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Abstract ─ This letter presents a new 
unconditionally stable three-dimensional 
alternating direction implicit finite-difference 
time-domain (ADI-FDTD) method. The implicit 
differences of the method along different 
directions are irrelevant to each other, which 
results in a new updating equation with much 
simpler and more concise right-hand sides. This 
leads to substantial reduction in the number of 
arithmetic operations required for their 
computations. The unconditional stability of the 
proposed method is presented analytically, and the 
numerical performance of the method over the 
conventional ADI-FDTD method is demonstrated 
through numerical example. 
  
Index Terms - ADI-FDTD scheme, CFL 
condition, implicit difference, unconditional 
stability 
 
 

I. INTRODUCTION 
To overcome the Courant limit on the time step 

size of the finite-difference time-domain (FDTD) 
method, unconditionally stable methods such as 
the alternating-direction implicit (ADI) FDTD 
scheme have been studied extensively [1-8]. This 
method has been demonstrated to be useful for the 
problems where fine scale structures are involved. 
However, from the implementation point of view, 
the ADI-FDTD algorithm is rather complicated. 
This is because not only there are tridiagonal 
systems that need to be dealt with, but the right-
hand sides of their updating equations also contain 
numerous terms that call for considerable 
arithmetic operations. 

In this letter, a new unconditionally stable three-
dimensional ADI-FDTD method is presented. The 
implicit differences of the method along different 
directions are irrelevant to each other, which 
results in a new updating equation. In this method, 

four time steps (n, n+1/3, n+2/3 and n+1) are used 
for defining the field components and three sub-
iterations are required for field advancement from 
n to n+1. It must solve six tridiagonal matrices and 
six explicit updates for one full update cycle, 
which is same as the conventional ADI-FDTD 
method. However, for that the new algorithm is 
with updating equations whose right-hand sides 
are much simpler and more concise than those in 
the conventional implementation, the number of 
arithmetic operations required is reduced 
substantially. Thus, the new ADI-FDTD method is 
with higher computational efficiency than the 
conventional one. The formulations of the new 
ADI-FDTD method are given, and the 
unconditional stability of the method is presented 
analytically. The numerical performance of the 
new method over the conventional ADI-FDTD 
method is demonstrated through numerical 
example. 
 

II. FORMULATION 
In the new ADI-FDTD method, the calculation 

for one discrete time step is performed using three 
procedures. The electromagnetic field components 
are arranged on the Yee’s cells in the same way as 
that using the conventional FDTD method. The 
numerical formulations of the new ADI-FDTD 
method for a full three-dimensional wave are 
presented in (1)-(3).  
A) First procedure from n  to 1 3n   

 1 3 1 3n n n n
x x z y yE E a D H H     (1.1)                      

 1 3 1 3n n n n
y y z x xH H b D E E         (1.2) 

 1 3 1 3n n n n
y y z x xE E a D H H          (1.3) 

 1 3 1 3n n n n
x x z y yH H b D E E           (1.4) 

1 3n n
z zE E                      (1.5) 

1 3n n
z zH H                      (1.6) 
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B).Second procedure from 1 3n   to 2 3n   

 2 3 1 3 1 3 2 3n n n n
y y x z zE E a D H H      (2.1) 

 2 3 1 3 1 3 2 3n n n n
z z x y yH H b D E E       (2.2) 

 2 3 1 3 1 3 2 3n n n n
z z x y yE E a D H H         (2.3) 

 2 3 1 3 1 3 2 3n n n n
y y x z zH H b D E E        (2.4) 

2 3 1 3n n
x xE E                      (2.5) 

2 3 1 3n n
x xH H                     (2.6) 

C).Third procedure from 2 3n   to 1n   

 1 2 3 1 2 3n n n n
z z y x xE E a D H H            (3.1) 

 1 2 3 1 2 3n n n n
x x y z zH H b D E E             (3.2

) 

 1 2 3 1 2 3n n n n
x x y z zE E a D H H              (3.3

) 

 1 2 3 1 2 3n n n n
z z y x xH H b D E E           (3.4) 

1 2 3n n
y yE E                          (3.5) 

 1 2 3n n
y yH H                        (3.6) 

where, 2a t   , 2b t   ; wD w    

( , ,w x y z ) represents the first derivative with 

respect to w ; n  and t  are the index and size of 
time-step;   and   are the permittivity and 
permeability of the surrounding media, 
respectively. 

