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Abstract- A frequency-dependent hybrid 
implicit-explicit finite-difference time-domain 
(HIE-FDTD) method for dispersive materials is 
presented. This method has higher computation 
efficiency than the conventional FDTD method, 
because the time step in this method is only 
determined by two space discretizations. The 
accuracy of this method is demonstrated by 
computing the incident at a planar air-water 
interface over a wide frequency band including 
the effects of the frequency-dependent 
permittivity of water. 
 
Index Terms- Dispersive materials, HIE-FDTD 
method, weakly conditional stability. 
 

I. INTRODUCTION 
The finite-difference time-domain (FDTD) 
method [1] has been proven to be an effective 
scheme that provides accurate predictions of field 
behaviors for varieties of electromagnetic 
interaction problems. However, as it is based on 
an explicit finite-difference algorithm, the 
Courant–Friedrich–Levy (CFL) condition [2] 
must be satisfied when this method is used. 
Therefore, a maximum time-step size is limited by 
the minimum cell size in a computational domain, 
which makes this method inefficient for the 
problems where fine scale structures are involved. 

To overcome the CFL constraint on the time 
step size of the FDTD method, some 
unconditionally stable methods [3-7] and weakly 
conditionally stable [8-17] schemes have been 
studied, among which, the hybrid implicit-explicit 
finite-difference time-domain (HIE-FDTD) 
method, has been applied extensively [13-17]. In 
the HIE-FDTD method, the time step size is only 
determined by two space discretizations, which is 

useful for problems with very fine structures in 
one direction. The accuracy and computational 
efficiency of the HIE-FDTD method have been 
well validated in [13-15] and [17]. 

In this paper, the HIE-FDTD method will be 
extended to frequency-dependent materials. The 
formulations of HIE-FDTD for a 
frequency-dependent complex permittivity are 
presented and an example of calculation of a wave 
incident at a planar air-water interface over a wide 
frequency band is showed. The extension of the 
HIE-FDTD method to frequency-dependent 
permeability is similar. 
 

II. FORMULATION 
For this paper, we will assume that our materials 
are linear and isotropic, and only the permittivity 
is frequency-dependent. Extension to nonlinear or 
anisotropic dispersive materials should be 
possible. 

The displacement vector D is related to the 
electric field E in the time domain by the 
following equation: 

       0 0 0
.

t
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(1) 

0 is permittivity of free space,     is the 
electric susceptibility, and  is the infinite 
frequency relative permittivity. 

Using Yee's notation, we let t n t  in (1), and 
each vector component of D and E can be 
written as: 
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All field components are assumed to be 
constant over each time interval t . Therefore, we 
have, assuming  D t and  E t are zero for 0t  : 
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When (3) is substituted in (4), we find: 
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For simplicity, we let: 
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Then, we have: 
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The three HIE-FDTD scalar equations that 
relate the components of the electric field E to 
the components of the magnetic field H can be 
readily obtained from (8) by using the discretized 
Maxwell-Ampere equation to replace 1n nD D   
in (8) with the curl of the H field, 
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It can be seen from these equations that the eqs. 

(10) and (11) can’t be used for direct numerical 
calculation, because they all include the unknown 
components defined at the same time, thus, 
modified equations are derived from the original 
equations. 

Updating of 1n
xE   component, as shown in eq. 

(10), needs the unknown 1n
zH   component at the 

same time. In the nonmagnetic media, the 
updating for H component is unchanged. The 
equation of the 1n

zH   component in the 
HIE-FDTD method is as follows: 
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Thus, the 1n
xE  component has to be updated 

implicitly. Substituting eq. (12) into eq. (10), the 
equation for 1n

xE   field is given as, 
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here,  01    . 
The updating equation of 1n

zE   is similarly 
derived and calculated in the same way as eq.(13). 

Note that if we assume the relative permittivity 
is independent of frequency, namely,   0   , 

r   , 0m  for all m, then, the above 
equations reduce to the standard HIE-FDTD 
formulations [13]. 

The above formulation is valid for electrically 
dispersive media. The extension to magnetically 
dispersive media would be similar.  

In [15], the weakly conditional stability of the 
HIE-FDTD method is well validated. The time 
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step of the HIE-FDTD method is only determined 
by two spatial increments x and z , namely: 

    2 2
1 1 1 .t c x z          (14)  

1c  is the speed of light in the medium. 
This is especially useful when the simulated 
structure has fine-scale dimensions in one 
direction, which will be validated in next section. 
 

