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Abstract ─ Analytical solution of scattering by a 
2D loaded crack on a ground plane, coated by a 
dielectric layer for TE case is studied theoretically 
using Kobayashi and Nomura's (Kobayashi 
Potential) method. The geometry is divided into 
three regions whose fields are expressed in terms 
of Bessel eigenfunctions. The problem is reduced 
to a system of equations involving truncated 
summations with an infinite number of unknowns. 
Excitation coefficients are determined by applying 
the boundary conditions. By applying Weber-
Schafheitlin discontinuous integrals, the infinite 
summations could efficiently be truncated with 
high numerical accuracy. For validation, in 
addition to convergence analysis, near-field 
magnetic current densities on the crack and the 
radar cross section (RCS) results are compared 
with those of Finite Element Method (FEM). 
Having the analytical method, the influence of the 
filling and the dielectric layer is investigated.  
 
Index Terms - Plane wave scattering, 2D coated 
crack, dielectric layer, Kobayashi and Nomura 
method, Weber-Schafheitlin discontinuous 
integrals.  

 
I. INTRODUCTION 

Crack detection is one of the important tasks 
in nondestructive testing (NDT) of industrial 
materials and products. Near-field microwave 
resonator [1] and waveguide techniques [2], [3] 
have been utilized to detect surface cracks on 
metals. For non-accessible cracks like those on 

boilers or blast furnaces, far-field electromagnetic 
(EM) scattering measurement is recommended   
[4-18]. 

 The solution of EM scattering by a narrow 
and arbitrary shaped gap was given by Senior et al. 
using a point matching method of moment (MoM) 
[19]. Barkeshli and Volakis have applied the 
equivalence principal to obtain the equivalent 
current on the aperture for a quasi static solution 
[20]. Park et al. formulated the scattering problem 
for a rectangular crack in a spectral Fourier 
spectrum domain [21]. Jin used finite element 
method (FEM) for inside the crack and boundary 
integral (BI) for field over a perfect electric 
conductor (PEC) plane [22]. The natural frequency 
poles extraction with matrix pencil method (MPM) 
is also given by Deek et al. for detecting cracks in 
buried pipes [23]. Bozorgi, et al. presented a direct 
modeling technique based on field integral 
equation (FIE) for determining the back scattering 
signatures of a crack in a metallic surface by 
removing singularities in hypersingular integrals 
[4, 5]. Honarbakhsh and Tavakoli introduced 
meshfree collocation method to solve 2D filled 
cracks in PEC [24]. Other techniques that have 
been used to solve similar geometries include 
overlapping T-block method [13-16] transparent 
boundary condition (TBC) [17] and mode 
expansion scattering solution for wide rectangular 
cracks in 2D [25] and cavities in 3D [26]. 
The Kobayashi potential (KP) method has also 
been used in various EM scattering problems     
[6-12]. This method is applicable to all 
geometrical cracks for TE and TM cases. 
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The KP method has some simplifying advantages 
compared to other numerical techniques (mainly 
MoM). First, the KP method is accurate and 
simple in the sense of not dealing with 
singularity of the Green's functions. Second, 
since each function involved in the integrand of 
the potential functions satisfies a part of required 
boundary conditions, solutions  converge  rapidly 
[7]. 

Sato and Shirai utilized KP method to analyze 
EM plane wave scattering by a 2D filled 
rectangular crack on a ground plane without any 
dielectric coating [9]. They applied the standard 
impedance boundary condition (SIBC) [10] and 
estimated the depth of the crack [11]. They also 
applied KP method to model the propagation 
through slits array [12]. 

Since paint, rust, and oil coatings on cracks 
alter the scattering signature, a solution that takes 
the dielectric coating effect into consideration is in 
demand for practical purposes. Here, EM plane 
wave scattering by a 2D gap in a PEC ground 
plane coated by a dielectric layer is analyzed. The 
scattered field is rigorously formulated using the 
KP method. 

The paper is organized as follows. In section 
II, standing waves in the paint layer are 
formulated. The KP method is utilized to derive 
the governing field equations with unknown 
excitation coefficients in section III. In section IV, 
the truncated unknown excitation coefficients are 
computed. The numerical results and validations 
are presented in section V. 

