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Abstract ─ An efficient parallel sparse 
approximate inverse (PSAI) preconditioning of the 
adaptive integral method (AIM) is proposed to 
analyze the large-scale planar microstrip antennas. 
The PSAI preconditioner is based on the 
parallelized Frobenius-norm minimization, and is 
used to speed up the convergence rate of the loose 
generalized minimal residual method (LGMRES) 
iterative solver. The parallel AIM is used to 
accelerate the required matrix vector product 
operations. Numerical results demonstrate that the 
PSAI preconditioner is effective with the AIM and 
can increase the parallel efficiency significantly 
when analyzing the large planar microstrip 
antennas. 
 

Index Terms ─ Adaptive integral method, 
microstrip antennas, parallel sparse approximate 
inverse.  
 

I. INTRODUCTION 
In electromagnetic (EM) calculations, the 

calculation of the currents generated on the surface 
of an object when illuminated by a given incident 
plane wave or fed by a microstrip line is essential 
for the simulation of microstrip structures. For the 
microstrip structures, the finite element method 
(FEM), and the finite-difference time-domain 
(FDTD) method often have a large number of 
unknowns due to the volumetric discretization. 
The method of moments (MoM) is a preferred 
method to solve this problem, since by using the 
integral equation (IE) and the layered media 
Green’s functions, it only discretizes the metallic 
surface, which leads to a relative small number of 
unknowns. The implementation of the MoM 
requires O(N3) operations and O(N2) memory 
storage [1], where N is the number of unknowns. 

The size of the MoM matrix increases so rapidly 
with the increase of the number of unknowns that 
the computation will be intractable for the 
computational capacity. The difficulty can be 
overcome by use of Krylov iterative methods, and 
the required matrix-vector product operations can 
be accelerated by AIM [2]. The application of 
AIM reduces the memory requirement to O(N) and 
the computational complexity to O(NlogN).  

With the increase of the dimensions of the 
object to be solved, the impedance matrix 
associated with the linear systems becomes larger. 
The computation will be time consuming for a 
single processor. Fortunately, the parallel 
technique is applied in many fast EM methods to 
circumvent the above difficulty. The parallel 
multilevel fast multipole method (MLFMA) is 
proposed in [3, 4] for the solution of scattering 
from large-scale objects, the mpi-based parallel 
precorrected fast Fourier transform (FFT) 
algorithm is proposed in [5] for analyzing 
scattering from arbitrary shaped three-dimensional 
objects, a methodology for designing a high 
performance parallel 3-D finite element method 
(FEM) is proposed in [6]. All of these techniques 
provide an efficient parallel scheme to deal with 
the large-scale problems. 

Although the computational complexity and 
memory requirement is decreased in the fast EM 
methods and the computational capacity is 
increased by use of the parallel technique, the 
number of iterations needed to achieve the desired 
precision remains the same as the original MoM. It 
is natural to use preconditioning techniques [7-9] 
to improve the convergence of the linear systems. 
There are many preconditioning techniques. 
Simple diagonal or diagonal blocks of the 
impedance matrix can be parallelized easily, while 
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they are effective only when the matrix has some 
degree of diagonal dominance [10]. Block 
diagonal preconditioner is generally more robust, 
which requires matrix permutations or 
renumbering of the grid points to cluster the large 
entries close to the diagonal. Incomplete LU (ILU) 
has been used for solving nonsysmmetric dense 
systems [11] and the threshold-based incomplete 
LU (ILUT) has been applied in the AIM [12], 
while the factorization is often ill conditioned that 
leads to the triangular solvers unstable. Shifted 
symmetric successive over-relaxation (SSOR) [13] 
and spectral two-step preconditioning techniques 
[14] are efficient while they are difficult to be 
parallelized. The SAI preconditioner based on 
Frobenius-norm minimization is chosen in this 
paper because it allows the decoupling of the 
constrained minimization problem into 
independent linear least-squares problems for each 
rows of the preconditioner. This is convenient to 
be used by parallelization. Recently, PSAI is 
proposed to be combined with MLFMA for 
solving scattering problems with a large number of 
unknowns [15, 16]. For layered media spatial 
domain Green's function, using MLFMA is much 
more involved than in the surface scattering 
problems where the free space Green’s would be 
employed [17]. Therefore, in this paper a synthesis 
of the AIM and PSAI preconditioning technique is 
proposed for analyzing large-scale planar 
microstrip antennas. To the best of our knowledge, 
it is the first time that the parallel SAI 
preconditioning technique was applied into the 
AIM in our work. As a result, the parallel 
efficiency is greatly enhanced. 