III. SIMULATION RESULTS 
 In order to demonstrate the validity and 
accuracy of the above formulation, a small current 
source above an incident at a planar air-water 
interface is presented here. The geometric 
configuration of the numerical simulation is 
shown in Fig.1. The dimensions of the 
perfect-electric-conductor box are 15cm 15cm 
3cm. The box is filled with water up to height 
7.5cm. A small current source applied along y 
direction is placed at the upper part of the box. 
The time dependence of the excitation function is: 

2 2
0 1( ) exp[ 4 ( ) ],g t t t t          (15) 

where 0t  and 1t  are constants, and both equal 
to 0.610-9 . The observation point B is set in the 
water, and 2 cm far from the source point A.  

 
Fig. 1. Geometric configuration of the numerical 
simulation. 
 

Applying the FDTD method to compute the 
time domain electric field component yE  at the 
observation point B, the cell size is chosen as 
5 y x z      0.5cm, so that the 
computational domain is 30 30 30 cells. To 
satisfy the stability condition of the FDTD 

algorithm, the time-step size for conventional 
FDTD [18, 19] is t  3.20ps. Here, the 
conventional FDTD is the FDTD method using 
recursive convolutional (RC) method to 
implement the dispersive media. For the 
HIE-FDTD scheme, the maximum time increment 
is only related to the space increments x and 

z ， that is, t  11.78ps. The HIE-FDTD 
method is using the recursive convolutional 
method with Debye model to implement the 
dispersive properties of the media. 

For water, the complex permittivity  *   
can be described as 

     *
0 01 ,s j               (16) 

where s is the "static" permittivity, and 0 is the 
"relaxation time" constant. The water parameters 
used here are s =81,  =1.8, and 

0 = 129.4 10 . 
The summation (convolution) term of eq.(8) 

can be updated recursively by utilizing the 
equation (20) in [18], because the susceptibility 
function is an exponential. So, it doesn’t require 
storing a large number of past time values nE , and 
the computational time is saved. Only one 
additional number needs to be stored for each 
electric field component at each spatial index. 

First, we validate the numerical stability 
condition (14). Figure 2 shows the electric field 
component yE  at observation point B calculated 
by using the HIE-FDTD methods with the 
time-step size t =11.78ps for a long time history. 
No instability problem is observed even for 5,000 
steps, which validates the weakly conditional 
stability of the HIE-FDTD method numerically. 

To demonstrate the high computational 
efficiency of HIE-FDTD method, we perform the 
numerical simulations for an 8 ns time history by 
using the conventional FDTD, and HIE-FDTD 
methods, and compare the CPU times taken by 
using these two methods. In the conventional 
FDTD method, the time-step size keeps a constant 
of 3.20 ps; while in the HIE-FDTD method, the 
time step size is 11.78ps. 

Figure 3 shows the electric field component 

yE  at observation point B calculated by using the 
conventional FDTD and HIE-FDTD methods. It 
can be seen from this figure that the result 
calculated by the HIE-FDTD method agrees with 
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the result calculated by the conventional FDTD 
method. The HIE-FDTD method has almost the 
same accuracy as that of the conventional FDTD 
method. To validate this further, the divergence 
between these two methods are presented, as  
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Fig. 2. The electric field component yE  at 
observation point B calculated by using the 
HIE-FDTD method with the time-step size 

t =11.78ps for a long time story. 
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Fig. 3. The electric field component yE  at 
observation point B calculated by using the 
conventional FDTD ( t =3.20ps), and 
HIE-FDTD methods ( t =11.78ps). 

 
shown in Fig.4. It can be seen from this figure that 
the error curve is limited and it doesn’t increase as 
the addition of the computational time. It should 
be noted that the simulation takes 364 s for the 
conventional FDTD method and 121 s for the 

HIE-FDTD method. The time cost for the 
HIE-FDTD simulation is 1/3 times as that for the 
conventional FDTD simulation. So, we can 
conclude that the HIE-FDTD has higher 
efficiency than the conventional FDTD method, 
due to larger time step size used.  
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Fig. 4. The divergence between conventional 
FDTD ( t =3.20ps), and HIE-FDTD methods 
( t =11.78ps). 

 
IV. CONCLUSION 

 A frequency-dependent HIE-FDTD method for 
dispersive materials is presented. It is found that 
the technique is weakly conditionally stable and 
supports time steps greater than the CFL limit. A 
numerical example demonstrates that computation 
efficiency of the HIE-FDTD method is higher 
than the conventional FDTD method, and the 
accuracy of the HIE-FDTD is almost the same as 
that of the conventional FDTD method. 
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