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Abstract ─ Domain decomposition methods are 

efficient for analyzing scattering problems with 

large-scale structures. In the present paper, an 

improved combination of Overlapped Domain 

Decomposition Method of Integral Equations (IE-

ODDM) and Multilevel Fast Multi-pole Algorithm 

(MLFMA) is developed. Amount of independent 

MLFMA progresses of sub-domains are departed 

and re-integrated, such that the total CPU time of 

coupled effects in IE-ODDM can be saved. The 

proposed method developed minimal-completed 

sub-trees of sub-domains to reduce redundant 

aggregations of the MLFMA process blended in IE-

ODDM. Numerical results and comparisons with 

the original method are provided, which suggest 

that the proposed combination integrates MLFMA 

with IE-ODDM better than the original combined 

method, and it can greatly improve the 

computational efficiency of coupled effects in IE-

ODDM. 

 

Index Terms ─ Improved combined method, 

method of moments, multilevel fast multipole 

algorithm, overlapped domain decomposition 

method of integral equations. 
 

I. INTRODUCTION 
Method of Moments (MoM) for surface 

integral equations has been widely used [1], but the 

dense matrix makes it difficult for analyzing large-

scale objects. In the past two decades, this problem 

has been circumvented by developments of sparse 

matrix methods and matrix partition iterative 

schemes. Sparse matrix method utilizes analytical 

or numerical low-rank matrix decompositions to 

accelerate matrix-vector multiplication, like fast 

multipole method [2] and Multilevel Fast Multipole 

Algorithm (MLFMA) [3-11] based on plane-wave 

spectral approximation. Matrix partition iterative 

schemes divide and solve large problems, like 

forward-backward iterative scheme [12,13] and 

Overlapped Domain Decomposition Method for 

Integral Equations (IE-ODDM) [14,15]. Moreover, 

sparse matrix methods and matrix partition iterative 

schemes can be combined for higher performance, 

like the overlapped domain decomposition method 

based on MLFMA (IE-MLFMA-ODDM) [16-18] 

which was newly reported by many researchers 

[19-22]. 

In the original IE-MLFMA-ODDM, MLFMA 

processes are simply embedded in IE-ODDM 

iterative scheme to accelerate calculations of many 

matrix-vector multiplications in self-effects and 

coupled effects of sub-domains. Although the 

combined method is successful, the above 

combination of MLFMA and IE-ODDM is still 

primitive. In the original combined routine, there 

are many different and independent MLFMA 

processes of sub-domains, which consume most of 

CPU time and memory resources. All those 

MLFMA processes in the combined method are 

completed processes like the one without IE-

ODDM. That is to say, MLFMA processes and IE-

ODDM are isolated, and every MLFMA process 

utilizes too little information from IE-ODDM and 

other MLFMA processes. If decompositions 

consist of many sub-domains and all sub-domains 

are with amount of exterior unknowns, amount of 

MLFMA processes are still time-consuming. 

In the present paper, an improved combination 
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is proposed. Compared with the original combined 

method, the proposed combination integrates 

MLFMA with IE-ODDM much better, and it 

optimizes MLFMA processes of sub-domains, 

which can greatly accelerate the calculation of 

coupled effects. It can be called IE-O-MLFMA-

ODDM. The proposed IE-O-MLFMA-ODDM 

divides many completed and independent MLFMA 

processes consisting of aggregations, translations 

and disaggregations into segments, extracts and 

reuses their common information. Redundancies of 

many MLFMA processes are reduced, and those 

independent MLFMA processes and IE-ODDM are 

blended. Localized aggregations of sub-domains 

are introduced, and radiation patterns of coupled 

effects are saved and shared in IE-ODDM loops. 

The above localization/sharing mechanism can 

greatly improve the efficiency of IE-ODDM. 

However, everything has double folds. To support 

saving and sharing of radiation patterns, the 

proposed method needs more memory. In order to 

manage local radiation patterns efficiently, one data 

structure called minimal-completed sub-tree is 

introduced. 
 