It can be seen from eqs. (1.1)-(1.6) that, only the 
implicit difference along the z-directions is applied 

in the first procedure.. Updating of 1 3n
xE   

component, as shown in eq. (1.1), needs the 

unknown 1 3n
yH   component at the same time; thus 

the 1 3n
xE  component has to be updated implicitly. 

Substituting eq. (1.2) into eq. (1.1), the equation 

for 1 3n
xE   field is given as, 

   
 
 

   
 
 
 
 

1 3
1
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1 1 3
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2
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1 2 , , 1
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1 2 1 2 , ,

1 2 , , 1

1 2 , , 1

1 2 , , 1 2

1 2 , , 1 2

n
x

n
x

n
x

n
x

n
x

n
x

n
y

n
y

S E i j k

E i j k
S

E i j k

S E i j k

E i j k
S

E i j k

H i j k
S

H i j k







 

  
  

    
  

  
  

    
  

  
    

            (4)                                                                     

with,  2 2
1 4S t z    ，  2S t z   . 

The updating equation for the electronic field 

component 1 3n
yE  can be written down similarly as 

eq.(4), then, the magnetic field components 
1 3n

yH  and 1 3n
xH  are explicitly updated 

straightforward. 
In the second and third procedure, the implicit 

difference along the x and y directions are applied 
respectively. The flow chart of the new ADI-
FDTD method is shown in Fig. 1. It is obvious 
that, the implicit differences of proposed method 
along different directions are irrelevant to each 
other. Thus, at each time step, the new ADI-FDTD 
method requires the solution of six tridiagonal  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The flow chart of the new ADI-FDTD 
method. 

Initial time t=n t  
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matrices and six explicit updates, which is same as  
the conventional ADI-FDTD method. However, 
the right side of the updating equation of the new 
ADI-FDTD method takes much simpler and more 
concise form compared to the conventional one. 
 
Table 1: Flops count for 3-D ADI-FDTD 
algorithms 

 
To clarify this point further, we recall the 

updating equation of the conventional ADI-FDTD 
method. The implicit updating for the 

xE component of the conventional ADI-FDTD 

method is as follows, 
   

 
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   

 

 (5) 

 2
3 4S t x z     ,  4 2S t y   , 

 5 2S t z    

To verify the new algorithm, it is desirable to 
provide detailed assessment and comparison with 
regard to the computation efficiency of these two 
methods. The floating point operations (flops) 
counts taking into account the number of 
multiplications/divisions (M/D) and 
additions/subtractions (A/S) required for one 
complete time step for both conventional and 
present algorithms are listed in Table 1, based on 
the right-hand sides of their respective updating 
equations such as (4) and (5), etc. For simplicity, 

the number of electric and magnetic field 
components in all directions has been taken to be 
the same and assume that all multiplicative factors 
have been precomputed and stored. From the 
table, it is clear that the total flops count (M/D 
+A/S) has been reduced substantially from 102 to 
72 in the present implementation. This 
corresponds to an efficiency gain of 1.42 in flops 
count reduction for the right-hand sides of 
updating equations.  