The paper is organized as follows. Section 2 
describes the essential algorithms for the analysis 
of the planar microstrip antennas. The workflow of 
the parallel AIM is described in section 2.1; the 
construction of the PSAI preconditioner in the 
parallel AIM is described in section 2.2. 
Numerical results in section 3 demonstrate the 
efficiency of the proposed method. Finally, a brief 
conclusion is given in Section 4. 
 

II. THEORY 
 

A. The parallel AIM algorithm 
For the sake of brevity, the summary, and 

sequence of the operations in the parallel AIM will 
be only described, the basic principles of the AIM 

can be found in [2]. It is known that the 
computation of the AIM technique mainly contains 
four parts: evaluate the near field impedance matrix, 
evaluate the expansion coefficients (i.e. projecting 
the RWG basis functions onto the rectangular 
grids), evaluate the matrix-vector product 
operations of the near field sparse matrix, and 
evaluate matrix-vector product operations of the far 
field. The AIM is able to be parallelized, since the 
above four operations are independent and there is 
independence in each operations. In this paper, the 
computation task is decomposed by distributing an 
equal number of unknowns to each processor for 
balancing the four operations simultaneously. The 
scheme is described below: 

Step 1. The elements of the near field matrix 
are evaluated by MPIE and stored in a compressed 
sparse column format. The basis functions are 
distributed equally to every processor, and the 
relative elements of the near field impedance matrix 
are computed and stored, respectively. There is no 
inner-processor communications in this step. 

Step 2. The basis functions are mapped onto a 
regular grid in order to apply the FFT to a Toeplitz 
matrix for speedup the matrix-vector product 
operations. The solution can be highly parallelized, 
since every basis function is independent during 
computation. As step1, the basis functions are 
distributed equally to every processor. Only part of 
the expansion coefficients just need to be computed 
for each processor.  

Step 3. The direct matrix-vector product 
operations of the near field sparse matrix are 
parallelized as step 1 and step 2 by distributing the 
basis functions. However, frequent inner-processor 
communications are required during the iterative 
solution of the linear system, which leads to 
frequent inner-processor communications. The 
inner-processor communications will take the most 
of the computational time if the number of 
unknowns is small, and leads to a low parallel 
efficiency.  

Step 4. The matrix-vector product operation of 
the Toeplitz matrix of the far field is accelerated by 
FFT. In the code, the two dimensional Toeplitz 
matrix is first extended to a one dimensional 
circulant matrix, and the one dimensional FFT [18] 
is implemented in the circulant matrix, thus the 
matrix-vector product operation of the far field can 
be parallelized by the parallel one dimensional FFT. 
It should be noted that the inner-processor 
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communication time and the synchronization time 
should, also, be considered as step 3. 

From the above steps, it is found that there is a 
balance between the computational time and inner-
processor communication time. For objects with a 
small number of unknowns, the inner-processor 
communication takes the most of the total solution 
time which leads to a low efficiency of the parallel 
algorithm. For objects with a large number of 
unknowns, the computation takes the most of the 
total solution time which leads to a high efficiency 
of the parallel algorithm. Since a fast convergence 
solution of the liner systems plays an important role 
for the efficiency of the parallel scheme, the PSAI 
preconditioning technique will be proposed in detail 
in the next part. 