II. THE ORIGINAL COMBINED 

METHOD 
In order to find the distribution of current on 

perfect electrical conductors by MoM, one should 

build the following electric field integral equation 

[23]: 

 INC

E,J
tan

tan

- ( , ) ( ) ( )G r r J r ds E r


    
  , (1) 

and magnetic field integral equation: 

 INC

H,J
tan

tan

- ( , ) ( ) ( )G r r J r ds H r


    
  , (2) 

where   represents the surface of objects and G  

represents the dyadic Green’s function, J  is the 

surface current, and INCE  and INCH  are incident 

fields. The MoM matrices derived from the above 

integral equations or their combinations are usually 

dense, and the corresponding equations from large 

scale problems cannot be easily solved. Matrix 

partition iterative methods are useful methods for 

solving matrix equations with large scales. The 

domain decomposition methods for integral 

equations, one kind of matrix partition iterative 

method, decomposed the whole surface into many 

completed covering sub-domains i   , and 

solve Eq. (1) or Eq. (2) or their combined equation 

on sub-domains recursively to update the entire 

current. This principle of domain decomposition 

methods is the simplest, but it isn’t practicable as 

edge effects. Edge effects would make the iterative 

process of non-overlapped domain decomposition 

method unstable and divergent. So, modifications 

of the original domain decomposition method are 

necessary. One feasible approach is extending 

buffer domains like the method in IE-ODDM [14]. 

In IE-ODDM, Eq. (3) or Eq. (4) or their combined 

equation are solved on extend region 
i : 
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(3) 
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(4) 

where extension includes original sub-domains and 

buffer domains. Parts of their results restricted on 

original sub-domains are saved to update the entire 

current. Compared with the unstable iterative 

scheme of non-overlapped domain decomposition 

method, this scheme of IE-ODDM has a great 

convergence. 

Corresponding to the above physical principle, 

IE-ODDM has another matrix interpretation. After 

discretizations of Eq. (3) or Eq. (4) or their 

combination utilizing basis functions and test 

functions like Galerkin procedures in [24], one can 

obtain the following linear equations on 
i : 

 
C C

1 1

,
k k

k k k k k

N N N

ij j i ij j

j j

Z I V Z I
 



    

 

 

    (5) 

where 

 ,k

k k
i j

ij g g
Z Z  


  

C

C ,k

k k
i j

ij
g g

Z Z





   

k

ig
  and 

C
k

jg


  are global indexes of the -thi and the 

-thj basis functions in the iterative and coupled 

domain, respectively. Matrices kZ
 and Z  are the 

local and global impedance matrices, and kI
  is the 

local current coefficients. The first right-hand term 

represents the excitation from incident waves, and 

the second right-hand term represents the coupled 

effect from other sub-domains. Equation (5) 

suggests that IE-ODDM is one kind of matrix 

partition iterative methods. 
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In IE-ODDM, a loop like block Gauss-Seidel 

iteration method repeatedly scans all sub-domains 

and updates local current until the whole current 

becomes stable. For convenience, the IE-ODDM 

should classify all basis functions as “interior”, 

“edge”, “buffer” or “exterior” basis functions, 

where the interior, edge and buffer basis functions 

are iterative basis functions, and the exterior basis 

functions are coupled basis functions. The effects 

of coupled basis functions on the iterative basis 

functions are called coupled effects, and the effects 

of the iterative basis functions on the iterative basis 

functions are called self-effects. Coupled effects 

take on calculating right-hand terms of sub-

problems, and self-effects take on solving the local 

current. 

In order to accelerate IE-ODDM, MLFMA 

could be combined and utilized in matrix-vector 

multiplications of coupled effects and self-effects. 

