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Abstract ─ In this paper, the equivalent dipole-moment 
method (EDM) is extended and applied in the analysis of 
electromagnetic (EM) scattering by the arbitrarily shaped 
perfect electric conductor (PEC) targets coated with EM 
anisotropic media. At first, the volume integral equation 
and surface integral equation are built in the EM 
anisotropic material region and on the conducting 
surface, respectively. Then, the method of moments 
(MoM) is used to convert the integral equation into a 
matrix equation and the EDM is employed to reduce the 
CPU time of the matrix filling procedure. Numerical 
results are given to demonstrate the versatility of the 
proposed approach in handing with the EM scattering by 
arbitrarily shaped PEC targets coated with EM 
anisotropic media. 
  
Index Terms ─ Equivalent dipole moment (EDM), EM 
anisotropic material, method of moments (MOM), radar 
cross section (RCS), volume-surface integral equation 
(VSIE).  
 

I. INTRODUCTION 
EM scattering from composite bodies consisting of 

both conductor and coated anisotropic medium is an 
important and challenging problem in computational 
electromagnetics. Many effective methods have been 
proposed, among which the physical optics (PO) method 
[1], the finite difference time domain FDTD method [2], 
and the MoM [3] are used commonly. However, the PO 
solution is approximate and show bigger error when 
solving the EM scattering from coated targets. FDTD 
has significant accumulated errors from numerical 
dispersion. The MoM and its accelerated methods can 
overcome these disadvantages and many previous works 
[3-10] have been done to investigate the scattering 

problems of composite bodies consisting of both 
conductor and coated anisotropic medium.  

However, when computing the impedance matrix 
elements, the conventional MoM consumes a 
considerable portion of the total solution time and 
memory. Moreover, this problem becomes even more 
serious in the analysis of anisotropic media. In recent 
researches, the EDM [11-12] based on the volume-
surface integration equations (VSIE) has been put 
forward to compute the RCSs of arbitrarily shaped PEC 
targets coated with electric anisotropic media. It is 
demonstrated that the EDM can save matrix-filling time 
efficiently. However, in [11-12], only electric 
anisotropic media is considered. In many applications, 
such as stealth materials, both electric and magnetic 
anisotropic media are often used. So, in this paper, the 
equivalent dipole-moment method is extended and 
applied to model arbitrary targets covered by arbitrary 
electric and magnetic anisotropic media. 

The article is organized as follows: Section II 
presents the MOM associated with VSIE and introduces 
the EDM in detail for 3-D arbitrary shaped conducting 
objects covered with EM anisotropic materials, 
respectively; numerical results are given in Sections III 
and some conclusions are drawn in the final section. 
 

II. FORMULATIONS 
 
A. Introduction of VSIE and MOM 

For generalizing the proposed method, we refer to 
scattering from an arbitrary shaped 3-D conducting 
object coated with anisotropic media, shown in Fig. 1. 
Region V is an anisotropic medium characterized by 
relative permittivity re  and permeability rµ  as: 
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Fig. 1. Arbitrarily shaped conducting/anisotropic mixed 
body illuminated by a plane wave. 

                                                                          
Let S denote the surface of a PEC object with unit 

normal vector n and the incident fields i i,E H  are due to 
an impressed source in the absence of the target. Hence, 
the EM field on the surface of the conducting object and 
in the volume of the anisotropic media must satisfy the 
equations below, 

( ) ( ) ( )i 0,s s D s M
s v v

 × + + + = n Ε Ε J Ε J Ε J    on S  (2) 

( ) ( ) ( ) ,i s s D s M
s v v= + + +Ε Ε Ε J Ε J Ε J             in V  (3) 

( )i s s s( ) ( ),D M
s v v= + + +Η Η Η J Η J Η J            in V  (4) 

where Ε and Η are the total electrical field and 
magnetic field. ( )s

sΕ J and ( )s
sΗ J are the scattered 

electric and magnetic field due to the surface 
polarization current sJ on the conducting surface. 