 

B. The PSAI preconditioning technique 
First, we consider the SAI preconditioner 

combined with the AIM. In the context of AIM, the 
NN dense impedance matrix is decomposed as 
Z=Zs + ZAIM [2], where Zs = Znear - Znear_AIM. Znear  is 
the MoM interaction between elements, Znear_AIM is 
the inaccurate contribution from grid and ZAIM is 
the matrix related to interaction from far field. 
Since Zs is already stored in the memory,  Zs  is 
chosen instead of Znear for the construction of the 
SAI preconditioner and the approximation is of the 
form 1

s
M Z . It is found that the iterative steps of 

the LGMRES with SAI preconditioner constructed 
by Zs are similar with constructed by Znear, and it is 
shown in section 3. The SAI preconditioner in this 
paper is based on a Frobenius-norm minimization. 
The approximate inverse of Zs is computed by 
minimizing  

.s F
I MZ                                        (1) 

The Frobenius norm is usually chosen because 
it allows the decoupling of the constrained 
minimization problem into n independent linear 
least-squares problems for each row of M:  

2 22

2
1

,
n

T
s s j s jF F

j

e m


    I MZ I MZ Z      (2)         

where ej is the  j th unit vector and mj is the column 
vector representing the j th row of M. 

 The main issue for the computation of the SAI 
preconditioner is the selection of the nonzero 
pattern of M that is the set of indices: 

                 2{( , ) [1, ] s.t. 0}.ijS i j N m       (3) 

If the sparsity of M is known, the none zero 
structure for the j th column of M can be 
automatically determined and defined as  

                { [1, ] s.t.( , ) }.J i N i j S              (4) 
The solution of (2) involves only the columns 

of Zs indexed by J, which can be denoted by 
(:, )s JZ . Since Zs is sparse, many rows in (:, )s JZ  

are usually null, not affecting the solution of the 
least-square problems. Thus, if I is the set of indices 
corresponding to the nonzero rows in (:, )s JZ , and 

if we defined ( , )I J sZ Z  by )(~ Jmm jj   and 

)(~ Jee jj  , the “reduced” least-square problems 

to solve are  
2

2
min j s je mZ  ,   1,... .j N                       (5) 

In general, the size of problems (5) is much 
smaller than problems (2). The above procedure is 
shown clearly in Figure 1. 

As shown in Figure 1(a), “X” stands for none 
zero impedance matrix elements, and m4 is chosen 
to be computed as an example. For row 4, since the 
none zero columns are 2, 4, 6, 8, the rows of 2, 4, 6, 
8 in Figure 1(a) are chosen. Then, the submatrix in 
Figure 1(b) is obtained for constructing the 
preconditioner. Excluding the columns with null 
elements in the above submatrix, after which the 
final least matrix in Figure 1(c) will be obtained. It 
can be seen that the size of the “reduced” matrix in 
Figure 1(c) is much smaller than the original matrix 
in Figure 1(a). Although the null columns are 
excluded, the size of the “reduced” matrix in (5) is 
still very large for the targets with a large number of 
unknowns. The difficulty can be circumvented with 
a prior sparsity pattern selection strategy. In the 
code, a constant number maxK  is set to select the 
most informative elements in each row of Zs for the 
construction of the preconditioner by checking the 
value of the elements [19, 20].  

The core of PSAI preconditioner is to store the 
minimum near field impedance matrix in each 
processor. The PSAI preconditioner is constructed 
by three steps. First, the elements of the sparse near 
field impedance matrix are distributed evenly on the 
processors. Second, the required elements which 
are distributed on the other processors are appended 
on the present processor by the all-to-all 
communication of the rows and columns list and 
the value of the elements, and the process is shown 
in Figure 2 to Figure 4. Third, the least-squares 
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minimizations are solved independently on each 
processor as the construction of the SAI 
preconditioner described above.  

 

 

 

 
Fig. 1. The configuration of the SAI, (a) the original 
impedance matrix, (b) the selected rows of the 
matrix for construction of the SAI preconditioner, 
(c) the reduced impedance matrix for construction 
of the SAI preconditioner. 
 

