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Abstract ─ An extended transform method is 
developed for calculating the 2-D scattering 
problem from dielectric periodic interfaces. The 
method transforms the problem into scattering 
from two imaginary planes, one of which cuts 
across the maximum points and another across the 
minimum points of the periodic interface. The 
fields just above and below the periodic interface 
are expanded into Taylor series with respect to the 
two planes respectively. Then by satisfying 
boundary condition, the unknown coefficients can 
be determined. Comparing with T-Matrix and 
MoM, proposed method is simpler in formulation 
and less in computational time. Near scattered 
field distributions above and in the trough region 
of the periodic interface are calculated by 
proposed method. The results are in good 
agreements with those of T-Matrix and MoM 
respectively. 
 
Index Terms ─ electromagnetic scattering, 
periodic surface, transform method.  
 

I. INTRODUCTION 
Periodic structures frequently appear in the 

applications such as antenna design, microwave 
systems, meta-materials etc [1-4] and 
corresponding problem of electromagnetic waves 
scattering from periodic surfaces [5-10] is of 
fundamental importance in science and 
engineering. Scattering from periodic rough 
interfaces has been investigated by integral 
methods such as MoM [6] and T-Matrix [6-8], 
Because of the slowly convergent integral kernel 
and the treatment of singularities [6, 11], MoM 
needs much computational time. While only 
considering the field points outside the trough 
region of the corrugation [8] to remove the 

absolute operation in the periodic Green’s function 
in the spectral domain [6-8] and to speed up the 
convergence [6], T-Matrix method can not be used 
to evaluate the fields in the trough region of the 
corrugation. Those fields may be interested in 
certain cases [9, 10]. Therefore, more convenient 
and efficient methods for this kind of problem are 
always attractive in many applications. Transform 
method [11] is such a method, but its formulation 
is only available for perfectly conducting periodic 
surface scattering. 

In this paper, transform method is extended to 
scattering from dielectric periodic interface. The 
fields just above and below the periodic interface 
are expanded into Taylor series with respect to two 
imaginary planes closest to the interface. By 
applying the boundary condition that both 
tangential electric and magnetic fields are 
continuous on the periodic interface to this form of 
the scattered and transmitted field, we are able to 
establish an infinite set of linear equations for the 
amplitudes of the scattered and the transmitted 
waves. In section II, the scattering problem is 
formulated. In Section III, several representative 
examples are given and compared with T-Matrix. 
Conclusions are given in Section IV. 
 

II. FORMULATION  
The geometry of considered 2-D problem and 

parameters used in the formulation are shown in 
Fig. 1. The periodic interface y=f(x)=f(x+P), x∈
[0,P), P being period, is illuminated by a z-
polarized plane wave with incident angle 0. The 
geometrical parameters and the fields do not 
depend on the z-coordinate. Therefore, the TE and 
TM problems can be considered independently. 
The only non-zero component of the total electric 
fields Ez for TE or that of the total magnetic fields 
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Hz for TM mode are denoted by with different 
script for different regions respectively.  

 

 
 
Fig. 1. The geometry of the problem. 
 

Consider two imaginary planes y=a and y=b as 
shown in Fig. 1, where a=max[f(x)], x∈[0,P) and 
b=min[f(x)], x∈[0,P). These planes are the planes 
nearest to the rough interface y=f(x) which is 
sandwiched by them.  First, +, the total field just 
above the periodic interface and , the total field 
just below the interface, are expanded into Taylor 
series around planes y=a and y=b respectively [11] 
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In the mean time,  is considered as the 
summation of incident and scattered field, namely 

,i s                           (3) 
0 0( sin cos ).ik x yi e                      (4) 

As widely accepted [6-9] that the scattered field 
on and above the top point imaginary plane and 
the transmitted field on and below the bottom 
point imaginary plane can be represented by a 
summation of a discrete set of planar propagating 
and evanescent harmonics as 
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when 2 2
n k   then the harmonic is propagating, 

otherwise it is evanescent. The assumed time 
factor exp{-it} is omitted here and here after. 
Substituting (4), (5) and (3) into (1) and 
substituting (6) into (2), it gets that 
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  The boundary conditions state that the 

tangential components of electric and magnetic 
field are continuous across the boundary 
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where c1=for TE polarization and 
c1=for TM polarization [8]. Substituting (7) 
and (8) into (9) and (10), the continuity of 
tangential electric and magnetic fields on the 
periodic rough interface gives 
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in which two periodic function sequences denote 
that 
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 Both (11) and (12) are periodic function of x 
so domain [0,P] can be discretized into L intervals 
each with width P/L. The center of p-th interval is 
denoted by x=xp. Point matching the two identities 
at x=xp, p=1,2,…L and truncating terms in Taylor 
series to M and reducing the other infinite 
summation from -N to N, (11) and (12) can be 
written in the matrix-vector form as  
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(15) and (16) are linear system of equations and 
can be solved straightforwardly. Then substituting 
R into (5), scattered field on and above the top 
point of the surface can be calculated. In the 
trough region of the corrugation the scattered field 
can be calculated by 
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Also reducing the harmonic summation from  
-N to N and truncating terms in Taylor series 
to M, the scattered field is expressed as 
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III. NUMERICAL RESULTS 

