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Abstract ─ In this paper, loop basis functions are 

introduced to expand the magnetic flux density and the 

magnetostatic subset of Maxwell’s equations are solved 

in a compact and straightforward manner using finite 

element method. As linear combinations of div-

conforming Schaubert-Wilton-Glisson basis functions in 

three-dimensional, loop basis functions are inherently 

divergence-free and originally constructed to represent 

solenoidal electric current density in the electric field 

integral equation. Sharing the same physical property 

with the solenoidal electric current density, the magnetic 

flux density can also be represented by the loop basis 

functions and thus, Gauss’ law for magnetism is 

naturally satisfied; which is out of the capability of 

general Whitney elements. The relationship between the 

loop basis functions and Whitney elements, as well as 

the comparison between the proposed method and 

traditional method pertinent to magnetic vector potential 

are investigated. 

 

Index Terms ─ Finite element method, flux formulation, 

loop basis function, magnetostatic problems. 
 

I. INTRODUCTION 
Magnetostatic boundary value problems (BVPs) are 

generally described by Ampère’s law, Gauss’ law for 

magnetism, and corresponding boundary conditions.  

For complex structures, various numerical methods, 

including finite element method (FEM), boundary 

element method (BEM) and finite difference method 

(FDM) are used to model the flow of magnetostatic 

fields. Various kinds of formulations are proposed, 

where the unknowns of the system might be different. As 

one of most popular methods, the magnetic vector 

potential A was introduced to construct a vector potential 

formulation, and several gauge conditions were applied 

to eliminate the nullspace of the resultant matrix system 

[1–4]. For ringlike current problems, the magnetic field 

H could be obtained from the total scalar potential and 

reduced scalar potential in different regions [5–7]. Mixed 

formulations with H or B being the principle unknown(s) 

[8–10], were proposed to overcome the computational 

drawbacks brought about by the aforementioned 

potential formulations, such as the numerical cancellation 

and weak enforcement of some physical laws. Although 

the potential formulations have been well developed in 

the past few decades, field oriented formulations are still 

attractive since they work directly with physically 

meaningful quantities and thus, the implementation is 

quite straightforward. However, the number of unknowns 

becomes relatively large because two sets of degrees of 

freedoms (DoFs) are involved, and specific techniques 

should be applied to solve the resultant indefinite matrix 

systems [8–10]. 

To alleviate the computational burden and 

complexity of the mixed formulations, one can think in 

the following ways: consider Gauss’ law for magnetism 

as a gauge condition and incorporate it into Ampère’s 

law, just like the Coulomb gauged vector potential 

formulation, and thus, only one of the two DoFs is 

necessary; or expand B by certain basis functions such 

that Gauss’ law for magnetism is satisfied automatically 

and only Ampère’s law needs to be solved. The former 

is unclear because it is difficult to find proper expansion 

basis functions for H or B as both the divergence and curl 

operators will act on it simultaneously; while the later is 

available, thanks to the successful application of loop 

basis functions in the electric field integral equation 

(EFIE) [11–14]. The loop basis functions are linear 

combinations of the Schaubert-Wilton-Glisson (SWG) 

basis functions [15] in three-dimensional (3D). The 

SWG basis functions are divergence-conforming, while 

loop basis functions are divergence-free, which is 

consistent with the physical nature of the solenoidal 
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current density Jsol. Furthermore, the loop basis 

functions are defined with respect to edges of the 

geometrical meshes. Hence, the loop representation  

of Jsol greatly reduces the number of unknowns, in 

comparison with the SWG representation [14]. As  

B shares the same physical property with Jsol, the 

introduction of the loop representation into finite 

element models pertinent to B is of great interest and 

importance.  

In this paper, the application of the loop basis 

functions in finite element modeling is investigated and 

a novel flux formulation, which works solely with B, is 

proposed for solving 3D magnetostatic problems. By 

virtue of connection between Whitney elements [4, 16] 

and SWG basis functions, the space formed by the loop 

basis functions can be proved to be a subset of Whitney 

forms, from which one can further conclude that the 

proposed flux formulation is consistent with the vector 

potential formulation. In addition, since H is not 

accounted and the loop basis functions are associated to 

edges of the geometrical mesh, the number of unknowns 

of the proposed flux formulation is much less than that 

of the mixed formulations. In other words, the proposed 

flux formulation alleviates the computational burden and 

complexity, while retains the virtue of the mixed 

formulations. 

The remainder of this paper is organized as follows. 

The loop basis functions are constructed and their 

connection to Whitney elements is demonstrated in 

Section 2. In Section 3, the proposed flux formulation  

is derived and compared with the vector potential 

formulation. In Section 4, numerical examples are 

presented to verify the accuracy and effectiveness of  

the proposed flux formulation. Finally, this paper is 

concluded by an overview of the proposed flux 

formulation in Section 5. 
 

