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Abstract ─ In this paper, a well-conditioned 
coupled combined-field integral equation called 
the electric and magnetic current combined-field 
integral equation (JCFIE-JMCFIE) is proposed for 
the analysis of electromagnetic scattering from 
coated targets above a lossy half-space. The half-
space multilevel fast multipole algorithm 
(MLFMA) is used to reduce computational 
complexity. The inner-outer flexible generalized 
minimal residual method (FGMRES) was used as 
the iterative solver to further speed up the 
convergence rate.  Numerical results were 
presented to demonstrate the accuracy and 
efficiency of the proposed method. 
  

Index Terms ─ Electric and magnetic current 
combined-field integral equation (JMCFIE), 
flexible generalized minimal residual method 
(FGMRES), half-space, multilevel fast multipole 
algorithm (MLFMA). 
 

I. INTRODUCTION 
There is significant interest in scattering from 

conducting bodies coated with dielectric materials 
situated in the presence of a lossy half-space [1-5]. 
It has applications in many domains such as 
communications, target identification, and so on. 
One of the principal tools for the analysis of such 
scattering is the method of moments (MoM) [6]. 
The electromagnetic integral equation is first 
discretized into a matrix equation using the 
Galerkin-based MoM with subdomain basis 
functions such as Rao–Wilton–Glisson (RWG) 
functions [7] for triangular patches. When iterative 
solvers are used to solve the MoM matrix 
equation; the fast multipole algorithm (FMA) or 
multilevel fast multipole algorithm (MLFMA) [8-
11] can be used to accelerate the calculation of 

matrix–vector products. The half-space MLFMA 
differs from the free-space MLFMA. In half-space 
MLFMA, the near interaction terms are evaluated 
efficiently via the discrete complex-image method 
(DCIM) [12, 13]. The far interaction terms are 
evaluated efficiently by employing the asymptotic 
form of the dyadic Green’s function. Each 
component of the approximate Green’s function is 
expressed in terms of the direct-radiation term plus 
radiation from an image source in real space [14]. 
The former accounts for the radiation of currents 
into the medium in which it resides, while the 
latter accounts for interactions with the half-space 
interface. The half-space MLFMA remains the 
same computational complexity of O(NlogN) both 
in RAM and computational requirement (per 
iteration) as free-space MLFMA. 

Although the calculation complexity and 
memory will be decreased in MLFMA, the 
number of iterations needed to achieve desired 
precision cannot be reduced.  Actually the number 
of iterations largely depends on the spectral 
properties of the integral operator or the 
distribution of the impedance matrix’s 
eigenvalues. To effectively reduce the number of 
iterations, there are mainly two methods. One is to 
construct a new integral equation leading to a 
well-conditioned matrix equation. The other is to 
use fast iteration techniques and efficient 
preconditioning techniques to reduce the condition 
number of the operator equations. Researchers 
have investigated various integral equations for 3D 
coated conducting objects [15-17]. Employing the 
surface equivalence principle, the problem is 
formulated in terms of a set of coupled integral 
equations involving equivalent electric and 
magnetic surface currents which represent 
boundary fields. The most familiar formulation for 
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this problem is the Poggio-Miller-Chang-
Harrington-Wu-Tsai (PMCHWT) integral 
equation combined with electric field integral 
equation (EFIE) [18]. The PMCHWT formulation 
belongs to the integral equations of the first kind 
and it is found to be free of interior resonances and 
yields accurate and stable solutions; however, its 
iteration convergence rate is found to be slow [17]. 
To solve this problem, a new electric and magnetic 
current combined-field integral equation 
(JMCFIE) is developed leading to a well tested 
system with the RWG basis functions and 
Galerkin’s method for scattering problems in free-
space [16, 19-20]. Özgür Ergül and Levent Gürel 
have, also, applied the JMCFIE formulation with 
MLFMA for fast analysis of scattering from 
dielectric objects [19]. Researchers have, also, 
developed efficient iteration techniques and robust 
preconditioning techniques for the Krylov 
subspace iterative methods; among which, the 
GMRES (generalized minimal residual) method 
proposed in [21] is the most popular and efficient 
method for the iterative solution of sparse linear 
systems with an unsymmetric nonsingular matrix. 
For the GMRES algorithm, this can be easily 
accomplished with the help of a rather simple 
modification of the standard algorithm, referred to 
as the inner-outer flexible generalized minimum 
residual method (FGMRES) [21-24]. An important 
property of FGMRES is that it satisfies the 
residual norm minimization property over the 
preconditioned Krylov subspace just as in the 
standard GMRES algorithm.  

