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Abstract ─ This paper employs the spectral 

domain approach for full wave analysis of metal 

strip grating on grounded dielectric slab and 

microstrips shielded with either Perfect Electric 

Conductor (PEC) or Perfect Magnetic Conductor 

(PMC) walls. The modal relations between these 

structures are revealed by exploring their 

symmetries. It is derived analytically and validated 

numerically that all the even and odd modes of the 

latter two (when they are mirror symmetric) find 

their correspondence in the modes of metal strip 

grating on grounded dielectric slab when the phase 

shift between adjacent two unit cells is 0 or π. 

Extension to non-symmetric case is also made. 

Several factors, including frequency, grating 

period, slab thickness and strip width, are further 

investigated for their impacts on the effective 

permittivity of the dominant mode of PEC/PMC 

shielded microstrips. It is found that the PMC 

shielded microstrip generally has a larger wave 

number than the PEC shielded microstrip. 

 

Index Terms ─ Grounded dielectric slab, metal 

strip grating, perfect electric conductor, perfect 

magnetic conductor, periodic boundary condition, 

shielded microstrip. 
 

I. INTRODUCTION 
In modern integrated circuits, interconnects 

play such an important role that accurate and 

efficient modeling of them is a must. For example, 

COMS circuits see the responsibility of 

interconnects for more than half of the on-chip 

capacitance and dynamic power dissipation, 

significant delay to critical paths, and noise and 

jitter to signals [1]. However, there are many 

challenges in successful modeling of 

interconnects: firstly, the state-of-the-art 3D 

circuits usually come as multilayered structures, 

the modeling of which is quite involved [2]; 

secondly, high density of integration leads to 

millions of interconnects within a very limited 

space; thirdly, high frequency means we can no 

longer take neglect of conduction loss and metal 

thicknesses as granted. 

Faced with such a complexity, it is natural and 

beneficial for us to abstract some key features of 

the interconnects and give priorities to some 

typical structures, as this simplifies the problem 

and allows for the employment of reliable 

simulation techniques. The study of multilayered 

structure can be considered the generalization of 

the single layered structure. Also, many layouts of 

interconnects are well approximated with periodic 

structures. In this work, we consider the single 

layered microstrip with PEC/PMC walls as well as 

Metal Strip Grating on Grounded Dielectric Slab 

(MSG-GDS). 

Microstrip transmission lines, as we know, are 

key building blocks for interconnects. Microstrips 

shielded with Perfect Electric Conductors (PECs) 

draw attention in that they can model the effect of 

packaging such as providing isolation between 

different elements as well as mechanic support for 

the integrated circuit [3]. As a dual of the PEC 

shielded case, the Perfect Magnetic Conductor 
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(PMC) shielded microstrip is also worth 

investigation. Metal Strip Grating on Grounded 

Dielectric Slab (MSG-GDS), which is a grounded 

dielectric slab loaded with one-dimensional 

periodic metal strips, is another classic structure 

which has seen various applications in electronic 

engineering. For instance, the behaviors of the 

waves travelling in the direction perpendicular to 

the strips are utilized to design leaky wave 

antennas [4]. Strip-element phased arrays [5] and 

polarizers with low cross-polarization [6] also 

account for some important applications of MSG-

GDS. In fact, we can treat the three structures 

mentioned above as only one: a microstrip, but 

with different boundary conditions. It is not 

unfamiliar to us that the PEC and PMC boundary 

conditions are used to truncate the simulation 

domain or analyze periodic structures in high 

frequency electromagnetic field solvers. But what 

exactly is the relationships between the PEC, the 

PMC and the periodic boundary conditions? 

Though for each of these structures, there exists an 

abundance of literatures, it is hardly seen in the 

literature an explicit elaboration of this relation. 

As far as we are concerned, only the literature [7] 

bears a short discussion about the relationships 

between the modes of the PEC/PMC shielded 

microstrips and the MSG-GDS, but it is restricted 

to the case in the absence of phase shift between 

adjacent periods. 