The direct combinations are that original combined 

method IE-MLFMA-ODDM [16-18]. When the 

MLFMA is utilized in matrix-vector multiplication, 

the coupled effect in Eq. (5) is divided into the 

following two terms: 

C C C C C C

C C1 Neigh( ) Neigh( )

,
k

k k k k k k

L L L L
L Lk kk kg gj ji i

N N

ij j ij j ij j

j n m n m
g n g n

Z I Z I Z I


 
 

 



     

     

  
 

     

 (6) 

where 
 C C

C

F (DA,C)

,
Neigh( )

ˆ ˆ( ) ( ),k k
LLk

i kL L k gg iL ikkg ji
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ij j p pmg m
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g n
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
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and 

 1 ,
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ˆ
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ˆ ˆ ˆ( ) ( ) ( ) ( ) ,

l
t l lm m

k kg gi i
l l l

k k kg g gi i i
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ˆ ˆ ˆˆ( ) ( ) ( ),l l l l l l

k k kl lg g gi i i
kgi

l s l l

s s sm m n m n n
n m

W k k r W k
  




 
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 1,
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In Eq. (6), l

km  is the index of the father node of the 

-thk  basis function in -thl  level. V  is the receiver 

pattern. (A,C) ,mW  (T,C) ,mW  and (DA,C)

mW  are process 

patterns of aggregation, translation and 

disaggregation, respectively. Matrix C  is the 

interpolating matrix of different level. Herein, we 

just list some critical equations of MLFMA. More 

details, please refer to [16] and references therein. 

According to the above description, every 

MLFMA process in the original combination has an 

exclusive and completed oct-tree for the 

aggregation, translation and disaggregation. 

According to Eq. (6), leaves/nodes of those 

completed oct-trees should be marked and 

classified as iterative leaves/nodes and coupled 

leaves/nodes. Like in Fig. 1, the ones marked by 

horizontal lines are iterative leaves/nodes, and the 

ones marked by vertical lines are coupled 

leaves/nodes.

 

 
 

Fig. 1. The sketch of the MLFMA process in the original IE-MLFMA-ODDM. Keeping the critical 

processes, radiation patterns in coupled domain are aggregated from leaves to nodes, and translated to 

iterative nodes in the same level, and disaggregated in iterative domains from nodes to leaves. Since some 

nodes consist of coupled and iterative basis functions, they are both coupled and iterative nodes. 
 

III. THE IMPROVED COMBINED 

METHOD 
In the MLFMA processes utilized for coupled 

effects, radiation patterns of coupled leaves/nodes 

are aggregated from coupled leaves to coupled 

nodes, and disaggregated from iterative nodes to 

Iterative basis 
functions

Coupled basis functions
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iterative leaves. The whole processes have many 

redundant operations. In the aggregation, radiation 

patterns of useless iterative leaves are set zero and 

are also aggregated; while in the disaggregation 

process, radiation patterns of coupled leaves/nodes 

are not useful but are still disaggregated. For large-

scale problems with many segments, these 

redundant processes waste a great of CPU time. 

That is to say, the original combined method just 

simply embeds MLFMA into IE-ODDM, which 

can be optimized. 

In fact, there is another hidden redundancy. 

When the IE-ODDM loop serially scans sub-

domains, the current coefficients of two steps are 

partly different. It is because that every step in the 

loop only renews the current on its sub-domain and 

keeps the current on other sub-domains. It is a 

redundancy that unchanged radiation patterns are 

aggregated again and again in the same IE-ODDM 

loop. For example, one can run an IE-ODDM loop 

for decomposition in Fig. 2, where Domain A, B 

and C are three different sub-domains. When the 

loop starts, only the current on Domain A is updated. 

After that, the loop comes to Domain B and 

calculates the coupled effect. Meanwhile, the 

unchanged radiation patterns on Domain C are 

aggregated again, which has been done when the 

loop in Domain A. The same phenomenon occurs 

when the loop comes to Domain C. 

In order to reduce the above hidden 

redundancy, one can modify the aggregation 

processes and design an optimized routine. The 

optimized combination is simply called IE-O-

MLFMA-ODDM. Compared with the original 

combined method, completed MLFMA processes 

in IE-ODDM loops are replaced by simplified 

processes which consist of some simplified 

aggregation, translation and disaggregation 

processes. Moreover, different from the 

classification in the original combination, basis 

functions are grouped according to the 

decomposition, and oct-trees for different sub-

domains are also replaced by oct-trees for different 

group, where aggregation processes of all groups 

has their exclusive oct-trees like in Fig. 2. More 

details are shown as Fig. 3. Because of these 

optimized techniques, the CPU time can be greatly 

saved, and the efficiency for solving coupled effects 

can be improved. 