The objective of this paper is to achieve a fast 
and accurate solution to the electromagnetic wave 
scattering from an arbitrary shaped coated 
conducting target situated in the presence of a 
lossy half-space. In this paper, we extended the 
JMCFIE method combined with MLFMA to 
efficiently analyze electromagnetic scattering from 
coated targets above a lossy half-space. This paper 
is outlined as follows. Section 2 gives an 
introduction of well-conditioned coupled surface 
integral equation. Numerical examples are given 
to demonstrate the accuracy and efficiency of the 
proposed method in radar cross section (RCS) 
calculations in Section 3. Section 4 gives some 
conclusions. 

 
II. FORMULATION AND THEORY  

 As shown in Figure 1, the configuration of an 

arbitrarily shaped conducting body coated with 
dielectric materials in half-space. The dielectric 
parameters of space are 

1 1 1( , , )    and
half( , , )half half   . 

As shown in Figure 1, the dielectric surface is dS , 

and the metallic surface is cS . The composite 
structure is illuminated by an incident plane wave 
( incE , incH ). By invoking the equivalence principle 
[18], two equivalent problems are formulated, 
each valid for regions external and internal to the 
dielectric material as shown in Figure 1.  
 

 

Fig. 1. Configuration of an arbitrarily shaped 
conducting body coated with dielectric materials 
(a) original problem (b) outer problem (c) inner 
problem. 

 
In the equivalence problem for the external 

region, dielectric surface 
dS  is replaced by a 

fictitious mathematical surface. The entire space is 
filled with external medium

1 1 1( , , )   . The field 

inside the surface
dS  is set to zero. Equivalent 

electric current dJ  and equivalent magnetic 

current dM  are presented on dS . The so-called T 

equations 1T-EFIE  and 1T-MFIE  for the exterior 
equivalent problem can be derived by taking the 
tangential boundary continuity conditions on the 
object’s surface [18]: 

     1 1 1
tantan

inc ref s    E E E                           (1) 

 1 1 1
tantan

inc ref s     H H H                              (2) 

'
1 1 ' '

1

1'

( ' '

1
' )

2

s A e
d s dT T

EM
d dT

j dS K dS
j

dS





     

   

 



E K J J

G M n M

  (3) 
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HJ
d dT
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j
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   
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(4) 
where the half-space Green’s functions AK  FK  are 

for the vector potentials and eK   mK   are for the 

scalar potentials, meanwhile, EMG  is dyadic 
Green's function for electric field due to magnetic 
currents and HJG is for magnetic field due to 
electric current. For detailed spectral domain 
expressions of these half-space Green’s functions 
please refer to [25]. In general, the spatial domain 
Green’s functions are expressed in terms of 
Sommerfeld integrals. Due to the highly 
oscillatory nature of the integrand, numerical 
integration is very time consuming. In this paper, a 
two-level generalized pencil of function (GPOF) 
method is utilized to realize DCIM [13]. In the 
two-level GPOF, dense sampling is adopted to get 
full information in the quick variant area where 
k  is relative small, while a sparse sampling in the 

slow variant area. In this way, high precision can 
be realized with fewer samples [13]. Then the 
spatial domain Green's functions can be obtained 
in closed forms from their spectral-domain 
counterparts via the Sommerfeld identity. By 
operating with 1n̂   to (1) and (2) on the object’s 
surface the so-called N equations, 1N-EFIE  and 

1N-MFIE , for the exterior equivalent problem can 
be derived 

   1 1 1 1 1
inc ref s    n E E n E                          (5) 

   1 1 1 1 1 .
inc ref s    n H H n H                        (6) 

In the equivalence problem for the interior 
region in Figure 1(c), the medium outside is given 
the same material parameters 2 2 2( , , )    as the 
coated dielectric medium. The conducting surfaces 
located inside the dielectric body are also replaced 
by fictitious mathematical surfaces. The equivalent 
electric current dJ  and equivalent magnetic 

current dM  are presented on dS . The equivalent 

current cJ  is introduced on the conducting surface

cS . Based on the boundary conditions, 2T-EFIE  and 

2T-MFIE  are presented: 
On dielectric surface dS : 