Based on our previous work [8], we aim in 

this paper to reveal more comprehensively the 

modal relationships between MSG-GDS and the 

PEC/PMC shielded microstrips. To this end, we 

perform a full wave analysis for these structures 

using the spectral domain approach [9]. Two 

variations of these structures will be considered: 

one with a top PEC shield, and the other without, 

as illustrated in Fig. 1 (a) and (b). We first 

consider the structures when they are symmetric, 

then extensions to non-symmetric ones are carried 

out. Furthermore, we also look at the impacts of 

frequency, grating period and slab thickness on the 

wave number of the dominant mode of PEC/PMC 

shielded microstrips. Numerical results are 

presented to validate our conclusions. 
 

II. SPECTRAL DOMAIN APPROACH 
The MSG-GDS is drawn in Fig. 1 (a). The 

structure obtained by adding a top PEC shield, 

illustrated in Fig. 1 (b), will be considered 

together. A coordinate system is created in Fig. 1 

(c), added with some assisting dash lines locating 

symmetry planes. As shown in the figure, a 

dielectric slab of thickness h  is grounded by an 

infinite PEC plane, and topped by a grating (with 

period P ) of perfect conducting strips of 

widths   . We assume that the thickness of the 

metal strips is zero. The permittivity and 

permeability for the slab are 
1  and 

1 , and for 

the region above the slab are 
2  and 

2 . If there is 

a top shield, the distance to the top slab surface is 

d . The shielded microstrips can be obtained by 

placing PEC (or PMC) walls at 2x P  , so we 

save their illustrations for book-keeping. For the 

MSG-GDS, the waves can be guided in arbitrary 

horizontal directions, but we focus on the case 

when the wave propagates along the strips. 

The spectral domain approach [9] is a very 

accurate and efficient method to solve the 

eigenproblem for microstrip structures, hence, it 

will be adopted in this work. Given the periodicity 

of the structure, the Floquet theorem enables us to 

confine our scope to the first unit cell (between 

2x P  ). The tangent electric fields at the top 

surface of the slab can be determined by the 

current on the metal strip and expressed in the 

form of a Fourier series as: 

 ( , ; ) ( ) ( , ),xnjk x

rs xn y s xn r

n s

G k k h J k e E x h






  (1) 

where 
xnk  and 

yk  are the wave numbers in x  and 

y  directions, with the Bloch wave number 

0( 2 )xnk n P   ( n Z ), where 
0  is the phase 

shift between adjacent periods,  , , ,r s x y  sJ  is 

the Fourier transform of the current in the unit cell, 

rsG  is the spectral dyadic Green’s function 

available in simple analytic form [9]: 
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with 

 1

1 1 2 1 1 2[ coth( ) ][ tanh( ) ],r rh h              (3) 

where we have 
1 2 ,r   1 2 ,r    

,i i i   i i ik     and 2 2 2 ,i xn y ik k k     

1   for Fig. 1 (a) and  2tanh d   for Fig. 1 

(b). When 
2 9,d  which is approximately 

guaranteed when 3 2,d P  the two Green’s 

functions has little difference if single precision is 

used. Since the Green’s functions for the two cases 

are so close, they can be handled together. Then 

we apply Galerkin’s method to solve (1), which 

leads us eventually to the following homogeneous 

linear system: 

 ,
xx xy

yx yy

AK K

BK K

   
   

  
0  (4) 

where ( , { , })rsK r s x y  is a matrix with elements 

given by: 

 ( ) ( ) ( , ),rs

pq rp xn sq xn rs xn y

n

K J k J k G k k




   (5) 

where 1, ,xp N 1, yq N  (
xN  and 

yN  are the 

number of basis functions for 
xJ  and 

yJ ), J  is the 

Fourier transform of the current basis function, for 

which we have chosen the Chebyshev polynomials 

of the first and second kind for 
yJ  and 

xJ  

respectively [10]. 1[ , ]
x

T

NA A A , 1[ , ]
y

T

NB B B  

are the unknown expansion coefficients for 
xJ  and 

yJ . To solve the eigenvalue problem, we require 

vanishing of the determinant of the matrix in (4). 