 
III. STABILITY 

In this section, the unconditional stability of the 
new ADI-FDTD method is derived by following a 
similar procedure described in [9]. 
The relations between the field components of 

eq.(1) in the new ADI-FDTD method can be 
represented in matrix form as, 

   1 3n nA U B U                 (6) 

with, 

 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0 1

z

z

z

z

a D

a D

A
b D

b D

 
  
 

   
 
 
  

    

 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0 1

z

z

z

z

a D

a D

B
b D

b D

 
  
 

  
 
 
 
  

 

For simplicity, we define, 

 

2 1
1 3 3

n nn
y y x

n n
y x z

U U U

U U

  

   

   
   

 
   

        (7) 

here, x , y  and z  denote the growth factor 

along the x, y and z directions respectively;   is 

the total growth factor from the time step n  to 
1n  . In such a case, we have, 

     0n
zA B U                  (8) 

Scheme Algorithm Implicit Explicit Total
ADI- 
FDTD 

M/D 18 12 102 
A/S 48 24 

New  
ADI-
FDTD 

M/D 18 6 72 
 A/S 24 24 
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For a nontrivial solution of eq. (8), the 
determinant of the coefficient matrix in eq. (8) 
should be zero, namely, 

    0zA B                 (9) 

By solving eq. (9), the growth factor z is 

obtained: 

1,2 1z                               (10) 

2 2

3,4 5,6 2

1 4

1
z z

z z
z

a b D a b D

a b D
 

 
 


     (11) 

Approximating each derivative in space by 
centered second-order finite differences, it obtains 
[9], 

ˆ2 s i n
2

z

z

k z
j

D
z

 
 
 


            (12) 

Then, we have, 
1z                       (13) 

With same manipulation, we can get, 

1x y                   (14) 

Thus, equation 1y x z      is 

unconditionally satisfied. It means that the new 
ADI-FDTD scheme is unconditionally stable. 

 
IV. NUMERICAL VALIDATION 

To demonstrate the computational efficiency of 
the proposed ADI-FDTD method, a simple 
numerical example is presented here. An air-filled 
cavity with dimensions 50cm  50cm  50cm, is 
excited by a current source zJ  with Gaussian 

pulse waveform   2 2
0 1exp 4 t t t  

 
, 

0 1 1t t n s  . The cell size is chosen as 

x y z      1cm, so that the computational 
domain is 50  50  50 cells. The source and 
observation point is set at the cells (5,5,5) and 
(45,45,45), respectively. Figure 2 plots the time-
domain zE  component recorded at the observation 

point. The simulations have been carried out using 
Yee’s FDTD method, conventional ADI-FDTD 
method and new ADI-FDTD method, with same 
time-step size CFLt  19.2ps, which is the 

maximum time-step size to satisfy the stability 
condition of the FDTD algorithm. It can be seen 
from this figure that, both the result of the 

conventional ADI-FDTD method and the new 
ADI-FDTD method agree well with that of the 
FDTD method, which demonstrates that the new 
ADI-FDTD method is with same accuracy as that 
of the conventional one. 
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Fig. 2. Time-Domain electric field recorded at the 
observation point calculated by the FDTD, 
conventional ADI-FDTD and new ADI-FDTD 
methods. 

 
The computation efficiency gain of these two 

ADI-FDTD methods with various 

CFLCFLN t t   is plotted in Fig. 3. 0T is the 

simulation time of the standard FDTD method, 
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Fig. 3. Computation efficiency gain of both the 
conventional and present ADI-FDTD methods. 
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and 'T  denotes the computational time of the two 
ADI-FDTD methods respectively. It can be seen 
from Fig. 3 that, the simulation times for both the 
conventional and present ADI-FDTD method are 
reduced by increasing the time step size, and the 
computation efficiency of the new ADI-FDTD 
method is higher than that of conventional one 
obviously. 

 
V. CONCLUSION 

This letter has presented a new efficient 
algorithm for the unconditionally stable ADI-
FDTD method. The algorithm applies the implicit 
difference along different directions 
independently, which results in updating equations 
whose right-hand sides are much simpler and more 
concise than those in the conventional 
implementation. This leads to substantial reduction 
in the number of arithmetic operations required for 
their computations. Compared with the 
conventional ADI-FDTD method, the new ADI-
FDTD method is with same accuracy and higher 
computational efficiency, which is demonstrated 
by numerical example. 
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