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Abstract ─ The behavior of a cavity-backed E-
patch antenna placed conformal to a cylindrical 
conducting surface is explored through 
simulations and experiment to determine the 
effects of curvature on antenna performance. It is 
shown that introducing a cavity backing reduces 
the bandwidth of an E-patch, but that the curvature 
of a conformal antenna partly compensates for the 
loss of performance. It is further shown that the 
curvature of a conformal antenna strongly affects 
both the co- and cross-polarization gain patterns.  
  
Index Terms ─ Aircraft antennas, antenna 
measurements, antenna radiation patterns, 
conformal antennas, multifrequency antennas.  
 

I. INTRODUCTION 
E-patch antennas were introduced in [1] as a 

novel way to increase the bandwidth of 
conventional rectangular patch antennas. A typical 
E-patch is positioned on top of a low-permittivity 
spacer above a ground plane and fed through a 
coaxial probe. Use of a low permittivity dielectric 
(possibly air) produces maximal bandwidth. Since 
cavity-backed antennas are used in a wide variety 
of applications [2-4], a variant of this antenna 
explored here is to position the E-patch at the 
aperture of a rectangular dielectric-filled cavity as 
shown in Figure 1. Two parallel slots are cut into 
the patch in vertical symmetry with respect to the 
feed point so as to excite Mode 2 of the antenna 
(as described in [1]). The slot length sL , slot 

width sW , slot placement sP , and cavity height h  
are all crucial to controlling the bandwidth of the 
antenna.  The slots of the E-patch antenna allow it 
to resonate at two frequencies, and the bandwidth 
is determined primarily by the separation of the 
frequencies. 

 

 
Fig. 1. Geometry of a planar cavity-backed E-
patch antenna. 

 
Patch antennas are appealing for aerospace 

applications because they may be easily 
conformed to a curved surface, such as an airplane 
wing or fuselage [5-9]. It is also possible to install 
a cavity-backed E-patch conformally, but the 
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effect of surface curvature on the performance of 
an E-patch has not yet been investigated. It is 
important, in particular, to determine whether 
conformal installation has a deleterious effect on 
the enhanced bandwidth of the E-patch. In [10], 
the effect of conforming a rectangular patch 
antenna to the surface of a cylinder was 
investigated and the authors found that the 
bandwidth of the antenna increased and the pattern 
broadened. They did not, however, include a 
backing cavity, so it remains to understand how a 
backing cavity influences the fields and impedance 
of a conformal E-patch. To explore these effects, a 
cavity-backed E-patch is placed conformal to the 
surface of a perfectly conducting cylinder, and the 
properties of the antenna are examined through 
simulation as the radius of the cylinder is altered. 
The characteristics of a typical conformal cavity-
backed E-patch are also examined experimentally, 
by installing a prototype antenna in an aluminum-
coated tube. 
 

II. TRADITIONAL AND CAVITY-
BACKED E-PATCH ANTENNAS FOR L-

BAND OPERATION 
To serve as a baseline for comparison with the 

conformal cavity-backed E-patch, a traditional air-
dielectric E-patch antenna was designed to operate 
with a return loss of at least 10 dB within the L-
band frequency range 1200-1600 MHz. This 
covers the entire range between the L2 (1227.6 
MHz) and L1 (1575.42 MHz) GPS operating 
frequencies. The design equations given in [11] 
were used as a starting point, and then trial and 
error was used to obtain the antenna with the 
dimensions shown in Table 1. The reflection 
coefficient (negative of the return loss in dB), as 
computed using the commercial solver Sonnet, is 
shown in Figure 2. It can be seen that the 10-dB 
bandwidth of the antenna extends from 1150-1650 
MHz and thus meets the desired bandwidth 
criterion. Note that in the simulations, a ground 
plane of infinite extent was employed. 

An air-filled backing cavity was then added to 
the E-patch and the dimensions of the antenna and 
cavity were adjusted in an attempt to produce the 
same 10-dB bandwidth (1200-1600 MHz) as with 
the traditional E-patch. Here computations were 
carried out using an in-house solver based on the 
finite-element boundary-integral method, again 

with a ground plane of infinite extent. 
Unfortunately, a trial-and-error approach was 
unable to achieve a return loss of 10 dB or greater 
over this band. So, Taguchi's optimization method 
[12,13] was implemented to adjust the 
dimensional parameters to try to meet the 
bandwidth criterion. The optimal design, with the 
dimensions shown in Table 2, has the reflection 
coefficient marked “Rectangular” in Fig. 3. It is 
seen that even after optimization, the cavity- 
backed antenna is not able to meet a 10-dB 
minimum return loss over the entire band 1200-
1600 MHz. Operation near the L1 and L2 GPS 
frequencies is acceptable, but the return loss drops 
to about 6 dB at frequencies intermediate to these. 
It is thus concluded that a backing cavity has a 
somewhat deleterious effect on the wideband 
performance of an E-patch antenna. 