In general, we need to find both 
0  and ,yk  but in 

this paper we would fix 
0 ,  and just find 

yk  using 

a root-finding procedure. The series in (5) can be 

slowly convergent, so the leading asymptotic 

terms are extracted and summed with some fast 

convergent series, while the remaining part is 

summed directly, which, after this process, 

exhibits good convergence [10]. Notice that, when 

0yk  , we have 0xy yxK K  , so the modes 

decouple into TE and TM waves, and 
0xk  is the 

eigenvalue to be found. 

 
 (a) (b) 

 
 (c) 

 

Fig. 1. Metal strip grating on grounded dielectric 

slab: (a) 3D view without top shield, (b) 3D view 

with top shield, and (c) edge view. 

 

III. RELATIONS WITH PEC/PMC 

SHIELDED MICROSTRIPS 

A. Symmetric case 

Figure 2 shows the symmetric and non-

symmetric shielded microstrips. On the two sides, 

the shields can be PEC walls, or PMC walls. The 

top shield may be absent when we consider their 

relationships with the MSG-GDS in Fig. 1 (a). 

Let’s first consider the symmetric case. In the 

periodic structure, we place phase shift walls 

(PSWs) at the boundary of the first unit cell and 

obtain a shielded structure as well. The electric 

and magnetic fields for this structure can be 

expressed in Fourier series as: 

 ( , ) ( , ) ,xnjk x

xn

n

x z k z e






 F F  (6) 

where { , }F E H  and exp( )yjk y  variation has 

been suppressed. In fact, the expressions for the 

fields in Fig. 2 are in the same form as (6), but the 

values of 
xnk  are different. Considering the mirror 

symmetry of the structure with respect to the yoz  

plane, one can classify the modes into two 

categories: even and odd [11]. To better under the 

parity of the modal fields, we first express the 

components of the spectral currents using the 

magnetic and electric vector potentials ( )e

i  and 
( )h

i  as follows [12]: 
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(7) 

where   is the angular frequency and i  indicates 

the thi  region. The above equations inform us that 

for a given mode, either even or odd, the currents 

in x  and y  directions have different parities in 

terms of 
xk . Given the parity of a mode, parity of 

the current is specified, and then we can determine 

the parities of the potentials at the upper surface of 

the dielectric slab, which should be identical for 

all constant z  planes. This would in turn allow us 

to identify the parities of all the components of the 

electric and magnetic fields. If we separately 

consider the two types of modes, and check the 

expressions for the electric and magnetic fields, 

we find that 
yE  and zE  have the same parity in 

terms of 
xk , which differs from that of xE ; 

yH  

and zH  have the same parity, but different from 

that of xH . The parity of the fields in spectral 

domain, according to the properties of Fourier 

transform, is the same as that in spatial domain. 

With these in mind, we are ready to distinguish 

two types of modes, and define the modes as even 

modes if ,yJ ,yE ,zE xH  are even and 
xJ , ,xE ,yH  

zH  are odd; the modes are odd modes if the 

converse is true. Now let’s make use of (6), and 

examine the tangential fields at the PSWs (

2x P  ). For 
0 0,   indicating the absence of 

phase shift between adjacent periods, we yield: 

/

/ /

1 /

(2 , )
( 2, ) (0, ) ( 1) ,

( 2 , )

y zn

y z y z

n y z

F n P z
F P z F z

F n P z









 
     

   
  (8) 

where { , }F E H . Obviously it vanishes if 
/y zF  is 

an odd function of .x  While for 0  , we 

acquire: 

/

/

0 /

[(2 1) , ]
( 2, ) ( 1) ,

[ (2 1) , ]

y zn

y z

n y z

F n P z
F P z j

F n P z









  
    