We assumed a time dependence of tie   
throughout the context. 

 
II. THE SCATTERING PROBLEM 

WITHOUT CRACK 
The geometry of a slab of height ty  and 

relative permittivity of 1  and relative 

permeability of 1  on an infinite PEC ground 
plane is depicted in Fig. 1.  
Here, 

000 k  and 
1101 kk  are respectively 

the free space and the dielectric slab wave 
numbers. The slab is illuminated by a vertically 
polarized EM plane wave: 
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z

i eH                                (1) 
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Fig. 1. Geometry of an infinite ground plane 
coated with a slab. 
  
and the reflected plane wave is: 

    ,Re 000 sincos  yxikr
z

r H                          (2) 

where, R  is the reflection coefficient, 0  is the 

incident angle, t  is the transmission angle, and 

r  is the reflection angle. Assuming   is the total 
magnetic field in dielectric slab. Thus,  

   ,cossinsin 111 xikyikyyik tttt eBeAe               (3) 

Where A and B are unknown coefficients. The 
first term in (3) represents the down-going and the 
second term is the up-going wave. 

In order to find the aforementioned unknowns 
first, we note that the tangential field component 
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
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
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1  is zero over the PEC boundary 

 0y  therefore: 

,sin1 ttyikAeB                                     (4) 

Second, imposing the continuity of the tangential 
field components zH  and xE  at tyy   yields: 

      ,1Re sin2sinsin 10000 tttt yikyikyik eAe       (5) 
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By solving (5) and (6) simultaneously, we get 
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(8) 

Thus, the magnetic field in dielectric slab can be 
expressed as: 

     .cossinsin 111 xikyyikyyik ttttt eeeA       
(9) 

where A is given in (7). 
 

III. THE SCATTERING PROBLEM WITH 
CRACK 

After deriving , a dielectric filled rectangular 

crack of width aw 2  and depth b  is assumed in 
the geometry, as shown in Fig. 2. The crack is 
assumed to be filled by a material with relative 
permittivity and permeability of r  and r  

respectively. The filling and coating materials 
could be both lossy, meaning that 1,,  rr and 1  
could be complex.  

Three distinctive regions are recognized here:  
I) Semi-infinite half space  tyy  . 

II) Slab region  0 yyt . 

III) Cavity region  axyb  ,0 . 

We now derive the field representations in each 
region. The total z-component of the magnetic 
field and the additional scattering contribution of 
the crack are denoted by  3,2,1it

i  

and  2,1is
i , respectively. Where the subscript i  

represents the region. In each region, the field is 
expanded over an appropriate Bessel 
eigenfunctions. The total fields in regions I and II 
are  
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Fig. 2. Geometry of the filled rectangular crack 
underneath a coating layer in an infinite ground 
plane.  

 
Additionally, since the scattered fields satisfy 

the homogeneous Helmholtz equation, utilizing 
the method of separation of variables, they could 
be represented as an integral of the general 
solutions [9]. Thus, 
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(13) 

where          .,.,.,.,. hgfed  and  .k  are 
unknown weighting functions. In (12) and (13) 
normalized variables and parameters with respect 
to the half aperture width a  are introduced as:  
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It is worth mentioning that s
1 contains only an 

up-going wave while the first term of s
2  is an up-

going wave and the second term is a down-going 
wave. Now, using 
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the weighting functions can be expanded over 
Bessel functions. Thus, 
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Substituting (15)-(17) into (12) and (13) yields: 
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Each component in the above integral 
expression is identified as a class of Weber-
Schafheitlin type integral that automatically satisfy 
the zero tangential electric field boundary 
condition on a part of the ground plane where 

0,1  vu . 

 The region III is like a parallel plate 
waveguide. Therefore, the field is expressed by a 
summation of waveguide modal eigenfunctions. 
Considering the boundary conditions at 

ax  and by  , t
3  is given by: 
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where  22
0 wnkh rrn    is the propagation 

constant for n th parallel plate waveguide mode, 
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 and nL is an unknown coefficient. 

