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Abstract ─ A novel approach has been introduced 
to remedy the computational complexities of the 
recently introduced time domain periodic Green’s 
functions in the 1D and 2D periodic case. 
Specifically, it has been shown that for a certain 
class of temporal basis functions, the 
computational cost of convolutions with temporal 
basis functions, which results in the band-limited 
GFs needed by most time domain integral 
equations solvers, can be considerably reduced, as 
compared to conventional methods that are 
currently in practice. It is also well known that the 
computational complexity of the Floquet-wave 
based Green’s functions increases when the point 
of observation approaches a source. Robust forms 
have been obtained for both 1D and 2D periodic 
TDGFs for any source-observation distance, which 
are then further improved for high-efficiency 
numerical implementation.  

Index Terms ─ Time Domain Integral equations, 
Green’s Function, Periodic Structures, Efficient 
Algorithms. 

I. INTRODUCTION 
Periodic structures serve as useful models for 

many real-world problems including antenna 
arrays and Frequency-selective surfaces and 

promisingly fast formulations in this area have 
been recently reported [1-4]. Infinitely extended 
periodic arrays of sources are amenable to more 
elegant, and sometimes more convenient 
mathematical descriptions than those which are 
finite. In the area of integral equation techniques, 
and also with many other numerical methods, the 
“periodic” Green’s function refers to the inclusion 
of the effects of all elements of an array at the 
observation point (located in the unit cell) in a 
unified Green’s function. This reduces the 
numerical domain of the original periodic problem 
to the unit cell of the periodic array. The most 
straight-forward approach to compute such 
Green’s functions (GF) is to directly sum up the 
contributions from all elements whose received 
amplitude at the unit cell is considered to be 
significant. This direct summation approach (DS) 
to obtaining such GFs is not computationally 
efficient, as the resulting series converges rather 
slowly. In the frequency domain (FD), extensive 
efforts have been devoted to the problem of finding 
fast and computationally efficient expressions of 
the periodic Green’s functions and rather efficient 
implementations do exist. A good review of these 
can be found in [5]. Such periodic GFs can also be 
applied in solving finite arrays[6]. 
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In time domain (TD), analysis of periodic 
structures has been attempted in recent years [7], 
based on the TD equivalents of FD Floquet-wave 
Green’s functions developed in [8-11], and further 
expanded in [12]. Although representations of 
periodic GFs based on TD-Floquet-wave series 
(FW) give a more natural approach to a periodic 
problem, and their corresponding expressions for 
TDGFs can provide for faster evaluation of 
impulsive Green’s functions, their final 
implementation in time domain integral equations 
(TDIE) requires extra convolutions with temporal 
basis functions (TBFs) and requires special 
considerations near a source point. These issues 
greatly affect their speed and efficiency, and 
consequently, their practical application to TDIE. 
To the best knowledge of the authors, these aspects 
have not yet been comprehensively addressed. This 
paper reports findings related to these important, 
practical issues.  

To have the material needed for further steps, 
it is necessary to briefly review the Floquet-based 
Green’s functions in section II. Section III 
introduces the fast convolution technique for 
periodic time domain GFs with a well-known class 
of temporal basis functions. Section IV discusses 
the numerical difficulties encountered when 
evaluating 1D periodic Floquet-wave GFs close to 
a source-point, and introduces a novel method to 
mitigate these effects based on source extraction 
for the 1D periodic case. We then verify the 
proposed method through a numerical example. 
Section V investigates source-proximity 
improvements for the 2D periodic case, proposes 
several ways to accelerate the computation of the 
TDGFs, and verifies the results by numerical 
examples. Section VI summarizes the contributions 
of this paper. 

 
II. Preliminaries 

Consider a 1D-periodic, infinite, sequentially-
excited array of point sources lying along the x-
axis, as in Fig. 1.  

Considering the surrounding environment of 
the elements to be free space, and the sequential 
inter-element delay to be proportional to inter-
element spacing X through a factor cos x  , the 
sum of potentials contributed by all elements at an 
observation point (x,y,z) is  
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where  2 2

mR x mX     and 2 2y z   , and 
k c . It has been assumed, in accordance with 
previous work [8], that the sources are impulsively 
excited.  

 
Fig. 1. Linear periodic array of dipole point 
sources. The plane wave shows one possible way 
of exciting this array by an inter-element delay of 

cos xX X  . 
 