Compared with the original combined method, 

the proposed scheme is more efficient, but it needs 

extra memory to support this acceleration. There is 

a balance between the CPU time and the memory 

requirement. Although, extra memory requirement 

may not be a big problem for hardware, we can still 

save some memory from the proposed method by 

using some special localized data structures such as 

minimal-completed sub-trees. Like in Fig. 2, the 

sub-tree with leaves/nodes marked by left diagonal 

lines is a minimal-completed sub-tree of Group A. 

Since the aggregation process of Group A only 

updates radiation patterns of its group, the 

redundant leaves/nodes can be cut-down. As most 

of memory is occupied by those leaves/nodes in 

higher levels and most of redundant leaves have 

been cut-down by sub-trees, the application of this 

technique can efficiently save memory. 

 
 

Fig. 2. Groups and their minimal-completed sub-trees. Different from the original MLFMA, leaves and 

nodes are grouped according to the decomposition. Sub-trees of groups are completed trees without a single 

node in one level. Because of the same original oct-tree, some nodes are of different sub-trees. Compared 

with direct aggregations, radiation patterns of groups are saved and reused. 

Group A Group B Group C

Coupled basis functions Iterative basis functions

Sub-tree of 
Group C

Sub-tree of 
Group B

Sub-tree of 
Group A
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Fig. 3. Detailed description of the proposed method. 
 

IV. NUMERICAL RESULTS 
In order to validate the correction and 

efficiency of the proposed IE-O-MLFMA-ODDM, 

the following three examples are considered. 
 

Example I: 

A PEC spherical object with a radius of 5  in 

Fig. 4 is considered, and the number of unknowns 

is 119,544. Its surface is divided into eight 

congruent sub-domains. The numbers of unknowns 

in iterative domains and coupled domains are 

16,511 and 103,033, respectively. The CPU times 

for the calculation of coupled effects are listed in 

Table 1. It suggests that the CPU time utilized in the 

proposed method is about 25.0% of the time 

utilized in the original IE-MLFMA-ODDM. The 

extra memories for the radiation patterns of 

different groups are listed in Table 2. It suggests 

that the extra memory is about 1.2 times more than 

the memory utilized in the original IE-MLFMA-

ODDM. The RCS of two different methods are also 

shown as Fig. 4. The result of the proposed method 

agrees with the result of the original method, which 

validates the correction of the proposed method. 
 

 
 

Fig. 4. The RCS and current of a spherical PEC 

object with a radius 5 .

 

Table 1: CPU time consumptions of coupled effects of a spherical PEC object 

Sub-Domains 
Unknowns CPU Time of Coupled Effects (minutes) 

Iterative  Coupled Original Method Proposed Method 

D1 16,511 103,033 6.8530 1.6336 

D2 16,511 103,033 6.6780 1.6198 

D3 16,511 103,033 6.6892 1.6625 

D4 16,511 103,033 6.6787 1.6233 

D5 16,511 103,033 6.6990 1.6380 

D6 16,511 103,033 6.7074 1.6408 

D7 16,511 103,033 6.6962 1.6611 

D8 16,511 103,033 6.6878 1.6520 

1． Grouping basis functions as interior groups or edge group according to sub-domains; 

2． Classifying oct-tree nodes as iterative or coupled nodes of each group;

3． IE-ODDM loop for scanning sub-domains and updating current repeatedly:

  3.1    Solving coupled-effect by the modified MLFMA:

     3.1.1  Aggregating radiation patterns of the edge group;

     3.1.2  Translating radiation patterns of other sub-domains to the iterative sub-domain;

     3.1.3  Aggregating, conversing and translating the radiation patterns of the buffer functions;

  3.2    Solving the self effect matrix equation by MLFMA;

  3.3    Updating the local current;

  3.4    Aggregating the radiation patterns of the interior function group of the current sub-domain;

4． Calculating the relative residual of the obtained result and the previous result; 

5． Repeating Step 3 till the relative residual is satisfied. 
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Table 2: Memory requirements of coupled effects 

Example Unknowns 

Memory Requirement of Coupled Effects 

(megabytes) 

Original Method Proposed Method 

I 119,544 35.7432 43.7757 

II 117,450 52.5482 85.4319 

III 188,202 86.7601 145.506 

Example II: 
A PEC airplane-type object in Fig. 5 is 

considered, and the number of unknowns is 

117,450. Its surface is divided into six sub-domains. 