 2 2tan tan

inc s E E                             (7) 

 2 2tan tan
.inc s H H                          (8) 

On metallic surface cS : 

                         2 2tan tan

inc s E E                           (9) 

     

     

'
2 2 2 2' ' '

2
2

'
2 2 2 2' '

2

' ' '

1
' '

2

d s d dT T T
s

d c s cT T

j g dS g dS g dS
j

j g dS g dS
j







           
  
         
 

  

 

J J M

E
n M J J

(10) 

   

       

'
2 2 2' '

2
2

2 2 2 2' '

' '

,
1 1

' '
2 2

d s dT T
s

d d c cT T

j g dS g dS
j

g dS g dS



       

  
 
            
 

 

 

M M

H

J n J J n J

                                                                           (11) 
where 2g is the Green’s function of infinity 
dielectric free-space. By operating with 2n̂  to (7), 

(8), and (9), 2N-EFIE  and 2N-MFIE for the exterior 
equivalent problem can be derived: 
On dielectric surface dS : 

 2 2 2 2
inc s   n E n E                           (12) 

 2 2 2 2 .inc s   n H n H                         (13) 

On metallic surface cS : 

 2 2 2 2 .inc s   n E n E                          (14) 

Note that 1 2
ˆ ˆ ˆn n n   . The negative sign is due to 

the direction of the unit normal vector pointing 
into the external medium. 
 
A. EFIE-PMCHWT2 formulation for 

scattering problems in half-space 
Using formulation (1)-(2), (7)-(9), the traditional 

PMCHWT combined with EFIE can be formed as 
follows: 

2

1 2

1 2

T-EFIE

T-EFIE T-EFIE .

T-MFIE T-MFIE


 
 

                            (15) 

After it is expanded and tested with the RWG 
basis functions nf , a matrix equation will be: 

 .

c c c d c d

d c d d d d

d c d d d d

J J J J J M
mn mn mn

cn cm

J J J J J M
mn mn mn dn dm

M J M J M M dn dm
mn mn mn

Z Z T I V

Z Z T I V

M HT T Y

                
                    
                   

          (16) 

In the equation, cmV , dmV , and dmH  is the incident 

field and reflect field summation. 
1

dN

d dn n
n

I


 J f 、
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1

cN

c cn n
n

I


J f , 0
1

dN

d dn n
n

M


 M f , dnI , cnI , dnM  are the  current 

coefficients needed to solve. To improve the 
condition number of the matrix, a coefficient 
adjustment is made to form the PMCHWT2 
formulation:  

1

1

2 1
1 1 1

1

,

c c c d c d

d c d d d d

d c d d d d

J J J J J M
mn mn mn

cn cm

J J J J J M
mn mn mn dn dm

M J M J M M dn dm
mn mn mn

Z Z T I V

Z Z T I V

M HT T Y




   

                                                           

      

(17) 

where the 1 1 1   .  

 
B. JCFIE-JMCFIE formulation for scattering 

problems in half-space 
In this paper, the novel integral equation 

JMCFIE [16] combined with JCFIE is extended to 
the half-space situation to realize accurate and fast 
solution of scattering from coated conducting 
targets. The JMCFIE formulation combined with 
JCFIE for half-space problems can be obtained by 
combining the T and N equations as the following 
form:  

2 2

2

1 2 1 2

1 2

1 1 2 2 1 2

1
T-EFIE N-MFIE

1 1
T-EFIE T-EFIE N-MFIE N-MFIE .

T-MFIE T-MFIE N-EFIE N-EFIE



 
 

 



  

   



 (18) 

After expanding the unknowns cJ , dJ , and dM  in 
(18) with the RWG basis functions and using the 
Galerkin’s method, a well-conditioned matrix 
equation will be: 

= .

c c c d c d

d c d d d d

d c d d d d

J J J J J M
mn mn mn

ecmcn
J J J J J M
mn mn mn dn edm

M J M J M M dn hdm
mn mn mn

Z Z T FI

Z Z T I F

M FT T Y

               
                 
                  

      (19) 

'
1 ' '

1 1 1

'

'
2 2 2' '

2 2 2

2'