As the denominators in (1) and (2) might 
suggest, these series converge slowly. Moreover, 
in many problems, the three dimensional spatial 
domain of evaluation in (1,2) makes a pre-storage 
and interpolation approach to their fast evaluation 
rather expensive and impractical. For this reason, 
alternative expressions or approximations for these 
functions are sought. To elaborate the approach in 
[8], consider the discrete line array of point 
sources. In frequency domain, one can describe 
this periodic source structure by (3); 
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which can describe any of the spatial orientations. 
we can use the Poisson’s summation formula 
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Equation (4) expresses the discrete array of 

point sources as an infinite summation over 
smooth linear sources. Correspondingly, the 
Green’s function can be stated in terms of the 
Green’s functions for linear sources; which gives 
(in frequency domain) [8] 
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in which   2 2

q xqk k k k   . Each of the 
summands in (5) comprises a Floquet mode. Note 
that these modes are evanescent away from the 
linear axis whenever xqk k , under which the 
argument of the Hankel function becomes 
imaginary (  Im 0qk   is assumed, in order to 
satisfy the radiation condition as   ). The 
second and fifth FD Floquet-waves are depicted in 
Fig. 2 for an example with 0.25 , 0x y m z   in 
an array with 1X m  and 0   . The important 
cut-off property of these modes before a certain 
frequency can be readily observed. This implies 
that for a certain frequency, the summation of a 
limited number of modes can reconstruct the GF 
with sufficient accuracy. This is verified in Fig. 3, 
where the summation of Floquet modes of 2q 
has been shown to suffice for an entire frequency 
region nearly up to the cut-off frequency of the 
next higher mode. 
 

It can be anticipated that by performing an 
inverse Fourier transform of the GF in (5), the 
desirable convergence properties of (5) will carry 
over to the time domain. Doing so, one arrives at 
the time domain Floquet modes, with the current 
modes given by (6) and the corresponding TD 
Green’s functions in (7).  
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Fig. 2. The 2’nd and 5’th FD Floquet waves 
observed at 0.25 , 0x y m z   for an array with 

1X m and 0  . The infinity-spikes observed are 
inherent to periodic Green’s functions. 

 

 
Fig. 3. Comparison between the Floquet GF (5) up 
to a certain mode number (given in parentheses) 
and actual (direct summation, equation (1) with 
100 terms) observed at 0.25 , 0x y m z   for an 
array with 1X m  and 0  . Only the real part is 
shown. The imaginary part shows similar 
behaviour.  

                    
Each TD Floquet current can be interpreted as 

a traveling impulse excitation along the x-axis, 
with an x-dependent harmonic amplitude. The 
resulting TD Green’s function can be shown to be, 
in its most computationally efficient representation 
[8]: 
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where 1 / 2q   for 0q  and 1q   otherwise. 

 U  is the Heaviside function, /t x c    and 
 

   2 2
02 ,

1
c

x t x   


    


          (7b)                                                   

2
0 01 .x

t
c c

                      (7c)  

The physical interpretation of (7) is fairly 
simple: the instantaneous signal received at the 
observation point r

 at a certain time t has been 
contributed by impulsive current excitations at two 
points x  on the axis; whose sequential excitation 
and propagation delays have been appropriate for 
reception at r

  at the time t. These points are time-
dependent and are displaced farther away with 
time.  

Of computational significance is the fact that 
0t  is independent of q; the mode number. 

Consequently received signals from all modes 
begin at the same time 0t  which is, however, 
dependent on the observation point. Several TD 
Floquet-wave modes are shown in Fig. 4. It is seen 
that all modes begin with a sharp variation at 0t but 
can be described by different late-time oscillation 
frequencies (obtained for large t in 7) of 
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where we denote the characteristic time scale of 
the periodic lattice by /XT X c .  
 

Because the TD Green’s function in (2) has 
been obtained assuming impulsive excitation of 
point sources, for most numerical applications of 
Floquet-modes, these have to be convolved with 
certain TBFs (temporal basis functions or pulse 
shapes) in order to limit their bandwidth to that 
appropriate for TDIE simulations (i.e. the band-
limited TDGF). The number of Floquet modes 
required can be estimated by those that have their 
cut-off below the effective bandwidth of the TBF. 
Based on the discussion following (5) and 
approximating the TBF bandwidth by 2 /T   , 

where T is the solver time step, the number of 
modes that contribute as propagating in the desired 
bandwidth can be derived as: 
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The number of modes for the case of normal 

incidence is / .XQ T T  In many problems a choice 
of 0.1 XT T  can be reasonable for TDIE solutions. 
 