The above algorithm is shown in Figure 5 
clearly. Considering the impedance matrix of the 
near field, the elements of the matrix Zs in rows 1-4 
and 5-8 are distributed in two processors 
respectively. m4 is to be solved as discussed above. 
The elements of rows 2, 4, 6, 8 of the impedance 
matrix should be selected, while rows 6 and 8 are in 
the other processor; thus, the necessary inner-
processor communications are implemented to 
append rows 6 and 8 to the first processor as shown 
in Figure 2(c). After the procedure of the all-to-all 
communication, all the processors store the 

minimum elements of the matrix Zs. It should be 
noted that the inner-processor communication in the 
construction of PSAI preconditioner is small since 
there is a trade-off for controlling the selected 
number of elements in each row of Zs. The flow 
chart of the PSAI preconditioned AIM is shown in 
Figure 6 clearly. As shown in Figure 6, there is 
inner-processor communication in the process to 
evaluate the near field, project the unknowns onto 
the regular grid. And there is inner-processor 
communication in the process of construction of the 
SAI preconditioner and the matrix vector 
multiplication.  
 

for each s
ij kz Z  

Do i = 1, kn  

   if j is not in the local rank，then 

     P = findProcId(j) 

     Append j  into Re ( )row cvList P  

   endif     

Endfor 
 

Fig. 2. The process that finds and exchanges the 
rows list of the elements should be appended of 
each processor, where rowSendList(P), 
rowRecvList(P)is the row list to be sent and 
received of processor p. 

 

For i rowSendList , do  

Append column indices of row i to

sendColIndices  

Endfor 

Send sendColIndices ， receive

recColIndices  at the same time  ! All-to-All 

communication 
 

Fig. 3. The process that finds and exchanges the 
columns list of the elements should be appended 
of each processor, where sendColIndices, 
recColIndices is the column list to be sent and 
received. 

 1 2 4 6 8 

2 X X X  X 

4  X X X X 

6   X  X 

8  X X X X 

(c) 

 1 2 3 4 5 6 7 8 

2 X X  X    X 

4  X  X  X  X 

6    X    X 

8  X  X  X  X 

(b) 

 1 2 3 4 5 6 7 8 

1 X X   X    

2 X X  X    X 

3   X      

4  X  X  X  X 

5 X        

6    X    X 

7         

8  X  X  X  X 

                                  (a) 
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For i rowSendList , do  

Append the matrix element ijz of row

i to sendColValues  

Endfor 

Send sendColValues ， receive

recvColValues  at the same time   ! 

All-to-All communication 
 

Fig. 4. The process that finds and exchanges the 
values of the elements to be sent and received by 
processor p, where sendcolIndices, reccolIndices  
is the value of the elements to be sent and 
received. 

 

         

 

Fig. 5. The configuration of the parallel SAI, (a) the 
original impedance matrix, (b) the rows of the 
impedance matrix stored in one processor, (c) the 
appended minimum impedance matrix been stored 
in one processor for construction of the PSAI 
preconditioner.   

 

 

Construct SAI 
preconditioner  

Matrix vector 
product  

Matrix vector 
product  

Matrix vector 
product  

Construct SAI 
preconditioner  

Output the unknown current densities and calculate the wandered 
simulation results 

Input the file of structure  

Evaluate near field  

Project the unknowns Project the unknowns 

… … 

… … 

… … Construct SAI 
preconditioner  

… … 

Evaluate near field  Evaluate near field 

Project the unknowns

Fig. 6. The flow chart for the PSAI 
preconditioned AIM. 

 
III. RESULTS AND DISCUSSIONS   
In this section, some microstrip antennas are 

analyzed by the PSAI preconditioned AIM. The 
resultant linear systems are solved by the 
LGMRES solver [21] and its tolerance is 10-4. The 
results presented here are all computed on 2-node 
clusters connected with an infiniband network. 
Each node includes a quad-core Intel processor 
and 8 GB of RAM.   

First, an 88 microstrip corporate-fed planar 
antenna is considered, the parameters are depicted 
in Figure 6. It is discretized with 61, 345 RWG 
unknowns. As shown in Figure 7, the reflection 
coefficients versus frequency simulated by the 
proposed method and the Ansoft Designer are 
plotted. It can be seen the results agree well which 
demonstrate the accuracy of the proposed method. 
The total simulation time of one frequency point 
for the PSAI preconditioned AIM is 2, 512 s, and 
the time for the Ansoft Designer is 12, 560s. We, 
also, compare the H-plane far field pattern of the 8 
 8 microstrip antenna at the frequency of 9.42 
GHz with the CGFFT approach [22] in Figure 8 to 
verify the proposed method, where reasonable 
agreements are observed. The time for 
constructing the PSAI preconditioner is 613 s and 
the solution time is 1, 576 s. Figure 9 shows the 
residual norm histories for the 8  8 microstrip 
corporate-fed planar antenna at 9.42 GHz 