II. LOOP BASIS FUNCTIONS FOR 3D 

FINITE ELEMENT MODELING 
In a 3D tetrahedral mesh, the loop basis functions 

are associated to edges. As shown in Fig. 1, the loop basis 

function with regard to edge 23e  can be defined as [12]: 
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with Vi the volume of i. ri2 and ri1 denote the positions 

corresponding to the ending and starting vertexes, 

respectively, of the edge opposite to 23e . It is worthy to 

note that the loop basis function follows the right hand 

rule with regard to 23e . L12(r) can be written in the form 

of the SWG basis functions: 
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where ln is either 1 or −1, indicating a flux flowing out 

of or into i, respectively, and the subscripts denote the 

three vertices of a facet. Meanwhile, the curl of Whitney 

field element with regard to 23e  can be expressed as [17]: 
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and the linear supposition of Whitney flux elements [16]: 
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From (1), (3) and (4), it is straightforward to find: 
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which indicates that the loop basis functions are linear 

suppositions of Whitney flux elements as well. 

Furthermore, the 3D loop basis function is apparently 

divergence-free, i.e.: 

    12 12( ) 3 0.L    r r  (6) 

The above derivation is applicable for every internal 

edge. For edges at the boundary, half loop basis 

functions [14] can be defined, which can be considered 

as full loop basis functions with virtual outside tetrahedra 

with relative permittivity r = 1.0. Generally speaking, 

the loop basis functions include both full loops for the 

internal edges and half loops for those at the boundary. 

 

 
 

Fig. 1. The loop basis function defined for 23e . 

 

III. FLUX FORMULATION FOR 

MAGNETOSTATIC PROBLEMS 

A. Governing equation 

Consider a general 3D BVP as shown in Fig. 2. 

Assume that the structure is inhomogeneously composed 

of three bodies, 0, 1 and 2, among which 0 is 

bounded by D (solid line) and N (dash dotted line);  

1 and 2 are bounded by 1 and 2, respectively. In 
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addition, the structure is excited by an impressed current 

source J. Thus, B satisfies the subset Maxwell’s 

equations: 

 1
,


 B J  (7) 

 0, B  (8) 

with  the magnetic permeability. In addition, two kinds 

of boundary conditions are imposed on D and N, 

respectively, i.e.: 

  
1

ˆ , , Nn


  B r K r  (9) 

  ˆ ,  ,Dn b  B r r  (10) 

where n̂  is the unit normal vector to the surface. b and 

K denote the normal component of B and surface 

current, respectively, which are of clear physical 

meaning. In the vector potential formulation, however, 

(7), (9) and (10) are rewritten as: 

 1
,


  A J  (11) 

 1
ˆ ,  ,Nn
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by assuming, 

 ,B A  (14) 

 ,b   (15) 

where the selection of α is not evident [18]. 

Generally speaking, B is governed by (7-10), which 

are called the flux formulation and lead to an over 

determined system. To make the system solvable, an 

additional quantity, H, A or the reduced scalar potential 

, is introduced into the system for the mixed formulations. 

Hence, two unknown quantities are involved. Actually, 

the over determined problem can be solved by reducing 

the number of equations instead of adding more unknowns. 

As the loop basis functions are inherently divergence-

free, (8) is automatically satisfied and hence, can be 

discarded if B is approximated by them. Similar strategy 

is applied in the vector potential formulation, where (8) 

is discarded due to (14). 
 

 
 

Fig. 2. A general 3D structure excited by an impressed 

current source J. 

B. Finite element discretization 

Expanding B with loop basis functions yields: 

  
=1

,
lN

n n

n

xB rL  (16) 

where Nl, the number of the loop basis functions, is equal 

to the number of edges of the geometrical mesh, which 

is also the number of expansion elements for the vector 

potential formulation; xn is the corresponding unknown 

coefficient to be determined. Since (8) is automatically 

satisfied, Galerkin’s technique can be directly applied to 

the BVP governed by (7, 9, 10). Testing (7) with m  reads: 

 1
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Integrating the left hand side of (17) by parts yields: 
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For simplicity and without loss of generality, the 

homogeneous boundary conditions [3, 4], K = 0 in (9) 

and b = 0 in (10), are applied. Substituting (9, 10, 16, 18) 

into (17), one can obtain: 
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Note that the numbers of unknowns of the vector 

potential formulation, the mixed formulation (e.g., H-B 

formulation), and the proposed flux formulations are Ne, 

Ne + Nf and Ne, respectively, where Ne and Nf are the 

numbers of edges and facets, respectively. Besides, it is 

interesting to find that the vector potential formulation 

and the proposed flux formulation are consistent in 

matrix condition. Specifically, A can be expanded by 

  r , i.e.: 

  
1

.
=

eN

n n

n

a A r  (20) 

As implied in (5), the vector potential formulation 

and the proposed flux formulation should have the same 

solution space, with dimension Ne − Nn + 1 (Nn is the 

number of nodes), which lead to rank deficiency of the 

matrices. Fast convergence is achieved when the matrix 

systems are solved using iterative methods [2, 14]. 