 
Fig. 4. Time domain Floquet modes from equation 
(6), for an array with X=1m and 0  . 

 

It can be verified from the number of terms 
needed to produce agreement with the actual GF in 
Fig. 5a, that the TD Green’s function in (7) has 
indeed inherited the desirable convergence 
properties of their FD counterpart (5).  Here a QB-
spline basis function with XT T has been used as 
the temporal basis functions, for which mode 
indices as low as 1Q  should be sufficient 
according to (9). Other parameters in Fig. 5a are 
similar to the previous FD example. 

In spite of the efficient number of required 
modes, the necessary convolutions ( ) ( )FW

qG t g t  
usually have to be performed numerically at a 
temporal discretization of about 

 0.1min ,2 / ( )FWt T Max   . This is typically 
more than an order of magnitude smaller than the 
time step T in a typical TDIE solver (e.g. based on 
the marching-on-in-time method) which needs the 
TDGF to be obtained at integer multiples of T 
only. This makes the convolution time-consuming. 
Indeed, for short simulation times Tsim, the higher 
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resolution in time that is required to perform the 
convolution with accuracy, increases the total 
computational cost of the Floquet-based approach 
beyond that of direct summation of element 
Green’s functions at integer multiples of T(see Fig. 
9). We shall assume from now on that t  is 
chosen so that T is an integer multiple of t . 

It is usual in TDIE solvers such as MoT to use 
temporal basis functions which have a temporal 
support of one to several T. The ratio bN T t   
will be useful in later discussions. 

 
(a) 

 
(b) 

Fig. 5. Band-limited Time domain Green’s 
functions obtained by direct summation (equation 
2) and Floquet-waves (11) for a. 

0.25 , 0x y m z    and for b. 0.025 , 0x y m z    . 
 

It is also well known when using the TDGFs 
of (7) that a higher number of modes are needed 
when the point of observation approaches a source 
point (e.g. the origin in (2)). This can be seen in 
Fig. 5b where the point of observation has been 
moved to 0.025 , 0x y m z    for the same array of 
the previous example.  The reason for this can be 
traced back to the FD Floquet GFs in (5). At low 
values of  , the evanescent tails of the Hankel 
functions become more and more pronounced 
below their cut-off frequencies, and at 0   a 
smooth, constant value can be contributed by these 
modes in the  bandwidth of interest. Consequently 
the number of higher order Floquet modes required 
to reproduce the TDGF grows enormously as 

0  , and a computation using Floquet series 

would be far from efficient. This does not come as 
a surprise, as it is generally known that modal 
expansions of GFs perform best for far-fields and 
direct summations perform best for near-fields. 
This problem affects the accuracy of self-patch 
terms in the MoT coefficients matrix, and can 
trigger instabilities in the TDIE solution.  

As the 2D periodic problem has the same 
essential features observed in the above discussion 
of the 1D periodic case, we do not present an 
introduction for them here. We refer the interested 
reader to [9,10] for a detailed discussion. After 
considering an accelerated method of convolution 
in section 3, section 4 and 5 provide modifications 
of expressions like (7) to overcome the accuracy 
problem while maintaining computational 
efficiency, for the 1D and 2D periodic problems 
respectively. To facilitate the following discussion, 
many of the related symbols and parameters have 
been defined and described in Table 1, with their 
typical values. Other symbols will be defined when 
they are first used in the text. 

 
Table 1: Symbols that are repeatedly used 
throughout the paper. 
Symbol Description Typical Value 

T Solver time step. The time support of 
the temporal basis function (TBF) 
can be one to several (denoted nTBF) 
time steps. 

For min. excitation 
wavelength of 
O(X), T~0.1(X/c0). 

Tsim The time limit up to which (starting 
at t=0) the TDGF has to be computed 
for a certain TD problem. 

 

Nsim The length of the computer vector of 
time samples, for which the GF has 
to be computed. / .sim simN T T     

 
> 100 

t  Because of the numerical 
convolution of the Floquet-modes 
with the TBF, the floquet modes 
have to be computed at a higher 
resolution .t T   

0.1t T  , 
usually chosen so 
that T is an 
integer multiple 
of t . 

Nb /bN T t    , also the length of 
the MA filter in section 3. 