    
  (9) 

which again vanishes if 
/y zF  is even. The 

implication of the vanishing of tangential fields is 

that we can place PEC or PMC walls at the 

boundary and the modal profiles would remain 

unperturbed. Now if we take into account the 

parities of the modal fields as have been defined 

above, we conclude that the Periodic Boundary 

Condition (PBC) reduces to PEC boundary 

condition for the odd modes if 
0 0,   for even 

modes if 
0 ;   it reduces to PMC boundary 

condition for odd modes if 
0 ,   for even modes 

if 
0 0.   Think the other way around: Are all the 

modes of the PEC or PMC shielded microstrips 

included in the modes of the MSG-GDS with 

phase shift 
0 0,  ? The answer is yes, because 

we can extend the domain of the PEC or PMC 

shielded structures to periodic ones by introducing 

infinite number of images according to the image 

theory. Then we are assured that the PEC and 

PMC boundary conditions are indeed special cases 

of the PBC for the symmetric structure under 

consideration. It should be noted that the above 

conclusions are not limited to the case when the 

strip thickness is 0, but also apply when the strips 

are of finite thickness, since our derivation only 

assumes mirror symmetry of the structure in this 

section and is independent of the zero-thickness 

assumption. 

Since the structure is also mirror symmetric 

with respect to the plane / 2x P , we can also 

place PSWs at 0x   and x P . Thus, a 

corresponding PEC or PMC shielded microstrip is 

obtained if PEC or PMC walls are placed. In this 

circumstance, the parity of a mode is defined in 

the same way as in the case for symmetry about 

0x  , but referred with respect to the central plane 

of the shielded microstrip at / 2x P . The modal 

relations between the three structures can be 

analyzed similarly. We tabulate the relations for 

both cases in Table 1. For the modes in the same 

row, they have the same propagation constant 

along the longitudinal direction. We can see that 

when 
0 0  , the same walls are placed and the 

parities are the same for both symmetric cases, 

while when 0  , different walls are placed and 

the parities are opposite. 
 

 
 (a) (b) 
 

Fig. 2. Shielded microstrips: (a) symmetric, and (b) 

non-symmetric. 
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Table 1: Summary of modal relations 

                    symmetry 

     
PEC Odd PEC Odd 

PMC Even PMC Even 

     
PEC Even PMC Odd 

PMC Odd PEC Even 
 

B. Non-symmetric case 

For non-symmetric case, the modes of the 

PEC/PMC shielded microstrips can no longer be 

divided into even and odd modes. But we can 

perform periodic extension in this case. As shown 

in Fig. 3 (a), where the arrows are used to illustrate 

the direction of current, we perform odd extension 

for the modes of PEC shielded microstrip, and all 

the modes of the original non-symmetric structure 

now correspond to the odd modes of the extended 

symmetric PEC shielded structure whose width 

has doubled. For the PMC shielded microstrip, we 

conduct even extension, and all the modes of the 

original structure has correspondence to the even 

modes of the extended structure. Now we make up 

a MSG-GDS with the extended structure in Fig. 3 

(taking away the PEC or PMC walls) as the unit 

cell. Based on our previous discussions, we know 

the odd modes of the extended PEC shielded 

microstrip correspond to the modes with 
0 0   in 

the MSG-GDS (with extended unit cell), which 

means all the modes of the original non-symmetric 

PEC shielded microstrip correspond to the modes 

of MSG-GDS with 
0 0  . Similarly, we have the 

correspondence between the modes of the non-

symmetric PMC shielded microstrip and those of 

the MSG-GDS. 

 

 
 (a) (b) 

 

Fig. 3. Periodic extension for non-symmetric 

shielded microstrip: (a) PEC shielded, and (b) 

PMC shielded. 

 

IV. NUMERICAL EXAMPLES 
The first numerical experiment is about the 

PEC shielded microstrip as illustrated by Fig. 2 

(a). Following the reference [13], we set the 

parameters as follows: 1 8.875,r   1 1,r   

2 2 1,r r    20 GHz,f  1.27 mm,h   ,w h  

11.43 mmd   and 10 .P h  The first 5 modes are 

calculated and tabulated in Table 2, where the 

normalized wavenumbers are 
2yk k . We can see 

that agreement of 8-10 digits is achieved, and we 

only use 4 terms in the expansion of the currents in 

  and   directions. It is to be noted that our results 

are obtained not by solving the eigenproblem of 

the shielded microstrip directly, but by solving that 

for the MSG-GDS. We pick up the modes of the 

shielded microstrip from the set of modes of 

MSG-GDS by letting 
0 0   or π and using basis 

functions with proper parites according to our 

previous conclusions. The good agreement 

achieved confirms our claims about the 

relationships between the MSG-GDS and shielded 

microstrip. 