( )s t
vΕ J and ( )( ),s t

v t D M=Η J  are the scattered 
electric and magnetic fields due to the volume 
polarization current t

vJ  in the medium. Equations (3) 
and (4) are volume-integral equations (VIE), and 
equation (2) by setting the tangential electric field to 
zero on the conducting surface is the electric field 
surface-integral equation (SIE), these three equations 
constitute the coupled volume-surface integral equations 
(VSIE), which will be used for the numerical solution in 
this work. 

The surface current sJ  on S can be represented by 
vector basis functions RWG [13], namely 

, ,
1

( ),
sN

J
s s n s n

n
I S

=

≈       ∈∑J f r r               (5)  

where ,
J
s nI is the unknown expansion coefficient, ,s nf

represents the nth face basis function for the nth 
common edge and sN is the total number of the common 
edges. 

The volume electric current D
vJ  and magnetic current 

M
vJ  within V can be then expressed by vector basis 

function SWG [14] as  

( ), 0 ,
1

( ) ( ) ,
vN

M M m
v v n v n

n
I Vκ η

=

= ⋅       ∈∑J r f r r        (6) 

( ), 0 ,
1

( ) ( ) ,
vN

M M m
v v n v n

n
I Vκ η

=

= ⋅       ∈∑J r f r r        (7) 

where ,
D
v nI  and ,

M
v nI  are the unknown expansion 

coefficients for the electric and magnetic currents in the 
dielectric volume, respectively. ,v nf denotes the basis 
function for the nth face of the tetrahedral model of V, 
and vN  is the number of common faces. ( )eκ r and

( )mκ r  are the contrast ratio tensor defined by 
1

( ) ( ) ,e
r rIκ e e

−

= − ⋅r                          (8) 
1

( ) ( ) .m
r rIκ µ µ

−

= − ⋅r                        (9) 
It’s necessary to note that the introduction of wave 
impedance η0  is to achieve well conditioned systems 
and accurate solutions. 

Using the extended Galerkin’s method and 
substituting the equations (5), (6), and (7) into (2), (3), 
and (4), respectively, we can test (2) with the surface 
basis function ,s mf , (3) with the volume basis function

,v mf , and (4) with the volume basis function  0 ,v mη f . 

And finally a linear system consisting of 2s vN N+  
independent equations is obtained, which can be written 
in a matrix form as 

 
0

0
2

00 0 0

,

JJ JD JM J J

DJ DD DM D D

M MMJ MD MM

η

η

ηη η η

                      
     

              =        
                     

Z Z Z I V
Z Z Z I V

I VZ Z Z

    (10) 

where JJZ , JDZ  , JMZ  , DJZ  , DDZ , DMZ  , MJZ , MDZ , 
and MMZ  are the impedance sub-matrices with the 
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dimension of s sN N× , s vN N×  , s vN N× , v sN N× , 

v vN N× , v vN N× , v sN N× , v vN N× and v vN N× . JI is 

the column vector of length sN , while DI  and MI are 

column vectors of length vN . Similarly, JV is the 

column vector of length sN , while DV  and MV are 
column vectors of length vN . Then, we can obtain the 
entries of the impendence matrix blocks as 

( ), ,, , ,JJ s
mn s m s n sZ m,n N= − < >   =1,2f Ε f 

      (11)                                 

( ), ,

,

JD s e
mn s,m v,n s

v

Z m N

n N

κ= − < ⋅ >    =1,2 ,  

                                                = 1, 2

f Ε f 



             (12) 

( ), ,

,

JM s m
mn s,m v,n s

v

Z m N

n N

κ= − < ⋅ >   =1,2 , 

                                                = 1, 2

f Ε f 



     (13)       

( ), ,< , , 1, 2, ,

1, 2, ,

DJ s
mn v m s n v

s

Z m N

n N

= − >     =

                                           =

f Ε f 



      (14)             

( )
1

,
, , ,

0
, < , ,

, 1, 2, ,

r v nDD s e
mn v m v m v n

v

Z j
m n N

e
κ

ωe

− ⋅
=< > − ⋅ >   

                                              =

f
f f Ε f



     (15)                                                                                             