 
10-50 

 
III. Efficient computation of convolutions 

with TD Green’s functions 
Stable TDIE formulations have been reported 

using the B-spline family of temporal basis 
functions and marching in time (MoT) 
solvers[13,14]. B-spline pulses are piecewise-
polynomial functions and provide compact support 
in time, which ensures the sparsity of MoT 
matrices at later time steps. A B-spline pulse of 
order m can be built through the following 
desirable property[15]: 
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The zero’th order B-spline is the simple 
rectangular pulse of width T. The first order can be 
obtained by convolving the rectangular pulse 
function by itself and dividing by T, which gives 
the rather common roof-top, or triangular basis 
function. Convolving once more with the 
rectangular pulse function results in the second 
order or Quadratic B-spline (QB-spline) function 
which has been used in the time domain integral 
equations developed in[13,15]. As noted in [13] 
the time derivative of the QB-spline basis 
functions are continuous, which makes them 
suitable for EFIE formulations, where time 
derivatives of the basis functions appear. We note 
that to construct the TBFs, the QB-spline and 
higher B-splines are used with positive time shifts 
so that the TBF equals zero for .t T  This is 
important for a causal TDIE solver such as MoT. 

The property in (8) can be used to efficiently 
compute the convolution with B-splines. To 
elaborate, consider the convolution of a QB-spline 
basis  2b t with  ,G r t


of (7). We shall denote the 

band-limited TDGFs by  mS t  , where m shows 
the order of the basis function used. Consider 
rewriting the convolution as: 
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We shall first concentrate on convolving  0b t  
namely: 

       0 0 0( ) .S t G t b t G b t d  



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(12)
                                           Computer implementation of (12) requires 

discretization in time. Assuming a sampling 
interval of t  we will denote the discrete 
waveform of the signal ( )S t by [ ] ( )S n S n t  , and 
the computer vectors which can only have positive 
integers as indices will be denoted by the bold 
caharacter S(j). Every vector starts with the first 
nonzero sample of the corresponding signal. Thus 
G(1) corresponds to  0G t and b(1) corresponds to 

0 ( / 2)b T . Keeping these in mind, we shall only 
use the computer vectors in the following to 
facilitate the discussion. The convolution is: 

 
     0 0 1 .

j

i j i j  S G b
             

(13)
                    

There are only bN T t  nonzero samples in 
b0. The constant, unity amplitude of  b0  in this 
range allows to avoid  the multiplication step in the 
process of convolution. Computing the convolution 
therefore reduces to finding the sum of bN
elements of G at each step i. This provides for a 
“Moving Average” (MA) Interpretation of the 
convolution in (13). This procedure would cost 
half that of direct convolution, because it avoids 
one multiplication for every summation in (13). 
Nevertheless, the procedure can be done still much 
faster. It is known, mostly among the image-
processing community, that two-dimensional 
moving averages can be computed with high 
efficiency “Box-filtering” Techniques [16]. We 
show the one-dimensional application of the idea 
to the problem in hand. Suppose the moving 
average has been computed for the first bN  
samples of the signal G. The moving average 
window then slides one sample to the right to 
compute the next bN -sum. However, It suffices at 
this step to subtract one of the previous samples 
(i.e. the earliest), and add one new sample (Fig. 6) 
to the output of the previous step. This involves 
only two operations per step instead of bN  in a 
conventional MA.   

 
Fig. 6. The convolution with b0 as a moving 
average with higher efficiency.  

 
From a programing point of view, in the MA 

method of Fig. 6, G has to be padded with 1bN 
zeros at its beginning. In this way the first element 
of S0 will correspond to 0 0( / 2)S t T , and through 
the convolution in (12), 0 ( )S t is indeed known to be 
nonzero only after 0 / 2t t T  . Considering GN to 
be the number of elements in G, The whole 
process has a computational complexity of 2 GN
only. 

 Stepping 

S0(2) 

G Initialization 

S0(1) 
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An efficient sample algorithm for one iteration 
is shown below (all time samples are computed 
simultaneously by vectorized programming). 
 