A. Diffracted efficiency 
The proposed method is applied to the silver 

grating described in paper [8]. The grating is made 
of silver with 830 lines/mm and a sinusoidal 
profile f(x)=hcos(2x/P), P=1205nm, h=100nm. 
The relative complex permittivity of the silver is 
7.29135+i0.294387, the incident wavelength is 
482nm. Sum all the propagating powers in the air, 
the diffracted efficiency is given by 

2

0

.
cos
n n

r

R q
P

k 
                   (27) 

The sum of the diffracted energy for TM 
polarization is a severe test of the method since 
anomaly is generally observed and a significant 
fraction of the incident light does not reappear in 
the diffracted orders. The obtained results are 
shown in Fig. 2 and compared with those by T-
Matrix. We can see from the figure that the 
efficiency curves of the two methods are matched 
well. Calculation times of proposed and T-Matrix 
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method for this example are 206.3 s and 1797.8 s, 
respectively under the same soft and hardware 
conditions. 
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Fig. 2. Diffracted efficiency of the silver grating 
for TM polarized waves. 

 
B. Scattered field 

Proposed method is applied to two 
representative interfaces for TE polarization, one 
is sinusoidal f(x)=0.5sin(x/2) and the other is 
triangle f(x)=0.5|x-2|-0.5. The obtained results are 
also compared with T-Matrix results. The 
illuminating plane wave is of frequency 300 MHz, 
and the relative permittivity of the substrate is 
2.25, period P=4 m and the near scattered fields 
are calculated on y0=3 m plane within one period.  
Incident angles are chosen as 45ºfor sinusoidal 
and 60 º for triangle interface. Number of 
harmonics, terms in Taylor series and point 
matching number of transformed problem for 
calculation in (15) and (16) are chosen as N=12, 
M=20, L=80 respectively. The parameter N is so 
selected that all the propagating harmonics and 
part of evanescent harmonics are included for the 
given truncation errors of (5) (6). The selection of 
M is related to truncation errors of Taylor series. 
We choose the biggest M for given accuracy 
remainder term of equations (19)-(24). As the 
corrugation depth increases, more harmonics and 
more Taylor series terms need to be taken into 
account. Real and Imaginary parts of scattered 
field are depicted in Figs. 3 and 4, respectively. As 
seen from figures, results of proposed and T-
Matrix method are in satisfactory agreement. 
Calculation times of the first and second example 
for proposed method are 5.312 s and 5.469 s, those 

for T-Matrix method are 47.125s and 47.687 s, 
respectively.  
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(b) 

Fig. 3. Scattered field above sinusoidal interface 
within one period (a) Real part, (b) Imaginary part. 

 
Then the scattered field within the groove of  

the first example are calculated on y0=0 m  , x∈
(P/2, P). The parameters are the same as the 
first example. Since the T-Matrix can not 
calculate the scattered field in the trough 
region of corrugation, the results of proposed 
method are compared with MoM [6]. Real and 
Imaginary parts of the scattered field are 
depicted in Fig. 5. Calculation times of this 
example for proposed and MoM are 3.844s 
and 541.391s respectively. Numerical results 
show good agreements. 
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(b) 
Fig. 4. Scattered field above triangle interface 
within one period (a) Real part, (b) Imaginary part. 
 
 

 
(a) 

 
 

 

 
(b) 

Fig. 5. Scattered field in the trough region of 
sinusoidal interface (a) Real part, (b) Imaginary 
part. 

 
IV. DISCUSSION AND CONCLUSION   

The scattering problem from periodic interface 
is transformed to scattering from two imaginary 
planes, and then the fields just above and below 
the rough interface are represented by Taylor 
expansions at the two planes respectively. 
Applying the boundary conditions to these fields 
the scattering problem is solved. Comparing with 
T-Matrix, the proposed method is of simple 
formulation and it can calculate the field in the 
trough region of the corrugation.  Obtained 
numerical results of near field distribution are in 
good agreements with T-Matrix or MoM and the 
proposed method is with much higher computation 
efficiency. Besides, for some particular conditions 
(such as f=300 MHz, r=2.25, P=4 and 0=30º), 
one of the y-components of propagation constants 
becomes zero, T-Matrix cannot work because its 
formulation has a factor (qn)

1/2 [7] while proposed 
method does not have this difficulty. Compare 
with MoM which is based on the slowly 
convergent periodic Green’s function, the 
proposed method is much more efficient in the 
calculation of the field within the grooves. 

It is the limitation of proposed method that the 
matrices C, D, Ch and Dh may become ill-
conditioned when the surface corrugation is deep.  
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