 

Table 2: Normalized wavenumbers in y direction 

Mode Reference [13] Calculated 

1 (even) 2.7102057109 2.7102057101 

2 (odd) 1.2894527450 1.2894527434 

3 (even) 1.1026365889 1.1026365888 

4 (odd) 0.9223133480 0.9223133479 

5 (even) 0.7250996002 0.7250996009 

 

In practice, the shield for the microstrips may 

be used to model the packaging effect. Then one 

question arises: Which one captures the physics 

better, the PEC shielded microstrip, or the PMC 

shielded? So it is beneficial for us to compare the 

behavior of the two structures. Again, we do this 

by finding their eigen modes from a calculation of 

the MSG-GDS. Figure 4 shows the dispersion 

curves for the dominant modes of the PEC and 

PMC shielded microstrips in the range from 1 

GHz to 25 GHz, where the effective permittivity is 

defined as the square of the normalized wave 

number. The parameters are: 1 9.7,r 

1 2 21,  1,r r r      1.219 mm,w   1.27 mmh   

and 5.P w   Here we assume there is no top 

shield. As indicated by the legend, both modes are 

even modes. It can be seen first that both effective 

permittivities increase with the frequency. Also, 

notice that the PMC shielded microstrip has a 

larger effective permittivity than the PEC shielded 

microstrip, and the difference between the two 

permittivities decreases with frequency and 
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eventually almost vanishes at high frequency. The 

reason for this is that the electromagnetic fields 

aggregate more in the vicinity of the metal strip, 

whose width is just 1 5  of the period. Therefore, 

we are grounded to treat the shields on both sides 

as far from the region where most energy rests, 

and it makes little difference whether we put a 

PEC or PMC wall. 
 

 
 

Fig. 4. Effective permittivity for the PEC/PMC 

shielded microstrip vs. frequency. Parameters: 

1 9.7,r  1 1,r   
2 2 1,r r    1.219 mm,w   

1.27 mmh   and 5.P w   
 

In Fig. 5, the geometric parameters ,  ,  P h w  

are explored. Parameters common to Fig. 5 (a-c) 

are: 
1 9.7,r  1 1,r   

2 2 1,r r    1.219 mm.w   

In Fig. 5 (a), w  is very close to h , and the 

effective permittivities are plotted against the ratio 

P w  at 10 GHz. It is observed that the PMC 

shielded microstrip still has a larger effective 

dielectric constant than the PEC shielded 

microstrip, and the two permittivities approach 

each other when frequency is increased. At 

1.5P w , the electric field distributions in the two 

structures are drawn in Fig. 6. The fields are 

calculated by convoluting the dyadic Green’s 

function with the eigen-current, which can be 

found by solving (4) with the normalization that 

the   -     of the expansion coefficients equals 

unity. The arrows in the graphs represent a 

snapshot of the vector fields, and color plot 

conveys the amplitude of the fields. It is very clear 

that the PEC shielded microstrip has the fields 

mostly confined around the two edges of the metal 

strip, and decays very quickly into the dielectric 

region and air region. Nevertheless, the PMC 

shielded microstrip drives most of the electric 

fields into the high dielectric region, and the 

distribution is also rather uniform. This implies 

that the PMC shielded microstrip in this 

configuration has a larger capacitance for storing 

electric energy, which is equivalently interpreted 

as a larger effective permittivity. But when P w  

goes high, the PEC/PMC walls on both sides play 

a lesser role, which leads to very close effective 

permittivities. 
 

 
 (a) 

 
 (b) 

 
 (c) 
 

Fig. 5. Effective permittivity for the PEC/PMC 

shielded microstrip vs. geometry, with parameters:

1 9.7,r  1 1,r   
2 2 1,r r    1.219 mm.w  (a) 

1.27 mmh  and 10 GHz,f   (b) 10 GHzf  and 

5,P w   and (c) 5 ,h w  and 5 GHz.f   
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 (a) (b) 
 

Fig. 6. Electric field (in V/m) distributions for 

PEC/PMC shielded microstrips. Parameters follow 

the two points at 1.5P w  in Fig. 5 (a). 
 