1. Compute the difference for all time samples with the 
ones shifted by Nb samples: 
PGF(Nb+1:end)= PGF(Nb+1:end)-PGF(1:end-Nb) 

2. Compute the cumulative summation:  
PGF=cumsum(PGF), 

where cumsum stands for cumulative 
summation, i.e. a vector that has the same length as 
the input whose elements are obtained by 
cumulatively adding the input elements, with its 
first element being equal to the first of the input. In 
order to compute the desired convolution with 
 2b t , the same process has to be iterated three 

times according to (11) and the final result 
multiplied by a constant 3 2t T  . The whole 
computational complexity of this method is then 
only 7 GN . The first element of S2 obtained after 
three iterations corresponds to  2 0 3 / 2S t T , 

which is indeed the starting time for  2S t . We 
shall note that for a shifted QB-spline basis 
function [13,15] which starts at t T  , the above 
procedure remains the same, and the first element 
of S2 obtained after three iterations is simply 
assigned to  2 0S t T . Furthermore, the first time-
deriviative of the TDGF can be obtained by simply 
omitting the final cumulative sum. 

 
IV. COMPUTATION OF THE TD 

GREEN’S FUNCTION CLOSE TO A 
SOURCE: 1D PERIODICITY 

 
A. Formulation 

Although the procedure described above can 
provide for efficient computation of TDGF, at 
observation points close to a source, the number of 
Floquet modes that have to be considered for an 
accurate reconstruction of the TDGF increases 
beyond those that are considred as propagating in 
the TBF bandwidth. The problem has been already 
discussed in section 2. It would be of advantage to 
find a robust procedure for the evaluation of the 
TDGF, which overcomes the source-proximity 
problem and can still benefit from the fast 
computational techniques of the previous section. 

We see from Fig. 5 that the discrepancy is an 
early-time phenomenon.  At these times the TDGF 

values can be attributed to the signal received from 
the nearby sources. Because in a TDIE we only 
have observation points in the unit interval of the 
periodic array, i.e.  0,x X , we can extract the 
two near-by sources on both sides of the unit 
interval and add their contribution separately. 
Using (2) as our starting point, we have: 
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(14)

            
 

 
For the rest of the array, we then use the 

Floquet modes of two semi-infinite linear periodic 
arrays. Details of deriving these modes are given in 
[9]. A semi-infinite linear array lying over  0,

has the truncated GF TG  given in (13): 
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                     (15)                     

 
Where ,FW FWG G  come from the TDGF of the 

infinite array as in (7), corresponding to terms with 
,x x    respectively. The first term in (15) is the 

spatial TDGF of the single element at the truncated 
end, divided by two.  We rewrite this for the two 
series in (14) and simplify to arrive at (16), which 
is written in its most computationally compact 
form:   
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(16a)
      

 

where  
     
     

. 1 1 2

. 1 1 2

RE FW

FW

G G U x t U x t

G U x t U x t

  

  

       
       

   (16b) 
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and  U  is the Heaviside function. The terms in 
brackets in (16b) effectively extinguish the 
Floquet-mode contributions from the region 
between the point sources corresponding to m= -1 
and m=2. The result in (16) is quite general and not 
limited to using B-spline functions for g(t). Using 
(16), High accuracy reconstruction of the final 
band-limited TDGF can be obtained at both early 
and late times without including higher order 
modes.  

For B-spline functions, the implementation of 
convolutions in (16) can benefit from the 
simplification and convolution-acceleration 
technique discussed in the previous section. 
Furthermore we can incorporate the four leading 
terms in (16) in the convolution process, by 
considering ( ) ( ) ( )g t a t a g t    . For computer 
implementation, we insert four samples in the 
computer vector corresponding to REG  prior to 
convolution with g(t). These samples correspond to 
discrete versions of the Dirac delta function, whose 
amplitudes and locations are shown in Table 2 in 
order to facilitate the reproduction of our results. 

By the process of moving averages, these will 
automatically give rise to the four direct terms, 
thereby avoiding programming calls to evaluate 

( )g t  altogether. The desired values of the TDGF 
for a TDIE solver which runs at steps of T are then 
obtained by down-sampling by Nb . 

 

B. Numerical example 
We shall now consider an example where the 

observation point is extremely close to the source, 
i.e. 0.00025 , 0x y m z    in an array with 1X m  
and 0  and by choosing 0.1 XT T . The results 
for this example are shown in Fig. 8. The accuracy 
of (16) has been compared against the previous 
pure-Floquet-modes approach. The number of 
modes in both cases are the same, and are chosen 
as low as indicated by (9). In addition to the 
capability of accurate reconstruction, the formula 
in (16) is free from the Gibbs-phenomenon at early 
times. It smoothly joins the Floquet-modes results. 
at later times, where they are more accurate. 