However, the sign of   r  in each tetrahedron is 

determined by the orientation of the tetrahedron [4], 

while the sign of L(r) in each tetrahedron is determined 

more straightforwardly by the right hand rule, as shown 

in Fig. 1. 

In sum, the proposed flux formulation is consistent 

with the vector potential formulation. The former is 

advantageous in physical interpolation as well as 

numerical implementation of the boundary conditions 

over the later. At the same time, as B is traditionally 

expanded by Whitney-2 form (flux space) elements with 

dimension Nf, the number of unknowns can be greatly 

reduced if loop basis functions, with dimension Ne, are 
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applied to expand B, since Ne is generally much smaller 

than Nf. 

 

IV. NUMERICAL VERIFICATION 
As shown in Fig. 3, the IEEJ model [19, 20], which 

is proposed by the Institute of Electrical Engineers  

in Japan, is investigated to verify the proposed flux 

formulation. All the dimensions are in mm. As the 

structure is symmetrical, only the portion lying in the 

first quadrant, instead of the whole domain, is discretized. 

 

 
 (a) 

 
 (b) 

 
 (c) 

 

Fig. 3. IEEJ model, which contains a cubic iron core 

surrounded by a racetrack coil: (a) top view, (b) sectional 

view, and (c) 3D view of 1/8 domain. 

As shown in Fig. 4, the variation of Bx and Bz along 

z axis obtained by the proposed flux formulation is 

compared with that obtained by the vector potential 

formulation. Also, |B| values at several sample points are 

listed, in contrast to the measurement [20], in Table 1. 

From Fig. 4 and Table 1, one can see that the results 

obtained by the two formulations agree with each other 

very well. Considerable but acceptable numerical error 

occurs at point #1, which might be caused by the  

quality of the mesh. Furthermore, field distributions of  

B are shown in Fig. 5 and the detailed statistics of the 

computational cost of the numerical methods is listed  

in Table 2, where Bi-CGSTAB iterative algorithm [21] 

is used and 10−6 accuracy is achieved. Obviously, the 

memory consumptions of the two formulations are almost 

the same, while the convergence of the proposed flux 

formulation is a little bit slower than that of the vector 

potential formulation. 
 

 
   (a) 

 
   (b) 

 

Fig. 4. Variation of (a) Bx and (b) Bz along z axis. 

 

 
 (a)    (b) 

 

Fig. 5. (a) Vector and (b) magnitude distribution of B. 
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In sum, the proposed flux formulation exhibits a 

numerical performance as excellent as that of the vector 

potential formulation, while it is more straightforward 

since it works with physically meaningful quantity B. 

The application of the loop basis functions in finite 

element modeling of 3D magnetostatic problems is 

verified to be accurate and effective. The proposed flux 

formulation have some potential applications when the 

governing equations are pertinent to B, e.g., the E-B 

formulation for dynamic problems [22, 23], where the 

Whitney flux elements are applied and thus additional 

effort is needed to enforce the divergence-free condition 

of B. Fortunately, the divergence-free condition of B is 

guaranteed by definition and no more effort is needed if 

the loop basis functions are applied. 

 

 

Table 1: Comparison of |B| values at sampled points 

Coordinates of 

Sampled Points (mm) 

|B| (Gauss) 

Vector Potential Formulation Flux Formulation Measurement 

#1 (0, 0, 110) 254.8656 254.8647 240.1 

#2 (40, 0, 110) 306.3903 306.3896 298.1 

#3 (40, 40, 110) 355.6713 355.6704 355.0 

 

Table 2: Computational cost of the numerical methods 

 Number of Unknowns Matrix Sparsity1 Iterative Steps 

Vector Potential Formulation 425428 3.4969110−5 339 

Flux formulation 425428 3.4969010−5 365 
1 Defined as the ratio of the number of nonzero entries to the number of total entries. 
 

V. CONCLUSION 
The loop basis functions, which are originally 

proposed to expand solenoidal electric current density in 

EFIE, are proved to be in Whitney-2 form. They inherit 

the normal continuity of Whitney facet elements and are 

divergence-free. They have been applied to expand B  

in the finite element modeling of 3D magnetostatic 

problems. This implementation makes Gauss’ law be 

satisfied naturally and thus leading to a compact and 

straightforward flux formulation, which solely works 

with B. This formulation retains the clear physical 

interpolation of the mixed formulation, while becomes 

more elegant and compact. At the same time, it can 

compete with the vector potential formulation in both 

accuracy and computational cost. This application of the 

loop basis functions provides a novel perspective to 

reconsider the BVPs and basis expansion of solenoidal 

quantities in the realm of FEM. 
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