The influence of the slab thickness is more 

complicated, as illustrated in Fig. 5 (b). For the 

PEC shielded microstrip, the effective permittivity 

keeps going down when the slab becomes thicker, 

while that for the PMC shielded microstrip 

descends to a valley before its rise. When h  is 

very small, the two have almost the same effective 

permittivity. In this situation, we can think of a 

very thin parallel capacitor formed between the 

metal strip and the metal ground, and this 

capacitor has a large capacitance to store the 

energy in the small region near the metal strip. As 

a result, the fields can hardly reach the boundary 

on the two sides, shedding light on why the two 

permittivities are very close. For this point, we are 

confirmed by the field distribution in Fig. 7, where 

the field distributions for the two structures at 

h w  are close to each other, and most of the 

fields are in the slab region. Besides, the fields 

decay to a very weak level at the PEC/PMC walls. 

When h  is very large, the PMC shielded 

microstrip has a much larger effective permittivity 

than the PEC shielded microstrip. To make sense 

of this, we look at the (magnetic) field 

distributions at 10h w  in Fig. 8. We can see that 

for the PEC shielded microstrip, the fields decay 

away from the metal strip, but for the PMC 

shielded, things are different; there are peaks and 

valleys in the high dielectric region. The PMC 

shields influence the field distribution such that 

the mode is very close to a TEM wave in the slab 

region, and much more energy is stored in the 

slab. That is why it exhibits a larger dielectric 

constant. 

In Fig. 5 (c), the dispersion curves of the PEC 

and PMC shielded microstrip are plotted against 

,P h  where 5h w  and 5 GHzf  . Similar 

phenomena are observed as in Fig. 5 (a). From the 

above discussions, we are led to claim that the 

PMC shielded microstrip in general has a larger 

effective dielectric constant than the PEC shielded 

microstip, given that the frequency is not too high, 

the slab not too thin, and the width P  is not 

significantly larger than the slab thickness h  and 

strip width .w  
 

 
 (a) 

 
 (b) 
 

Fig. 7. Electric field (in V/m) distributions for 

PEC/PMC shielded microstrips. Parameters follow 

the two points at h w  in Fig. 5 (b). 
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 (a) 

 
 (b) 
 

Fig. 8. Magnetic field (in A/m) distributions for 

PEC/PMC shielded microstrips. Parameters follow 

the two points at 10h w  in Fig. 5 (b). 
 

V. CONCLUSION 
To summarize, this paper has investigated the 

modal relationships between Metal Strip Grating 

on Grounded Dielectric Slab (MSG-GDS) and 

PEC/PMC shielded microstrip by virtue of full 

wave spectral domain approach. By exploring 

symmetry of these structures and examining the 

tangential fields at the boundary, we have found 

that the PEC and PMC boundary conditions are 

special cases for the periodic boundary conditions. 

To be specific, it has been revealed and verified 

that all the even and odd modes of the mirror 

symmetric PEC/PMC shielded microstrip find 

their correspondence in the modes of metal strip 

grating on grounded dielectric slab when the phase 

shift between adjacent two unit cells is 0 or π. By 

performing a periodic extention for the non-

symmetric shielded structures and making up a 

new MSG-GDS, all the modes for the original 

non-symmetric shielded structures also correspond 

to those of the MSG-GDS with 0 or π phase shift 

between adjacent unit cells. Through a calculation 

for the MSG-GDS and the use of the relations 

between the PEC/PMC shielded microstrips and 

MSG-GDS, we conduct a comparison of the PEC 

and PMC shielded microstrips. The effect of 

frequency and geometric parameters on the 

dominant modes for the PEC and PMC shielded 

microstrips have been studied. We found that the 

dominant (even) mode of the PMC shielded 

microstrip has in general a larger effective 

dielectric constant than the dominant (even) mode 

of the PEC shielded microstrip, due to a stronger 

capacity to drive more electromagnetic energy into 

the high dielectric region. 
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