 
Fig. 8. Comparison of the Floquet-convolution 
approach with the proximity- improved formula in 
(16). As the amplitude of the first peak is at least 
two orders of magnitude higher than others near 
the source point, a logarithmic scale has been 
chosen to observe the whole-range function 
behaviour. 
 

In Fig. 9 we compare the performance of 
several methods of computing the convolution in 
the proximity-improved function 1 ( , )DS r t


 in (16). 

This is done by implementing all methods in 
MATLAB programming environment and running 
the computations for increasing simulation times 

simT . In this way the computation load on each 
method is increased by increasing the number of 
required time samples (vector length), while 
keeping a constant  0.01min , 2 / max( )FWt T     
for accurate numerical convolutions. The temporal 
basis functions are QB-spline pulses and for each 
value of Tsim, the total computer time required to 
perform the GF calculation for t=-T to Tsim is taken 
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Table 2: Locations and amplitudes of the four 
discrete impulse functions to numerically generate 
the first four terms in (16) 
Corresponding term 

in (16) 
Sample 

Amplitude 
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aThe element location assumes the first element of the 
computer vector R EG to correspond to t0. 
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as an approximate indicator of computational 
cost.(Considering the faster implementation of 
built-in functions, this might not be a fair criterion, 
i.e. underestimating the proposed method. 
Nevertheless, we expect to have at least a correct 
qualitative comparison.) 

Convolution and FFt-based Floquet refer to 
evaluating the first four terms of (16) directly and 
using either direct convolution or FFt-based 
convolution to evaluate the fifth term. Floquet-MA 
refers to implementing Table 1 and using the MA 
convolution scheme. To perform a fair comparison, 
we note that direct summation (DS) needs to 
evaluate no more than / 1DS sim XM T T   individual 
elements at both sides of the origin, as the 
contribution from other elements of the lattice 
arrive later than .simt T furthermore, in accordance 
with a real TDIE scenario, only samples at integer 
multiples of T are required, which amount to 

/sim simN T T  time points. These indicate that direct 
summation GFs can have low computational time 
for small simulation times. The rise in 
Computation time is, however, proportional to 

DS simM N , which is  2
simO N , as evidenced by the 

corresponding slope in Fig. 9. Direct numerical 
convolution will have a computational cost of at 
least 2 G bN N , which is  simO N . Indirectly 
computing the convolution by means of three times 
Fast Fourier Transforms (two times FFT, and one 
inverse FFT) all of equal lengths GN  will result in 
a cost of ( log( ))sim simO N N [17], and might not 
necessarily be more efficient than direct 
convolution for all Nsim. Finally, the proposed 
method, which relies on a moving-average (MA) 
scheme and needs no evaluation of g(t), has a 
computational cost of 7 GN only and has 
considerably better efficiency. In Fig. 9, all 
Floquet-based computation times also include the 
time to compute the Q+1 Floquet-modes, prior to 
convolution.  
 

V. COMPUTATION OF THE TD 
GREEN’S FUNCTION CLOSE TO A 

SOURCE: 2D PERIODICITY 
This section extends the previous investigation to 
doubly periodic GFs and discusses some specific 
points for more efficient programming. To 
preserve notational simplicity, we reuse some of 
the symbols from the previous sections with new 
meanings specific to the 2D periodic GF. 

 

 
Fig. 9. Comparison of the computation times for 
the proposed method with several other 
approaches. 

 
A. Formulation 
For a sequentially excited doubly-periodic array of 
point-dipole elements, which has unit cell 
dimensions of  X   and Y as shown in Fig. 10, one 
can readily write the field at an observation point 
(x,y,z) as a summation over all elements in 
Frequency domain (FD) and time domain (TD): 

 

 
Fig. 10. Schematic description of the infinite 
doubly periodic array. The hypothetical plane 
wave shows one possible way to excite this array 
by an inter-element delay of 
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in Fig. 1. We note that the symbol   is reused 
form the previous section and sin inc  . It has 
been assumed in (18), in accordance with previous 
work [10], that the sources are impulsively excited. 
Direct computation of (17) and (18) is even more 
costly than in the 1D case (considering that the 
minimum number of elements now varies with the 
square of the simulation time). As in the 1D 
periodic case, for both FD and TD, the Floquet-
wave representations can very efficiently 
reconstruct the TDGF (18); in most cases requiring 
up to only a few tens of modes to converge. The 
2D periodic TD modes are given in (3) as: 
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      (19a) 

 
where 1p   for 0p and 1/ 2p  for 0p   , J0(.) 