1 1
', ',

1
           ',

2
1 1

           ', ',

1
           ',

2

d dJ J A e
mn sT T

HJ

T

n s nT T

n nT

Z j dS K dS
j

dS

j g dS g dS
j

g dS


  


  

     

    

     

     

 



 



n m n m

n m n m

m m

m m

K f f f f

G f f f f

f f f f

f f f f

n

n

  (20) 

'
2 2 2' '

2 2 2

2'

1 1
  ', ',

1
              ',

2

d cJ J
mn sT T

T

Z j g dS g dS
j

g dS


  

      

     

 



n m n m

n m n m

f f f f

f f f fn
 

(21)  
'

1 ' '
1

'
1 1

'
2 2 2' '

2

2'
2 2

1
', ',

1 1
             ', ,

2

1
            ', ',

1 1
             ',

2

d dJ M F m
mn sT T

EM

T

n s nT T

n nT

T j dS K dS
j

dS

j g dS g dS
j

g dS




 




 

      

   

      
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 



 



n m n m

n m n m

m m

m

K f f f f
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f f f f

f f n f
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     (22) 

'
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2 2 2
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1 1
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1
          ',

2

c dJ J
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T

Z j g dS g dS
j

g dS


  

      
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
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(23)     
'

2 2 2' '
2 2 2

2'

1 1
', ',

1
            ',

2

c cJ J
mn sT T

T

Z j g dS g dS
j

g dS


  

     
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 



n m n m

n m n m

f f f f

f f f fn
 

(24) 
'

2 2 2' '
2

2'
2 2

1
', ',

1 1
           ', ,

2

c dJ M
mn sT T

T

T j g dS g dS
j

g dS




 

      
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 


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f f f f

f f n f f
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                                                                           (25) 
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1 ' '
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1
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'
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2
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1
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2

1
           ', ',

            ', ,
2
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mn sT T

HJ

T
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T
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j

dS
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
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





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   

      
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 



 


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n m n m
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K f f f f

G f f n f f

f f f f
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n n

 

(26) 
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j
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(28) 
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2 2
2

1
n̂ ,inc inc

ecm mF


 
    

 
E H f                   (29) 

1 2 1 2
1 2

1 1
ˆ ˆn n ,inc inc inc inc

edm mF
 
 

      
 

E E H H f  (30) 

 1 1 2 2 1 2
ˆ ˆn n , .inc inc inc inc

hdm mF       H H E E f     (31) 

 
It’s obvious that the JCFIE-JMCFIE 

formulation contains well-tested identity operators. 
The impedance matrix of JCFIE-JMCFIE is well-
conditioned since the well-tested identity operators 
lead to diagonally-dominant matrices. This is an 
essential requirement for a formulation with a high 
convergence rate. This explains why the 
developed JCFIE-JMCFIE formulation leads to a 
better conditioned matrix equation than the 
traditional EFIE-PMCHWT formulations and 
hence gives more rapidly converging iterative 
solutions. Finally, the linear system of equations in 
(19) can be solved by the FGMRES method [21-
24] using half-space MLFMA to accelerate the 
matrix-vector products [8].  

 
III. NUMERICAL EXAMPLES 

In this section, we show some numerical results 
for the electromagnetic characteristics of a 
conducting body coated with dielectric materials 
in half-space that illustrate the accuracy and 
effectiveness of the proposed JCFIE-JMCFIE 
formulation. The JCFIE-JMCFIE linear systems 
based on the RWG basis functions are solved with 
MLFMA accelerated Krylov iterative methods. All 
numerical experiments are performed on a 
Pentium 4 with 2.9 GHz CPU and 2GB RAM in 
single precision. In this paper, the inner-outer 
FGMRES [21-24] is used as the iterative solver for 
the JCFIE-JMCFIE and EFIE-PMCHWT2 
formulation to accelerate the convergence rate 
compared with GMRES. In the flowing examples, 
the inner and outer restart numbers of FGMRES 
are both 10. The stop precision of restarted 
GMRES is denoted to be 1.E-4. In the FGMRES 
algorithm, the stop precision for the inner and 
outer iteration is 1.E-2, 1.E-4, respectively. 
Additional details and comments on the 
implementation are given as follows: 
·Zero vector is taken as an initial approximate 
solution for all examples and all systems in each 
example. 

·The iteration process is terminated when the 
normalized backward error is reduced by 10-4 for 
all the examples.  