 
IV. COMPUTATION OF THE UNKNOWN 

COEFFICIENTS 
To determine the unknown coefficients ,mD  
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By substituting BC.1-4 and (15)-(17) in (18) 
and (19) and after some mathematical 
manipulation, the following equations are derived: 
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where      .1. 02. abihe  
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where      02.1. abihe . 
These equations are solved by KP and then 

separated into odd and even groups using even and 
odd identities [6]. Thus: 
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 :2.BC Even Identity: 
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:2.BC Odd Identity:             
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:3.BC Even Identity: 
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:3.BC Odd Identity:             
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:4.BC Even Identity: 
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where mk is the Kronecker delta. 
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Equations (26)-(33) are eight sets of equations 
to solve eight sets of unknown coefficients 

,mD ,mE ,mF ,mG ,mH ,mK ,2kL .12 kL   

In a cylindrical coordinate system where the 
observation point is represented by  and θ the 
far-field scattering is [11]: 
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(34) 

The above summations are all convergent and 
therefore, n and m are limited to N  and ,M  
respectively. 

 
V. NUMERICAL RESULTS AND 

VALIDATION  
In this section, the proposed analytical method 

is applied to several coated cracks and validated 
by three approaches. First, FEM is used to find 

 t
z

t H3  and the magnetic current densities Mx, 

on the aperture for different incident angles. 
Second, the RCS is computed by exploiting the 
coated ground Green’s function together with the 
near to far-field transformation [27]. Third, for 
rigorous validation of the method, convergence 
analysis curves are provided [28]. The studied 
scenarios of the crack cases are listed in Table 1. 

 
A. Validation with magnetic current density 
analysis 

Referring to Fig. 2 and Table 1, in case A only 
the permittivity of the coating layer is complex 
whereas in case B all filling and coating materials 
are complex. The calculated magnetic current 
density distributions 

xM  on the crack 

 ,ax  0y  at various incident angles 

 ,150  ,30 ,45 ,60 ,75 90  are shown in Fig. 
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3 where 13 MN . Comparison of the results 
with the FEM solution demonstrates the accuracy 
of the method at all incident angles. 

 
Table 1: Different scenarios of cracks 

 w  b  
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Fig. 3. Magnetic current densities on the crack 
 ,ax  0y  computed by the proposed method 

and FEM for cases A and B.  
 

B. Validation with RCS analysis 
For cases C and D, normalized RCS as a 

function of incident angle is depicted in Fig. 4. 

with 11 MN . The results are compared to 
FEM solution. Here, the width of the crack is 

01w  to show the applicability of this method 

for wide cracks. 
 

90 100 110 120 130 140 150 160 170
−20

−15

−10

−5

0

5

10

15

 

 

θ
0
 [degree]

σ/
λ 0[d

B
]

This Method (case C)

FEM (case C)

 
   (a) 

90 100 110 120 130 140 150 160 170
−40

−30

−20

−10

0

10

20

 

 

θ
0
 [degree]

σ/
λ 0[d

B
]

This Method (case D)

FEM (case D)

 
   (b) 
Fig. 4. Normalized RCS as a function of incident 
angles for (a) case C and (b) case D. 
 
C. Validation with convergence analysis 

For error analysis, the convergence curves for 
cases A, E and F where 900   are represented in 

Fig. 5. The error function and Euclidean norm are 
given by: 
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(34) 

where kx  is the position of the k th point on the 

crack and K  is the total number of observation 
points. The results are calculated using 25K for 
all three cases.  

As mentioned before, Weber-Schafheitlin type 
integrals automatically satisfy the boundary 
condition on the PEC  0,  vax  and the 

summations converge very rapidly. Referring to 
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Fig. 5, for a N close to 12~14, we have the error 
of 00631.010 2.2  . The rapid convergence of this 
analytic method makes it desirable for efficient 
calculation of the scattered field in inverse 
problems.  
 