( ), ,< , , , 1, 2, ,DM s m
mn v m v n vZ m n Nκ= − ⋅ >   =f Ε f 

         (16)                      

( ), ,, , 1, 2, ,

1, 2, ,

MJ s
mn v m s n v

s

Z m N

n N

= − < >     =

                                            =

f Η f 



      (17) 

( ), ,, , , 1, 2, ,MD s e
mn v m v n vZ m n Nκ= − < ⋅ >   =f Η f 

         (18)                       

( )
1

,
, , ,

0
, < , ,

, 1, 2, .

r v nMM s m
mn v m v m v n

v

Z j
m n N

µ
κ

ωµ

− ⋅
=< > − ⋅ >   

                                                  =

f
f f Η f



                (19) 

The excitation column entries contain the following 
integrals: 

i ,J
m s,m

S

V dS= ⋅∫ f Ε                            (20) 

i ,D
m v,m

V

V dV= ⋅∫ f Ε                           (21) 

                      i .M
m v,m

V

V dV= ⋅∫ f Η                          (22) 

B. The application of EDM to accelerate the MOM 
The conducting surface S is first meshed into 

triangles and each triangle pair can be represented by a 
RWG element, the medium V can also be discretized 
into tetrahedrons and each tetrahedron pair can be 
represented by a SWG element. The nth face electric 

dipole moment J
nm  corresponds to a pair of triangle 

patches, the nth volume electric dipole moment D
nm

corresponds to tetrahedrons and their scattered fields can 
be found in [12]. The nth volume magnetic dipole 
moment can be written as            

,

,

( )
.

( ) and

m c c
v n v,n v,n v,nM

n m c c
v n ns v,n v,n v,n

a T V

a T V T V

κ

κ

− + ±

+ + −

 − ∈= 
− ∈ ∉

r r
m

r r





 (23)                                                                           

Here, c
v,n

±r  and c
nsr  are the centroid radius vector of a pair 

of tetrahedrons v,nT ± and the nth boundary face, 
respectively. ,v na  is the area of the common face 

associated with v,nT ±  or the area of the nth boundary face 

associated with v,nT + . Referring to [12] and electric-
magnetic duality, the scattered fields of the nth 
infinitesimal magnetic dipole at the centroid radius 
vector ( ), ,u m u s v=r  are 

( ) ( )
, ,

,
4 R u m v n

s M M jkR
n n

jk C e
π ′= −

−= − ×
r r

Ε m m R                       (24) 

( ) ( )
, ,

1
2 ,

4 R u m v n

s M M M M jkR
n n n n

jk
C C e

Rπη ′= −

−= − + +  
     r r

Η m M m M   (25)                                                                                                                                                                                                               

where ,u mr  and ,v n′r  are the center radius vectors of the 
mth and the nth equivalent dipole model, respectively. 

2

1 11C
R jkR

 
= + 

 
                 (26) 

and 

                                   
( )

2

M
nM

n R
⋅

=  .
R m R

M                (27)                        

Here, , ,u m v n′= −R r r and R = R . Equations (24) and 
(25) are the exact expressions and valid at arbitrary 
distances from the dipole. Considering the accuracy and 
efficiency of the algorithm, the critical distance between 
the source and the testing function locations is chosen as 
0.15 gλ , where gλ  is the wavelength in dielectric body 
[11-12]. The MOM matrix elements are computed by the 
EDM method directly for a separation distance of greater 
than the critical distance. Substituting (24) into (13) and 
(16), (25) into (17)-(19), and associated with paper [12], 
the expressions of the impedance matrix elements are 
calculated by 

c c
. , , ,( ) ( ),JJ s J

mn s m n s m s m s mZ l T S− + ±= − ⋅ − ∈Ε m r r                 (28)           
c c