At first, the developed formulations are verified 
by the conducting body coated with dielectric 
materials in free-space. The first example is a 
metallic sphere covered with dielectric material in 
free-space as shown in Fig. 2(a). The metallic 
sphere’s radius is 01 0.3423a  (

0
 is the wavelength 

in free-space). The thickness of the coated 
dielectric is 02 0.1017a  and the relative 

permittivity is with 4r  . The incident angles of 

plane wave are 180i   and 180i    at a 
frequency of 300f MHz . Fig. 2(b) gives the 
co-polarized bi-static RCS for the above free-
space coated metallic sphere solved by the JCFIE-
JMCFIE, EFIE-PMCHWT2, and Mie, 
respectively. The scattering angle is 
0 180 , 0

s s
      . MLFMA with 2 levels is used 

to accelerate the matrix-vector products. The 
coated metallic sphere is discretized with 3240 
triangular patches leading to 7720 unknowns. It 
can be found that the results using the JCFIE-
JMCFIE, EFIE-PMCHWT2 method are in good 
agreement with the Mie series solution. Figure 3 
shows the convergence rates of the JCFIE-
JMCFIE and EFIE-PMCHWT2 formulations 
solved by GMRES method for the above example. 
From Fig. 3, it can be found that the EFIE-
PMCHWT method does not reach convergence 
after 700 iteration steps. However, the JCFIE-
JMCFIE can reach convergence in 100 iteration 
steps. It can be concluded that the condition 
number of the proposed JCFIE-JMCFIE is much 
better than the EFIE-PMCHWT2. 

 

 
 
Fig. 2. (a) Geometry of a metallic sphere covered 
with dielectric material in free-space. (b) The co-
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polarized bi-static RCS ( ) of a metallic sphere 
covered with dielectric material for 
0 180 , 0

s s
      at 300MHz. 

 

 
 
Fig. 3. The convergence history of JCFIE-
JMCFIE, EFIE-PMCHWT2 solved with FGMRES 
for a metallic sphere covered with dielectric 
material in free-space at 300MHz. 
 

Next, we extended the JCFIE-JMCFIE method 
to analyze the half-space problems to verify the 
accuracy and efficiency of the JCFIE-JMCFIE. As 
shown in Fig. 4(a), we consider a metallic sphere 
covered with spherical dielectric material situated 
0.3577m above the lossy half space characterized 
by 5.0 0.2half j   and . The metallic 

sphere’s radius is 01 0.3423a  . The thickness of 
the coated dielectric material is 02 0.1017a  and 
the relative permittivity is with 4r  .  The 

incident angles of plane wave are 180i   and 

180i    at 300f MHz . The metallic sphere 
coated with spherical dielectric is, also, discretized 
with 3240 triangular patches leading to 7720 
unknowns. Figure 4(b) gives the bi-static RCS for 
the above half-space metallic sphere coated with 
spherical dielectric solved by the JCFIE-JMCFIE 
and EFIE-PMCHWT2, respectively. The 

scattering angle is 0 90 , 0s s      . The two 

levels MLFMA are used to accelerate the matrix-
vector products. The simulated results obtained 
from the method of moment for bodies of 
revolution (BORMoM) and FEKO software are 
given to compare to them from JCFIE-JMCFIE 
and EFIE-PMCHWT2. In the BORMoM 
computation, the coated metallic sphere is 
discretized along the generating arc leading to 114 
unknowns. The order of Fourier mode is 10 and 

the computation time is 2308.3 seconds in 
BORMoM. From Fig. 4(b), the results of JCFIE-
JMCFIE and EFIE-PMCHWT2 agree well with 
the BORMoM and FEKO results. Furthermore, 
Fig. 5 gives the convergence rates of the JCFIE-
JMCFIE and EFIE-PMCHWT2 formulations 
solved by the FGMRES method for the above 
half-space example. It is obvious that the 
application of the novel integral equation JCFIE-
JMCFIE greatly accelerates the convergence rate 
compared with the EFIE-PMCHWT2 formulation.  

 

 
 
Fig. 4. (a) Geometry of a metallic sphere covered 
with spherical dielectric material situated above 
the lossy half space. (b) The co-polarized bi-static 
RCS (  ) of a metallic sphere covered with 
spherical dielectric material situated above the 

lossy half space for 0 90 , 0s s      at 

300MHz. 
 

