core-i5 3350P with 

3.1 GHz CPU and 4GB RAM in single precision and  

the MLSSM truncating tolerance is 10-3 relative to the 

largest singular value. In the implementation of the 

combined MLSSM/MLFMA algorithm, the restarted 

version of GMRES algorithm [20] is used as the iterative 

method. The iteration process is terminated when the 

normalized backward error is reduced by 10-3 for all 

examples. 

 

A. A metal helicopter model 

A metal helicopter model with many fine structures 

is considered in the first example in Fig. 4, which  

needs large number of unknowns to accurately  

capture fine structures of the helicopter model. The 

dimension of the structure is 20.48 12.37 6.2 .m m m   

The incident and scattered angles are ( 0 , 0 )i i     

and (0 180 , 0 ),s s     respectively. The maximum 

dimension of the structure is 10.24  at 150 MHz and the 

number of unknowns is 74913. The number of the 

octrees for the combined MLSSM/MLFMA algorithm is 

L = 5, and L = 4 for the MLFMA. The finest level box’s 

sizes of combined MLSSM/MLFMA algorithm and 

MLFMA are 0.16  and 0.32 , respectively. The bistatic 

RCS of the proposed method is shown in Fig. 5, and  

is agreed well with that of FEKO. Table 1 shows  

the memory storages and the MVP times of the 

MLSSM/MLFMA and MLFMA. “MVP time” in the 

table indicates the time of one matrix-vector production. 

The near-field memory of MLSSM/MLFMA is much 

less than that of MLFMA, while the total memory 

consumption of MLSSM/MLFMA is half less than  

that of MLFMA. The MVP time of MLSSM/MLFMA is  

also much less than that of MLFMA. The convergence 

history curves of the MLSSM/MLFMA solved with CBD 

preconditioner are shown in Fig. 6. It can be found that 

the proposed method has a much better convergence 

properties by using the CBD preconditioner. 

 

 
 

Fig. 4. The configuration of the metal helicopter model. 
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Fig. 5. Bistatic scattering cross section of metal helicopter 

model. 

 

Table 1: The memory requirements and the MVP times 

of the proposed method for the metal helicopter model 

Algorithms 
Near-Field 

(MB) 

Total 

(MB) 

MVP Time 

(s) 

MLFMA 1097 1209 6.07 

MLSSM/MLFMA 273 465 2.96 

 

 
 
Fig. 6. Convergence histories of the MLSSM/MLFMA 

solved with CBD preconditioner. 

 

B. A metal missile model 

The second multi-scale example is a complex metal 

missile structure and is analyzed shown in Fig. 7.  

The dimension of the structure is 6 2.56 1.32m m m  . 

The incident and scattered angles are ( 0 , 0 )i i     

and (0 180 , 0 )s s    , respectively. The maximum 

dimension of the structure is 6  at 300 MHz and the 

number of unknowns is 67420. The number of the 

octrees for the MLSSM/MLFMA algorithm is L = 4, and 

L = 3 for the MLFMA. The finest level box’s sizes of 

combined MLSSM/MLFMA algorithm and MLFMA 

are 0.18  and 0.37 , respectively. The bistatic RCS of 

the metal missile structure is analyzed by the proposed 

method shown in Fig. 8. It can be observed that the result 

of the proposed method is agreed well with that of 

FEKO. The efficiency of the proposed method is  

analyzed in this example shown in Table 2. It can be 

found that the memory storage and the MVP time of the 

MLSSM/MLFMA are both much less than that of the 

conventional MLFMA. The convergence rate of the 

CBD preconditioner is shown in Fig. 9. It can be found 

that the CBD preconditioner is much more efficient than 

the unpreconditioned GMRES algorithm. 

 

 
 

Fig. 7. The configuration of the metal missile model. 

 

 
 
Fig. 8. Bistatic scattering cross section of metal missile 

model. 

 

Table 2: The memory requirements and the MVP times 

of the proposed method for the metal missile model 

Algorithms 
Near-Field 

(MB) 

Total 

(MB) 

MVP Time 

(s) 

MLFMA 871 1045 4.52 

MLSSM/MLFMA 209 362 1.67 

 

 
 
Fig. 9. Convergence histories of the MLSSM/MLFMA 

solved with CBD preconditioner. 

 

ACES JOURNAL, Vol. 31, No.11, November 20161306



VI. CONCLUSION 
In this paper, a novel combined MLSSM/MLFMA 

algorithm is proposed to solve the electromagnetic 

scattering of object with fine structures. It takes advantage 

of the virtues of both MLFMA and MLSSM, which uses 

MLFMA to reduce the matrix assembly time of MLSSM 

and utilizes MLSSM to alleviate the near interaction 

pressure of MLFMA. Since compression of near 

interactions, the matrix-vector multiplication of MLSSM/ 

MLFMA is more efficient than that of MLFMA. The 

CBD preconditioner is used to further speed up the 

convergence. It can be found that MLSSM/MLFMA 

combined with CBD preconditioner is very efficient for 

analyzing the object with fine structures problems. 
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