 
Table 1: Dimensions of a traditional E-patch 
antenna designed for operation within the band 
1200-1600 MHz 

Dimension Value in mm 
L  107.1 

W  91.2 

fX  5.5 

fY  53.6 

sL  84.8 

sW  5.6 

sP  11.0 
h  11.7 

 

 
Fig. 2. Reflection coefficient for a traditional E-
patch antenna. System impedance is Ω50 . 
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Table 2: Dimensions of a rectangular cavity-
backed E-patch antenna designed for operation 
within the band 1200-1600 MHz 

Dimension Value in mm 
L  96 

W  83 

fX  37.5 

fY  48 

sL  65 

sW  7 

sP  13 
h  15.6 

xC  200 

yC  200 
 

 
Fig. 3. Reflection coefficient for a cavity-backed 
E-patch antenna. Cavity is either planar, or 
conformed to the surface of a cylinder with 
various radii ρ . System impedance is Ω50 . 
Radius for the experimental antenna is 15.4 cm. 
 

III. GEOMETRY OF A 
CYLINDRICALLY-CONFORMAL 

CAVITY-BACKED E-PATCH ANTENNA 
Figure 4 depicts the geometry of a cavity-

backed E-patch antenna placed conformal to the 
surface of a cylinder. In order to analyze how the 
curvature of the cylinder affects antenna 
performance, it is useful to start with the planar 
cavity-backed E-patch as a baseline. The manner 
in which the dimensions of the planar antenna 
given in Table 2 are maintained for the conformal 
E-patch can be seen by comparing Fig. 1 to Fig. 4. 

Dimensions of the planar antenna measured along 
y  are maintained for the conformal antenna as 

dimensions measured along z . Dimensions 
measured along x  become the curved distances 
measured as arc lengths given by ρφ=s , where 
ρ  is the cylinder radius and φ  is the angle 
subtended. Dimensions of the planar antenna 
measured along z , such as the cavity height h , 
are specified for the conformal antenna as a radial 
distance.  

 
 

Fig. 4. Geometry of the cavity-backed E-patch 
antenna conformal to the surface of a cylinder of 
radius ρ . 

 
IV. EFFECTS OF CURVATURE ON 

RETURN LOSS 
The commercial EM solver HFSS was used to 

analyze both the planar cavity-backed E-patch 
antenna shown in Fig. 1 and the cylindrically-
conformal cavity-backed E-patch shown in Fig. 4. 
The reflection coefficients found for various 
cylinder radii are shown in Fig. 3, referenced to 

Ω50 , with a cylinder length of 100=cL  cm 
(except for the 15.4 cm radius case, which has 

122=cL  cm to match the experimental antenna). 
The largest radius of curvature (100 cm) produces 
a return loss near the second resonance 
significantly lower than the planar case (12 dB 
versus 18 dB at 1650 MHz). At the first resonance, 
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the return loss is similar to that of the planar case, 
and at frequencies in between the resonances the 
return losses are also nearly the same at about 6 
dB. Thus, like the planar cavity-backed antenna, 
the curved cavity-backed antenna cannot meet the 
bandwidth criterion.  As radius is decreased, 
however, the return loss at the second resonance 
increases, as does the return loss between 
resonances. At a radius of 15.4 cm the return 
losses at the two resonances are nearly the same 
(although the frequency of the second resonance 
has decreased), and the return loss between the 
resonances has increased to about 8 dB. The effect 
of a highly curved surface is thus to improve the 
performance of the antenna between the L2 and L1 
frequencies, although the 10 dB bandwidth 
criterion is still not met. Improved return loss 
bandwidth is probably due to a reduction in 
antenna Q produced by the enhanced radiation 
dampening introduced by the cylinder curvature. 
 
V. EFFECTS OF CURVATURE ON GAIN 

PATTERNS 
Figures 5 and 6 show the co-polarized gain 

patterns for a cavity-backed E-patch antenna 
conformal to a cylinder of various radii, simulated 
at 1300 MHz using HFSS. For cuts taken in the X-
Z plane, negative values of θ  indicate 
observations in the 0<x  plane, while positive 
values correspond to the 0>x  plane. 