. , , ,( ) ( ),JD s D
mn s m n s m s m s mZ l T S− + ±= − ⋅ − ∈Ε m r r                 (29)                    

c c
. , , ,( ) ( ),JM s M

mn s m n s m s m s mZ l T S− + ±= − ⋅ − ∈Ε m r r                 (30)                            
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c c
, , , ,

c c
, , , ,

( ) ( )

( ) ( ), and

s J
v m n v m v m v mDJ

mn s J
v m n ms v m v m v m

a T V
Z

a T V T V

− + ±

− + + −

− ⋅ − ∈= 
− ⋅ − ∈ ∉

Ε m r r

Ε m r r
 

                                                                                     (31)                                                                                                                                                                                           
c c

, , , ,

c c
, , , ,

( ) ( )

( ) ( ), and

s D
v m n v m v m v mDD

mn s D
v m n ms v m v m v m

a T V
Z

a T V T V

− + ±

− + + −

− ⋅ − ∈= 
− ⋅ − ∈ ∉

Ε m r r

Ε m r r
 

                                                                                     (32) 

 
c c

, , , ,

c c
, , , ,

( ) ( )

( ) ( ), and

s M
v m n v m v m v mDM

mn s M
v m n ms v m v m v m

a T V
Z

a T V T V

− + ±

− + + −

− ⋅ − ∈= 
− ⋅ −  ∈ ∉

Ε m r r

Ε m r r
 

                                                                                     (33)                         
c c

, , , ,

c c
, , , ,

( ) ( )

( ) ( ) , and

s J
v m n v m v m v mMJ

mn s J
v m n ms v m v m v m

a T V
Z

a T V T V

− + ±

− + + −

− ⋅ − ∈
=

− ⋅ −   ∈ ∉





m

m

H r r

H r r
(34)                                                                               

c c
, , , ,

c c
, , , ,

( ) ( )

( ) ( ) , and

s D
v m n v m v m v mMD

mn s D
v m n ms v m v m v m

a T V
Z

a T V T V

− + ±

− + + −

− ⋅ − ∈
=

− ⋅ −  ∈ ∉





m

m

H r r

H r r
(35)                                                                                                   

c c
, , , ,

c c
, , , ,

( ) ( )

( ) ( ), and

s M
v m n n v m v m v mMM

mn s M
v m n n ms v m v m v m

a T V
Z

a T V T V

− + ±

− + + −

− ⋅ − ∈
=

− ⋅ − ∈ ∉





m

m

H r r

H r r
      (36)                                                                             

where .s ml  is the length of mth common edge associated 

with a pair of triangle patches s,mT ±  and c
s,m

±r  is the 

centroid radius vector of s,mT ± [12]. 
Equations (28)-(36) are universal that it is 

unnecessary to treat the boundary condition on the 
surface of the mixed body, so the EDM method can be 
constructed by using a simple procedure and the 
impedance matrix’s generation is very efficient. From 
the above equations, it can be concluded that the EDM 
method has two advantages over the conventional 
MOM: one is that the EDM method does not require 
evaluating the usual integrals involving the expansion 
and testing functions, thus reducing the computational 
complexity. Another is the reduction of the computation 
time for the calculations of each impedance matrix 
element, which can be obtained by one multiplication in 
the EDM method, while four multiplications in the 
conventional MOM using 1-point integration algorithm. 
 

III. NUMERICAL RESULTS 
In this section, three numerical results are presented 

to validate the algorithm and demonstrate the efficiency 
of the method. We remark that all the simulations are 
solved on a processor with 2.2GHz dual CPU speed. All 
coated structures are excited by a plane wave with the 
frequency of 0.3 GHz propagating along the –z direction.  

In the first example, we consider a coated sphere 
shown in Fig. 2, where the electric dimension of the 
inner and outer spherical radius is k0a1=0.2π and 

k0a2=0.3π, respectively, while the relative tensor 
elements of the uniaxial anisotropic material are

1.5 0.5xx yy je e= = − , 2zz je = − , and 
1.5 0.5xx yy jµ µ= = − , 2zz jµ = − , the others are zero. 