The numbers of unknowns in iterative domains 

vary from 13,274 to 32,450, and the numbers of 

unknowns in coupled domains vary from 104,176 

to 85,000. Table 3 lists the CPU time for the 

calculation of coupled effects, which suggests that 

the CPU time utilized in the proposed method is 

about 29.0% (varying from 23.7% to 37.3%) of the 

time utilized in the original IE-MLFMA-ODDM. 

Table 2 suggests that the extra memory is about 1.6 

times more than the memory utilized in the original 

IE-MLFMA-ODDM. Figure 5 shows that two RCS 

from different methods can well agree with each 

other. 
 

Example III: 
A PEC missile-type object in Fig. 6 is 

considered, and the number of unknowns is 

188,202. Its surface is divided into five sub-

domains. The numbers of unknowns in iterative 

domains vary from 11,521 to 55,978, and the 

numbers of unknowns in coupled domains vary 

from 176,681 to 132,224. Table 4 lists the CPU 

time for the calculation of coupled effects, which 

suggests that the CPU time utilized in the proposed 

method is about 50.6% (varying from 31.5% to 

62.8%) of the time utilized in the original IE-

MLFMA-ODDM. Table 2 suggests that the extra 

memory is about 1.6 times more than the memory 

utilized in the original IE-MLFMA-ODDM. Figure 

6 shows that two RCS from different methods can 

well agree with each other. 
 

 
 

Fig. 5. The RCS and current of an airplane-type 

PEC object. 
 

 
 

Fig. 6. The RCS and current of a missile-type PEC 

object. 
 

Table 3: CPU time consumptions of coupled effects of an airplane-type PEC object 

Sub-Domains 
Unknowns CPU Time of Coupled Effects (minutes) 

Iterative Coupled Original Method Proposed Method 

D1 19,140 98,310 6.7515 1.8571 

D2 32,450 85,000 7.2072 2.6894 

D3 19,189 98,261 6.7760 1.9460 

D4 19,495 97,955 6.6570 1.8158 

D5 13,274 104,176 6.5534 1.5547 

D6 20,941 96,509 6.9181 2.0461 
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Table 4: CPU time consumptions of coupled effects of a missile-type PEC object 

Sub-Domains 
Unknowns CPU Time of Coupled Effects (minutes) 

Iterative Coupled Original Method Proposed Method 

D1 11,521 176,681 3.5104 1.1057 

D2 55,978 132,224 3.6260 1.9685 

D3 52,986 135,216 3.6794 2.3107 

D4 54,881 133,321 3.6226 2.2333 

D5 22,615 165,587 3.5117 1.5016 
 

The above numerical results and comparisons 

suggest that the proposed method can greatly 

improve the efficiency of combined method, and 

the improvement depends on the decomposition. 

More fine decomposition, more high performance. 

Moreover, we can find that the memory required to 

save the radiation patterns grows with the problem 

size, and the extra memory of saving radiation 

patterns is about 1.5 times more than the memory 

required in the original completed MLFMA process. 

Considering the good performance of MLFMA and 

the development of hardware, we think this extra 

memory requirement is meaningful and can be 

acceptable to improve a high computational 

efficiency. 

 

V. CONCLUSION 
In the present paper, we improve the combined 

method of overlapped domain decomposition 

method and multilevel fast multi-pole algorithm. In 

the proposed method, amount of independent 

MLFMA processes for different sub-domains are 

departed, reduced redundancies and re-integrated 

with IE-ODDM loops, so that aggregations of sub-

domains can be simplified and radiation patterns 

can be reused. Meanwhile, localized data structures 

of minimal-completed sub-trees are used to reduce 

memory redundancies. Numerical results show that 

the proposed method can improve the efficiency of 

combined method with acceptable extra memory. 
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