 

 
Fig. 5. Co-polarized gain pattern in the X-Y plane 
of a cylindrically conformal cavity-backed E-patch 
antenna at 1300=f MHz. Radius of 
experimental antenna is 15.4 cm. 

 
For cuts in the X-Y plane, curvature has very 

little effect (1 or 2 dB) on the broadside ( 0=φ ) 
gain. However, as the radius of curvature is 
decreased, the gain away from broadside is 
significantly increased at most angles. At a radius 
of 15.4 cm, the front-to-back ratio (gain at 0=φ  
minus the gain at 180=φ ) is only 14 dB. Similar 
effects are seen for cuts in the X-Z plane, where 
the gain away from broadside increases and 
flattens considerably as the radius of curvature is 
reduced. 
 

 
Fig. 6. Co-polarized gain pattern in the X-Z plane 
of the simulated cylindrically conformal cavity-
backed E-patch antenna at 1300=f  MHz. 
Radius of experimental antenna is 15.4 cm. 
 

Similar effects on pattern were described in 
[2] for a rectangular patch antenna placed 
conformal to a circular cylinder. With a patch 
radiating edge length of about 60% of the cylinder 
radius, similar to the E-patch case of 4.15=ρ  
cm, a front-to-back ratio of 15 dB was found. 
Pattern filling away from broadside is probably 
due to the fact that as the cylinder radius becomes 
comparable to the patch edge size, the radiating 
edges of the patch become significantly closer 
together, reducing the directivity and increasing 
the side lobes. 

Effects of curvature on the cross-polarized 
gain patterns are more pronounced, but in all cases 
the cross-polarized gain is significantly below the 
co-polarized gain. The largest cross-polarized gain 
was seen in the X-Z plane at broadside, with a 
value of about -5 dB. In the X-Y plane the cross-
polarized gain never rises above -20 dB, regardless 
of the radius of curvature. 
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Although not shown here, similar effects of 
curvature on gain pattern can be observed at the 
second resonance frequency. 

 
VI. COMPARISON TO EXPERIMENT 

To verify the results predicted by simulation, a 
prototype conformal cavity-backed antenna was 
constructed using an 122 cm long, 15.4 cm radius 
tube covered by aluminum foil (see Fig. 7). An 
aperture was cut into the tube, and a cavity was 
constructed as shown in Fig. 4 using high-density 
Styrofoam and copper tape. A copper E-patch was 
placed in the aperture on top of the Styrofoam and 
the center conductor of a coaxial feed was passed 
through the cavity from inside the cylinder and 
soldered to the patch. All dimensions of the 
prototype correspond to the values used in the 
simulations as shown in Table 2. 

 

 
 

Fig. 7. Photo of prototype. Radius of cylinder is 
15.4  cm. 

 
The reflection coefficient for the prototype 

antenna measured with a Ω50  system is shown in 
Fig. 3 and compared with the results for the 
simulated antenna. The measured return loss is 
very close to that of the antenna simulated on a 

15.4 cm radius cylinder, except near the second 
resonance where there is some discrepancy, 
probably due to standing waves in the aperture 
caused by the copper tape used to attach the cavity 
to the aluminum tube. In any event, the measured 
return loss verifies that placing the antenna 
conformal to the curved surface does not have a 
deleterious effect on the bandwidth. 

The measured co-polarized X-Y and X-Z 
plane gain patterns of the prototype are shown in 
Figs. 5 and 6, respectively. Although the measured 
patterns show slightly less gain at broadside than 
the simulations (about 3 dB less), they verify that 
the gain of the strongly-curved antenna is fairly 
high and quite flat away from broadside, and that 
the front-to-back ratio is not large (about 12 dB, or 
slightly less than predicted in the simulations). The 
cross-polarization patterns could not be measured 
accurately away from broadside due to the limited 
dynamic range of the measurement system, but 
showed trends similar to the simulations near 
broadside. 

 
VII. CONCLUSION 

The effects of curvature on a cylindrically-
conformal cavity-backed E-patch antenna are 
examined experimentally and through simulations. 
It is shown that it is difficult to achieve the same 
wideband return loss with a cavity-backed antenna 
as with a classic planar E-patch. However, when 
the cavity-backed antenna is conformed to a 
cylinder, the curvature of the antenna may be used 
to improve the bandwidth and approach the 
performance of the traditional E-patch antenna. In 
contrast, high curvature degrades the patterns of 
the conformal antenna somewhat, producing gain 
patterns with a reduced co-polarized front-to-back 
ratio and significant cross-polarization gain at 
broadside. 
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