 1 2 3 4 5 6 7 8 
1 X X   X    
2 X X  X    X 
3   X      
4  X  X  X  X 
6    X    X 
8  X  X  X  X 

(c) 

 1 2 3 4 5 6 7 8 

1 X X   X    

2 X X  X    X 

3   X      

4  X  X  X  X 

(b) 

 1 2 3 4 5 6 7 8 

1 X X   X    

2 X X  X    X 

3   X      

4  X  X  X  X 

5 X        

6    X    X 

7         

8  X  X  X  X 
(a) 
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simulated by AIM with and without the PSAI 
preconditioner. The label “PSAI-0” represents the 
PSAI preconditioner constructed by Znear, and 
“PSAI-1” represents the PSAI preconditioner 
constructed by Zs. It is found that the LGMRES 
PSAI-0 and PSAI-1 have the similar iterative steps 
which can greatly improve the convergence by a 
factor of 3.8. In order to describe the proposed 
method clearly, the label “PSAI” shown below 
denotes the PSAI preconditioner constructed by 
Zs. The advantage of the PSAI preconditioner can 
be found significantly when solving large dense 
linear systems with multiple right-hand sides 
arising in monostatic RCS, since the PSAI 
preconditioner needs to be constructed only once. 

2l  1l  

2d  1d  

L 

 

W  

Fig. 7. The geometry of the 8  8 microstrip 
corporate-fed planar antenna, L1=12.32mm, L2 
=18.48mm, W=10.08mm, L=11.79mm, d1=1.3mm, 
d2=3.93mm,the thickness of substrate h=1.59mm, 

r 2.2  . 

 Fig. 8. The reflection coefficients versus 
frequency for the 8  8 corporate-fed planar 
antenna. 

 
Fig.  9. The H-plane far field pattern of the 88 
microstrip corporate-fed planar antenna compared 
with [22]. 

 
Fig. 10. Residual norm histories for the 8  8 
microstrip corporate-fed planar antenna at 9.42 
GHz simulated by LGMRES with and without the 
PSAI preconditioner. 
 

To examine the parallel efficiency of the 
proposed method, the monostatic RCS of a series 
of microstrip antennas [23] are simulated. The 
layout of the microstrip antennas are shown in 
Figure 10, the configuration of the unit of the 
arrays is 3.66cmL  , 2.60cmW  , 5.517cma b 
, the dielectric constant and the thickness of the 
substrates is 2.17r  , 0.158cmd  . The 
microstrip antennas with 7  7, 20  20 arrays are 
simulated. The number of unknowns is 8, 428 and 
84, 000, respectively. Table 1 and Table 2 list the 
CPU time of the above antennas simulated by 
AIM with and without the PSAI preconditioner at 
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the frequency of 3.7 GHz. The notations used in 
the tables are denoted below. 

 near denotes the time used for filling the 
near field impedance matrix. 

 cof denotes the time used for computing 
the expansion coefficients. 

 set denotes the time used for constructing 
the PSAI preconditioner. 

 steps denotes the average number of 
iterative steps of the LGMRES for   0。and   

varying from 0。to 85。. 
 sol denotes the time used for solving the 

liner systems. 
 tol denotes the total CPU time for 

simulation. 
 mem denotes the memory usage for one 

processor. 
 ef denotes the efficiency of the 

parallelization which is defined as Total

nTotal

T

nT
, where 

TTotal is the total CPU time computed by one 
processor, TnTotal is the total CPU time computed 
by n processors.  
 As shown in Table 1, the time for filling near 
field matrix and solving the expansion coefficients 
in columns 3, 4 is almost a linear reduction with 
the increase of the number of processors. In 
column 5, little solving time of the linear system is 
saved when the number of unknowns is small (i.e. 
the 7  7 arrays), since the inner-processor 
communication takes the most of the CPU time. 
Much solving time of the linear systems is saved 
when the number of unknowns is large (i.e. the 20 
 20 arrays), since the computation takes the most 
of the CPU time. Similarly, as shown in Table 2, 
the time for filling the near field matrix, solving 
the expansion coefficients and construction of the 
preconditioner in columns 3, 4, and 5 is also linear 
reduction with the increase of the number of 
processors. 