denotes the zero’th order Bessel function and U(.) 
the Heaviside function, and the parameters are[10]: 
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    (19b)                                                                               

 
and it has to be reminded that to produce the band-
limited GFs that are necessary in the 
implementation of TD integral equation solvers, 
the TDGF in (19) has to be convolved with a TBF 
(denoted g(t)), which we consider to have a 
bandwidth of approximately T-1, where T is the 
solver time step. The efficiency of (19) can be 
understood by a glance at Fig. 11, where the 
reconstruction process is shown in both time and 
frequency domains. It is seen that away from the x-

y plane, the evanescent character of higher modes 
in FD below f=T-1 enables a limited number of 
modes to reproduce the band-limited TDGF. 
Nevertheless, as 0z  , Like the 1D case, it is 
the early time of the TDGF that is affected. For a 
2D periodic TDGF, this is more rigorously shown 
in [11; Appendix].  

 
   (a) 

 
    (b) 

 
Fig. 11. (a) The 2D periodic TDGF for an example 
with 0.25 , 1x y m z    in an array with 

1X Y m   and 0  where we have chosen 
00.1 /T X c for the TBF. Only modes with 

, 10p q  have been used. (b) the frequency 
domain description for the same example shows a 
limited number of modes being “selected” by the 
TBF spectrum. The FD modes shown correspond 
to 0, 1,3,5,7,9.p q   

 
On the other hand, direct summation is most 

efficient for early times, because at early times one 
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can exclude from the summation in (18), all the 
element signals that have not yet arrived at the 
observation point (The observation point resides in 
the unit cell). Consequently, as with the 1D 
periodic GF, we seek a combination that uses 
direct summations at early times and Floquet-mode 
GFs at later times. However, unlike the 1D case, it 
might be easier here to separate the two methods in 
time, rather than in space. In [7], it has been 
suggested to separate the very early-time and 
compute it directly, and treat the later times with 
Floquet-modes. The following approach for 2D 
periodic GFs uses a similar technique in combining 
DS and Floquet-series. Additionally, we treat the 
TDGF explicitly, and optimize its computational 
procedure to arrive at a formulation which is 
accurate, and still more efficient computationally 
from either of the DS, or FW formulations.  

 A separation of the two methods in time 
requires defining a transition time Ttrans. The 
simulation time Tsim is then divided into two parts, 
namely 0<t< Ttrans, and Ttrans<t<Tsim. For the first 
part, the evaluation of the TDGF is done using 
direct summation in (18) with a limited number of 
elements determined by Ttrans. The remaining time 
points after and including Ttrans can be computed 
by Floquet-series. We can thus write:  
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(20a) 
where  
 

, 0,1,..., 1.
/ .

DS trans

trans trans

t jT j N

N T T

  

  

1, 1
/ /

trans transT T
M N

X c Y c
            

    

( 1) , 0,1,2,...trunc trans TBFt t n T i t i                                

 ˆ ˆ ˆ .inc
trunc trunct u xx yy

c

    
                    

(20b) 

 
Like the 1D case, we note in (20b) that the 

truncated time vector for the Floquet-part has 
samples with t T   for accurate numerical 
convolution. We also note that to have the correct 
value at transt T  after convolution with g(t), the 
Floquet-series has to be computed from 
( 1)TBFn T seconds before transt T , where TBFn is 
related to the temporal support of the g(t); assumed 
to be  , ( 1)TBFT n T  . As the final TDGF is 
required at samples that are T seconds apart, the 
Floquet-wave part of (20a) has to be properly 
trimmed at the beginning and down-sampled by 
Nb, before the two parts are appended. All other 
parameters, including P and Q are treated as 
before. 

It remains to choose a proper value for Ttrans. It 
is shown in [7] that the Floquet-modes inefficiency 
appears at times on the order of the width of the 
TBF pulse after t0. We set 

0 ( , , )trans transT t x y z n T  with 10transn   as a 
typical value. Further remarks on accelerating the 
computation of (20) and a numerical example will 
elucidate these points. 