 
 
Fig. 5. The convergence history of JCFIE-
JMCFIE, EFIE-PMCHWT2 solved with FGMRES 
for a metallic sphere covered with spherical 
dielectric material situated above the lossy half 
space at 300MHz.  
 

1.0half 
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Fig. 6. (a) Geometry of a metallic sphere covered 
with cubic dielectric material situated above the 
lossy half space. (b) The co-polarized bi-static 
RCS ( ) of a metallic sphere covered with cubic 
dielectric material situated above the lossy half 
space for 0 90 , 0

s s
      at 300MHz. 

 
The another example shown in Fig. 6(a) is a 

metallic sphere covered with cubic dielectric 
situated 0.4 m above the lossy half space 
characterized by 5.0 0.2half j   and . 

The metallic sphere’s radius is 0.3m. The coated 
cubic dielectric is lossy. The conductivity and 
relative permittivity of dielectric are 0.001s/m 
and 4r  , respectively.  The incident angles of 

plane wave are 180i   and 180i    at a 
frequency of 300f MHz .  The metallic sphere 
coated with spherical dielectric is also discretized 
with triangular patches leading to 10896 
unknowns. Figure 6(b) gives the bi-static RCS for 
the above half-space metallic sphere coated with 
cubic dielectric solved by the JCFIE-JMCFIE, 
EFIE-PMCHWT2 finite element-boundary 
integral method (FE-BI) and FEKO software, 
respectively. The scattering angle is

0 90 , 0s s      . MLFMA with 2 levels is 

used to accelerate the matrix-vector products. In 
the FE-BI computation, the number of unknowns 
is 23651 and the computation time is 432.2 
seconds. From Figure 6(b), it can be found that the 
results of JCFIE-JMCFIE are in good agreement 
with them obtained from EFIE-PMCHWT2, FE-
BI and FEKO. Figure 7, also, shows the 
convergence rates of the JCFIE-JMCFIE and 
EFIE-PMCHWT2 formulations solved by 
FGMRES method for the last half-space example. 
It can be found that the proposed JCFIE-JMCFIE 
method only needs 139 iteration steps to reach 

convergence while the EFIE-PMCHWT2 method 
can not converge after 700 iteration steps.   

 

 
 
Fig. 7. The convergence history of JCFIE-JMCFIE, 
EFIE-PMCHWT2 solved with FGMRES for a 
metallic sphere covered with cubic dielectric 
material situated above the lossy half space at 
300MHz. 

 
In order to further investigate the performance 

of the proposed JCFIE-JMCFIE method, the above 
half-space metallic sphere coated with spherical 
dielectric material with the larger dielectric 
constants is considered. Figure 8 gives the co-
polarized bi-static RCS of a metallic sphere 
covered with spherical dielectric material with 

10r  and 12r   situated above the lossy half 
space solved by the JCFIE-JMCFIE. The 
simulated results obtained from BORMoM are 
given to compare to them from JCFIE-JMCFIE. In 
the BORMoM computation, the coated metallic 
spheres with 10r  and 12r   are both 
discretized along the generating arc leading to 114 
unknowns. The order of Fourier mode is 20 and 
the computation time of BORMoM is 5128.3 
seconds and 6340.1 seconds for 10r  and 12r 
cases, respectively. The scattering angle is 

0 90 , 0s s      . The two levels MLFMA is 

used to accelerate the matrix-vector products. 
Figure 9 and Fig. 10 give the convergence rates of 
the JCFIE-JMCFIE and EFIE-PMCHWT2 
formulations solved by FGMRES method for the 
above half-space example with 10r  and 12r  , 
respectively. It can be found that the JCFIE-
JMCFIE method only needs 713 iteration steps to 
reach the convergence for the 10r   example, 
while the EFIE-PMCHWT2 method can only 
converge to the error of 0.1 after 2000 iteration. 

1.0half 
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For the 12r   example, the JCFIE-JMCFIE 
method can reach convergence after 5581 iteration 
steps, while the EFIE-PMCHWT2 method only 
converge to the error of 0.1 after 10000 iteration  
steps. This demonstrates the efficiency of the 
proposed JCFIE-JMCFIE method for the half-
space metallic sphere coated with larger dielectric 
constants dielectric material. 