The curves of Fig. 2 clearly show that the bistatic RCSs 
calculated in three different ways (the EDM method, the 
conventional MOM, HFSS) are in good agreement in 
both the xoz-plane and yoz-plane, thus validating the 
correctness and applicability of our method and the code. 

 
Fig. 2. Bistatic RCS of a conducting sphere coated with 
anisotropic uniaxial material. 

 
Then, we consider a conducting sheet, which is 

coated with two-layer anisotropic materials. The relative 
tensor elements of the first layer sub1 are 1.5xx yye e= =

, 2zze = , xy je = , yx je = − and 2xx yy zz jµ µ µ= = = −  
and the others are zero. The relative tensor elements of 
the second layer sub2 are 2xx yy zz je e e= = = −  and

1.5xx yyµ µ= = , 2zzµ = , xy jµ = , yx jµ = −  and the 
others are zero. The configuration and its geometrical 
parameters are W=L=0.5m, H1=H2=0.05m, shown in 
Fig. 3. We remark here that the magnetic current 
unknowns could be paired with their corresponding 
electric current unknowns, thus resulting in total 6214 
unknowns. The results of MOM are plotted in solid line, 
and the results of EDM are plotted in dotted line. It is 
observed that the results of the EDM method agree well 
with those of the conventional MOM, shown in Fig. 3. 
The total CPU time is 2249 seconds for EDM method 
and 4644 seconds for conventional method, respectively, 
which yields a reduction of 51.6% of the total 
computation time. 
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Fig. 3.  Bistatic RCS of a metallic sheet coated with 
two-layer anisotropic off-diagonal materials. 

 
In the last example, we consider the scattering from a 

coated connecting-ring, which is shown in Fig. 4 (a), and 
the geometrical parameters are D1=100mm, D2=150mm, 
D3=200mm, D4=500mm, H=500mm. The material of the 
coated layer of the model is uniaxial anisotropic lossy 
material with the relative tensors 2xx yy je e= = − , 

zz 1.5 0.75 je = − and 1.5 0.75xx yy jµ µ= = − , 2zz jµ = − , 
the others are zero. The unknowns (including triangles 
for perfect conductor and tetrahedrons for dielectric 
material) are 7011 in all. The RCS of the metallic 
connecting-ring coated with material is computed by 
both the conventional MOM (dashed line) and the EDM 
(dotted line), as shown in Fig. 4 (b) and (c), their results 
are in good agreement with each other. The total CPU 
time is 36915 seconds for conventional method and 
24361 seconds for EDM method, respectively, which 
yields a reduction of 34% of the total computation time. 
We can also see from Fig. 4 (b) and (c), the presence of 
the uniaxial lossy material leads to the reduction of RCS 
in both xoz-plane and yoz-plane polarization in the 
scattering angle from 0 to 90 and 270 to 360  be about 
7 dB lower than those of the metallic connecting-ring 
without coating material (solid line).  

 
 

 

  Coated material

  
        PEC

D1

D2
D3

D4

H

(a)

(b)
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(c) 

 
Fig. 4.  (a) The connect-ring and its corresponding 
geometrical parameters, (b) bistatic RCS (xoz-
plane) of a connecting-ring non-coated and coated 
with uniaxial material, (c) bistatic RCS (yoz-
plane) of a connecting-ring non-coated and coated 
with uniaxial material. 
 

IV. CONCLUSION 
In this work, the EDM method has been 

successfully extended and applied in the analysis 
of the EM scattering characteristics of arbitrarily 
shaped PEC targets coated with arbitrary electric 
and magnetic anisotropic media. The application 
of the EDM method significantly reduces the 
computational complexity of the impedance 
matrix as well as the CPU time. All in all, the 
algorithm presented in this paper can be applied to 
analyze arbitrary shaped complex target coated 
with arbitrary thickness of EM anisotropic 
materials. In future work, we will focus on the 
application of the EDM method for the 
computation of the RCS of arbitrary shaped targets 
coated with bi-anisotropic materials. 
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