 
B. Practical aspects and Numerical verification 

It becomes evident in the computer 
implementation of (20a) that the evaluation of the 
special function J0(.) can be highly time-
consuming. This computational cost can be 
mitigated in the formula (20a) because by virtue of 
the third property in (20b), the argument of the 
Bessel function is guaranteed to be real for all

transt t . Therefore, in addition to using real 
arithmetic, the Bessel function itself can be 
obtained by 1D linear interpolation on a table of 
Bessel function values for real samples which 
needs to be calculated only once. The Heaviside 
function in (19) is no more necessary and is 
removed in (20), because it always equals unity for 
all transt t . Furthermore, for the B-Spline family 
of temporal basis functions, the accelerated 
convolution method based on moving averages can 
be used as with the 1D periodic case. However, its 
contribution to efficiency will be relatively small 
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here, as the main computational cost for the 2D 
periodic case now arises from the evaluation of the 
2D Floquet modes (their total number being 
typically one order of magnitude higher than the 
1D case) prior to convolution, which dominates 
over the cost of convolutions. 

In Fig. 12 we show the TDGF for a close-to-
source observation point; 0.0025 , 0x y m z    
in an array with 1X Y m  and 0  . The time 
step is defined as 00.1 /T X c . For Floquet series, 
P=Q=10 is used and the Floquet modes are 
obtained at a higher resolution for numerical 
convolution with the TBF, determined by 

 max0.1min , 2 / FWt T    . The TBF is the 
QBspline function. It is seen that the proximity-
improved formula (20) is exact at both early and 
late times.  

 

 
Fig. 12. An example of the near-to-source 
observation point 0.0025, 0x y z    in a 2D 
periodic array with 1X Y  and 0  . The point of 
transition corresponds to 42T. the proximity 
improved (PI) method (20) is exact at both early 
and late times. 

 
To show the efficiency of the above-

mentioned techniques, in Fig. 13 we perform a 
comparison between the computational efficiencies 
of direct summation, conventional Floquet-series 
with direct convolution but with either direct 
evaluation of Bessel functions or their 
interpolation, and the proximity-improved method 
of (5) implemented with the above-mentioned 
computational techniques, i.e. interpolation for 
Evaluation of Bessel functions and MA-based 
convolutions. Because at least O(Nsim

2) elements 

have to be summed for each of the time samples up 
to Tsim, the computational cost of direct summation 
scales with O(Nsim

3). The Floquet-series methods 
and the Proximity-improved formula have 
computational times of O(Nsim). It can be also seen 
that the main cost is determined by how the 
computation of the modes, and in particular the 
Bessel function, is done. The proposed, proximity-
improved method is seen to have a computation 
time as low as, or better than both DS and the 
conventional Floquet-series.  

 
Fig. 13. Comparison of the computation times for 
the proposed method with several other 
approaches. 

 
 

VI. CONCLUSION 
We have presented solutions to some of the 

practical computational challenges of time domain 
GFs with regard to their implementation in TDIE 
solvers. It has been shown that for the B-spline 
basis functions the cost of numerical convolution 
with basis functions can be reduced by employing 
an iterative Moving average scheme. Furthermore 
the inefficiency and the need for higher order 
modes in the Floquet-series when the observation 
point approaches a source point is addressed for 
both the 1D and 2D periodic TDGFs. For the 1D 
periodic case the problem has been solved by 
spatially separating the sources adjacent to the 
unit-interval and treating the remaining sources by 
the Floquet modes of truncated, semi-inifinite 
arrays. For the 2D periodic case, we temporally 
separate the computation of the GF into early and 
late times, and treat the early times efficiently by 
direct summation. Several computational 

0 10 20 30 40 50 60

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Time (in units of T)

G
F

W
 (

t)

 

 

DS
FW
PI (Proposed)

0.8 1 1.2 1.4 1.6 1.8 2

-1.5

-1

-0.5

0

0.5

1

1.5

Order of Simulation time ( Log
10

(T
sim

/T
lat

) )

O
rd

er
 o

f 
G

F
 C

o
m

p
u

ta
ti

o
n

 t
im

e
 L

o
g

10
(C

o
m

p
u

te
r 

ti
m

e)
   

  

 

 

Direct summation
Floquet Series
Floquet Series (J

0
 by Intrp.)

Proximity Improved (J
0
 by Intrp.)

884SAVIZ, FARAJI-DANA: COMPUTATION OF TIME DOMAIN FLOQUET WAVE-BASED PERIODIC GREEN’S FUNCTIONS 



techniques were introduced to accelerate the 
computation of the obtained results. Together, the 
contributions presented in this paper can provide 
for more robust and efficient computation of 
TDGFs, needed in filling the TDIE coefficients 
matrices, at both early and late times. 
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