 

 
 
Fig. 8. The co-polarized bi-static RCS ( ) of a 
metallic sphere covered with spherical dielectric 
material with 10r  and 12r   situated above 

the lossy half space for 0 90 , 0
s s

      at 
300MHz. 
 

 
 
Fig. 9. The convergence history of JCFIE-
JMCFIE, EFIE-PMCHWT2 solved with FGMRES 
for a metallic sphere covered with spherical 
dielectric material with 10r  situated above the 
lossy half space at 300MHz. 
 

 
 
Fig. 10. The convergence history of JCFIE-
JMCFIE, EFIE-PMCHWT2 solved with FGMRES 
for a metallic sphere covered with spherical 
dielectric material with 12r  situated above the 
lossy half space at 300MHz. 

 
Figure 11 gives the convergence rates of the 

JCFIE-JMCFIE and EFIE-PMCHWT2 
formulations solved by the FGMRES method for 
the above half-space metallic sphere covered with 
spherical dielectric material with 4r  in Figure 
4(a).  The metallic sphere coated with spherical 
dielectric is also discretized with triangular 
patches leading to 37302 unknowns. Due to the 
limit of computer memory (2GB RAM), larger 
problems (>40000) can not be computed. 
Furthermore, compared with the free-space 
MLFMA, aggregation and disaggregation for the 
image groups as well as calculations of the 
translation operator between image and 
observation group centers are additionally required 
during implementing half-space MLFMA in 
JCFIE-JMCFIE. As a result, the storage and CPU 
of half-space MLFMA are approximately twice 
that of a free-space MLFMA, due to the extra set 
of image clusters. From Figure 11, it can be found 
that the proposed JCFIE-JMCFIE method only 
needs 167 iteration steps to reach convergence 
while the EFIE-PMCHWT2 method can only 
converge to the error of 0.6 after 700 iteration 
steps.  
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Fig. 11. The convergence history of JCFIE-
JMCFIE, EFIE-PMCHWT2 solved with FGMRES 
for a metallic sphere covered with spherical 
dielectric material with situated above the lossy 
half space at 300MHz. The number of unknown is 
37302. 

 
Tables 1-3 list the iteration steps and 

computation time of the JCFIE-JMCFIE and 
EFIE+PMCHWT2 solved by FGMRES for above 
three examples where * refers to no convergence 
after maximum 20000 iterations.  When compared 
in terms of solution time, the JCFIE-JMCFIE have 
a gain over the EFIE+PMCHWT2 by a factor of 
more than 160 on the first free-space example, 
32.2 on the second half-space metallic sphere 
example coated with spherical dielectric,  61.9 on 
the third half-space metallic sphere example 
coated with cubic dielectric. It can be found that 
the JCFIE-JMCFIE reduces the computation time 
significantly while it maintains high accuracy 
when compared with the traditional 
EFIE+PMCHWT2. 

 
IV. CONCLUSION 

In this paper, a well-conditioned coupled 
surface integral equation called JCFIE-JMCFIE is 
proposed for the analysis of electromagnetic 
scattering from coated targets above a lossy half-
space. The coupled formulation can lead to a well 
tested system with the RWG basis functions and 
Galerkin’s method. To efficiently analyze 
electrically large scattering problems in half-space, 
the half-space MLFMA is implemented to reduce 
the computational complexity and memory 
requirement. The inner-outer FGMRES is used as 
the iterative solver to further enhance the 
convergence rate. Numerical results are 
demonstrated to validate the proposed method and 

show the accuracy and high efficiency compared 
with the traditional EFIE-PMCHWT2 method. 
Further investigations deserve to be undertaken to 
study the parallelization of the proposed JCFIE-
JMCFIE with MLFMA. 
 
Table 1: Comparison of the iteration steps and 
computation time of JCFIE-JMCFIE and EFIE-
PMCHWT2 for the metallic sphere coated with 
spherical dielectric on free space 

 
 
Table 2: Comparison of the iteration steps and 
computation time of JCFIE-JMCFIE and EFIE-
PMCHWT2 for the metallic sphere coated with 
spherical dielectric situated 0.3577m above the 
lossy half space 

 
 

Table 3: Comparison of the iteration steps and 
computation time of JCFIE-JMCFIE and EFIE-
PMCHWT2 for the metallic sphere coated with 
cubic dielectric situated 0.4m above the lossy half 
space  
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