 

a 

 

y 
x 

z 

r d

L 

W a 
b 

   

 

 

 

 







 
Fig. 11. The layout of the microstrip antenna. 
 
Little solving time of the linear system in columns 
6 is saved, when the number of unknowns is small 
(i.e. the 7  7), and much solving time of the 
linear systems is saved when the number of 
unknowns is large (i.e. the 20  20 arrays). 
Comparing the memory storage, the total solving 
time, and the parallel efficiency of Table 1 and 
Table 2, it can be found that by using the PSAI 
preconditioner only increases small memory usage 
while the total solving time and the parallel 
efficiency are improved significantly due to the 
decrease of the number of iterative steps of the 
LGMRES. 

Finally, we verify the proposed method by a 
30 30 microstrip antenna with 231, 300 RWG 
basis functions. The monostatic RCS computed by 
the AIM with and without PSAI preconditioner is 
plotted in Figure 11, where reasonable agreements 
are observed. The time for constructing the PSAI 
preconditioner and per iteration is 1, 304, and 5 
seconds, respectively. Figure 12 shows the 
iterative steps of the LGMRES with and without a 
PSAI preconditioner for the 30  30 microstrip 
arrays. Where 0    and   is varying from 0  to 

85 . It can be found that the PSAI preconditioning 
technique can greatly improve the convergence by 
at least a factor of 4.1 compared with no 
preconditioned LGMRES. 

 
Table 1: The CPU time of the 7 7 and 20 20 arrays simulated by the AIM without PSAI preconditioner  

 processors near(sec) cof(sec) steps sol(sec) tol(sec) mem(Mb) ef 

7 7 
1 312 144 

243 
8, 319 8, 790 43 - 

4 78 36 8, 094 8, 215 30 26% 
8 39 18 7, 710 7, 770 25 14% 

20 
20 

1 12, 724 5, 842 
257 

102, 
017    

120, 
684    

410 - 

4 3, 862 1, 367    47, 355 52, 685 171 57% 
8 1, 977 723     43, 771 46, 572  149 32% 
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Table 2: The CPU time of the 7 7 and 20 20 arrays simulated by the AIM with PSAI preconditioner 

 Processors near (sec) cof(sec) 
set(se

c) 
steps sol(sec) tol(sec) mem(Mb) ef 

7
 7 

1 312 144 886 
13 

891 2, 241 69 - 
4 78 36 222 655 996 42 56% 
8 39 18 111 608 782 30 36% 

20
 20 

1 12, 724 5, 842 
10, 

251 

19 

7, 413 36, 588 510 - 

4 3, 862 1, 367     
2, 

447     
6, 314 11, 737 210 78% 

8 1, 977 723     
1, 

310 
4, 830 8, 959 158 51% 

 
IV. CONCLUSION 

In this paper, the PSAI preconditioned AIM 
method is proposed for analyzing the large scale 
microstrip antennas. The parallel AIM is used to 
accelerate the matrix vector multiplication. The 
PSAI is used to improve the iterative convergence 
of the LGMRES. The PSAI is based on the 
parallelized Frobenius-norm minimization, and the 
construction time of the preconditioner is further 
saved by selecting the most informative elements 
of the sparse near field impedance matrix. 
Numerical results prove that by using the PSAI 
preconditioner, the parallel efficiency is 
significantly improved.   

Fig. 12. The monostatic RCS of the 30  30 
microstrip arrays simulated by the AIM with and 

without PSAI preconditioner, 0   and   is 

varying from 0  to 85 , and the frequency of the 
incident plane wave is 300MHz. 

 

 
Fig. 13. The iterative steps of the LGMRES for 
the 30  30 microstrip arrays simulated by the 
AIM with and without PSAI preconditioner, 

0   and   is varying from 0  to 85 , and the 
frequency of the incident plane wave is 300MHz. 
And the tolerance of LGMRES is 10-4. 
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