D. Results  

Here, the reported backscattered results  of a 
crack with the dielectric cover and without the 
dielectric cover of [9, 22, 24] are compared to the 
proposed method. In Fig. 6 (a), the normalized 
RCS of case E (without a coating layer) is 
compared with that reported in [9]. In addition, by 
imposing a thin layer on the crack (case F), the 
influence on the RCS is evident. In addition, our 
proposed method could also be applied to narrow 
cracks. Figure 6 (b) shows the normalized RCS of 
the case H that is a very narrow crack with and 
without a coating layer. The coating is a 8/0  

layer of paint primer ( i12.048.31  ).  
According to Fig. 6, RCS drops down at grazing 
angles for coated cracks. 

Figure 7 shows the normalized RCS as a 
function of frequency for open crack at a low 
grazing angle of 100   (case G). Here, results of 

finite element boundary integral method (FE-BI) 
and measurements of [22], meshfree method 
(MFM) [24] and our method are compared with 
each other. A good agreement is observed between 
these methods. Since these solutions do not 
consider the coating layer, the same case with a 
2mm layer of common paint with a relative 
dielectric constant i1.031  [3] is also 
simulated. Solid line with diamonds in Fig. 7 
depicts the results of presented method. 
Examination of the results shows that the crack 
dielectric cover alter the RCS signature 
significantly. 

Figures 8 and 9 depict the variation of 
normalized RCS for various materials of Table 2 for 
a crack of ,2.0 0w ,2.0 0b 11  r  

and 900  . In addition, the cracks in all cases are 

filled by rust with ir 03.07.2  .  
By increasing the dielectric constant and hence 

the electrical depth, RCS drops down at first and 
then increases due to an increase in the electrical 
thickness of the substrate that excites additional 
surface wave modes. By increasing the paint depth, 

the term   bounces in slab and its energy 
decreases. Therefore, RCS reduces as paint depth 
increases.  Additionally, when the coating is lossy, 
the RCS is significantly affected for even low loss 
as shown in Fig. 9. Normalized RCS of the crack 
versus the paint depth for various amount of 
permeability is shown in   Fig. 10. assuming a crack 
with ,2.0 0w ,2.0 0b ir 03.07.2   and 

900  . 
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Fig. 5. Convergence curves for cases A, E and F.  
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Fig. 6. Normalized RCS as a function of incident 
angles for (a) case E[9], and with a dielectric layer 
of case F (b) case H, and with a 8/0 dielectric 

layer of i12.048.31  . 
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Fig. 7. Normalized RCS as a function of frequency 
for case G [22, 24] and with a 2mm dielectric 
layer of i1.031   at a low grazing angle of 

100  . 

 
Table 2: Some coatings and their complex 
dielectric constants 

Material r   r   

32OFe  Powder Rust  0.03i 

Paint Primer        0.12i 
Salt Rust  1.53i 
Red Rust  1.03i 
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Fig. 8. Normalized RCS of the crack as a function 
of coating depth for different real dielectric 
constants where ,2.0 0w ,2.0 0b  

,11  r ir 03.07.2  and 900  . 

 
VI. CONCLUSION 

Paint layer on fatigue cracks play an important 
role in RCS results and thus crack detection as a 
state of the art in microwave NDT. In this paper, 
EM plane wave scattering by a 2D rectangular 
filled and coated crack on a ground plane is 
analyzed by KP method for TE case. In order to 

show the validity of the solution, three methods 
are used. The magnetic current on the aperture and 
RCS results compared with FEMs’. On the other 
hand, the approach and its efficiency are validated 
by convergence analysis. The method is shown to 
be accurate for both narrow and wide cracks. The 
proposed method is applicable to all lossy and 
lossless materials for filled and coated cracks. In 
addition, the sensitivity of the RCS to the 
permittivity, permeability and thickness of the 
overlaying layer is presented.  
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Fig. 9. Normalized RCS of the crack as a function 
of coating depth for different complex dielectric 
constants where ,2.0 0w ,2.0 0b  

,11  r ir 03.07.2  and 900  . 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

yt [λ
0
]

σ/
λ 0[d

B
]

 

 

μ
r
=1

μ
r
=2

μ
r
=3

μ
r
=8

μ
r
=8+i

 
 
Fig. 10. Normalized RCS of the crack versus paint 
depth for different permeabilities for 

,2.0 0w ,2.0 0b ir 03.07.2  and 
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