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Abstract- Multilevel fast multipole algorithm 

(MLFMA) has been widely used to solve 

electromagnetic scattering problems from the 

electrically large size objects. However, it 

consumes very large memory to store near the 

interaction matrix for the object with fine 

structures because the “low frequency breakdown” 

phenomenon would happen when the finest level 

box’s size is below 0.2 wavelengths. The matrix 

decomposition algorithm - singular value 

decomposition (MDA-SVD) is one remedy to 

alleviate this pressure because it has no limit of 

the box’s size. However, the matrix assembly time 

of MDA-SVD is much longer than that of the 

MLFMA. In this paper, a hybrid method called 

MDA-SVD-MLFMA is proposed to analyze 

multi-scale problems, which uses the main 

framework of MLFMA but adopts the MDA-SVD 

to deal with the near interaction of MLFMA. This 

method takes advantage of the virtues of both 

MLFMA and MDA-SVD and is more efficient 

than either conventional MLFMA or conventional 

MDA-SVD. An efficient preconditioning 

technique is combined into the inner-outer flexible 

generalized minimal residual (FGMRES) solver to 

speed up the convergence rate. Numerical results 

are presented to demonstrate the accuracy and 

efficiency of the proposed method.  

 

Index Terms- Flexible generalized minimal 

residual (FGMRES), matrix decomposition 

algorithm - singular value decomposition 

(MDA-SVD), multilevel fast multipole algorithm 

(MLFMA). 

 

I. INTRODUCTION 
In electromagnetic wave scattering calculations, 

a classical problem is to compute the equivalent 

surface currents induced by a given incident plane 

wave. Such calculations, relying on the Maxwell 

equations, are required in the simulation of many 

industrial processes ranging from antenna design, 

electromagnetic compatibility, computation of 

back-scattered fields, and so on. All these 

simulations require fast and efficient numerical 

methods to compute an approximate solution of 

Maxwell’s equations. The method of moments 

(MoM) [1-2] is one of the most widely used 

techniques for electromagnetic problems. It is 

basically impractical to analyze electrically large 

problems using MoM because its memory 

requirement and computational complexity both 

are O(N2), where N refers to the number of 

unknowns. Recently, a wide range of fast methods 

have been developed for accelerating the iterative 

solution of the electromagnetic integral equations 

discretized by MoM. One of the most popular 

techniques is MLFMA [3-6], which has O(NlogN) 

complexity for a given accuracy.   

The increased power and availability of 
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computational resources and acceleration schemes 

have enabled the solution of problems with a very 

large number of unknowns, varying from a few 

thousands to a few millions [3-6]. Another class of 

problems arises when analyzing structures which 

require a high local density of unknowns to 

accurately capture geometric features. This class 

of problems is referred to as multi-scale problems 

exhibit multiple scales in length. For example, 

small length scale discretizations are required to 

capture sharp or fine geometric features that are 

embedded within large and smooth geometries 

discretized at a coarser length scale. Generally, the 

characteristic of a multi-scale problem is the 

concentration of large number of unknowns in 

electrically small domains. However, when the 

finest level box’s size is below 0.2  (  

indicates the incident wavelength), MLFMA will 

suffer from the “low frequency breakdown” 

phenomenon [4]. 

MDA-SVD is another popular technique used 

to analyze the scattering/radiation [7-8], which has 

no limit of the box’s size. However, the matrix 

assembly time of MDA-SVD is much larger than 

that of MLFMA. In this paper, a hybrid method 

called MDA-SVD-MLFMA is proposed, which 

uses the main framework of MLFMA but adopts 

the MDA-SVD to deal with the near interaction of 

MLFMA. This method takes advantage of both 

MLFMA and MDA-SVD and is more efficient 

than either conventional MLFMA or conventional 

MDA-SVD for analyzing the multi-scale 

problems. 

It is well known that the matrix condition 

number of the electric field integral equation 

(EFIE) for an electrically large problem is large. 

Furthermore, for multi-scale problems, the matrix 

condition number is even larger due to the mixed 

discretization. Therefore, the system has poor 

convergence history and requires urgently a good 

solver or preconditioner. In this paper, an efficient 

preconditioning technique is combined into the 

inner-outer flexible generalized minimal residual 

(FGMRES) solver to improve the property of 

EFIE [9-12]. 

The remainder of this paper is organized as 

follows. Section II demonstrates the formulation 

of EFIE and the theory of MDA-SVD briefly. 

Section III describes the theory and 

implementation of MDA-SVD-MLFMA in more 

details and gives a brief introduction to the 

inner-outer flexible generalized minimal residual 

(FGMRES) method. Numerical experiments are 

presented to demonstrate the efficiency of this 

proposed method in Section IV. Conclusions are 

provided in Section V comments. 
 

II. THE THEORY OF MDA-SVD 

A. The formulation of EFIE 

In this paper, the electric field integral equation 

(EFIE) is used to analyze electromagnetic 

scattering problems. The EFIE formulation of 

electromagnetic wave scattering problems using 

planar Rao-Wilton-Glisson (RWG) basis functions 

for surface modeling is presented in [2]. The 

resulting linear systems from EFIE formulation 

after Galerkin’s testing are briefly outlined as 

follows 

   (1) 

where 

(2) 

and 
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Here, G(r,r’) refers to the Green’s function in free 

space and {In} is the column vector containing the 

unknown coefficients of the surface current 

expansion with RWG basis functions. Also, as 

usual, r and r’ denote the observation and source 

point locations. Ei(r) is the incident excitation 
plane wave, and  and k denote the free space 

impedance and wave number, respectively. N is 

the number of unknowns used to discretize the 

object. 

Once the matrix equation (1) is solved, the 

expansion coefficients {In} can be used to 

calculate the scattered field and RCS. In the 

following, we use Z to denote the coefficient 

matrix in equation (1), I = {In} andV = {Vn} for 

simplicity. Then, the EFIE matrix equation (1) can 

be symbolically rewritten as 

               (3) 
To solve the above matrix equation by an 

iterative method, the matrix-vector products are 

needed at each iteration. Traditionally, a 

matrix-vector production requires the operation 

cost O(N2). 

B. The theory of MDA-SVD 

The multilevel matrix decomposition algorithm 

(MLMDA) was originally proposed for 

two-dimensional geometries in [13], which 

utilizes the idea of equivalent point sources. The 

extension of this algorithm is presented in [14-19] 

for analyzing arbitrary three-dimensional 

geometries. However, it is efficient only for planar 

or piecewise planar objects and is inefficient for 

analyzing the general electrically large scatterer. 

MDA-SVD presented in [7-8] shows a better 

efficiency by recompressing the matrix of MDA 

using the SVD technique.   

Consider, there exists two subdomains, the first 

one is an observation box i that contains m1 basis 

functions; whereas, the second one is a source box 

j that contains m2 test functions. When the two 

boxes are sufficiently separated, the impedance 

matrix associated with them can be expressed 

using low rank representations [20]. In MDA 

implementation, the impedance matrix which is 

gotten through the EFIE of two well-separated 

regions can be expressed as three small matrices 

      (4) 

where [Zm n] is the interaction matrix between 

observation and source subdomains, r denotes the 

number of equivalent RWG sources, which is 

much smaller than n and m. Therefore, the 

matrix-vector product operation of the three 

matrices is much smaller than the operation of the 

direct multiplication [16]. 

Since the matrices [Umr] and [Vrn] generated by 

MDA are usually not orthogonal, they may 

contain redundancies, which can be removed by 

the following algebraic recompression technique. 

This method may be regarded as the singular 

value decomposition optimized for rank-k 

matrices.  Utilize QR and SVD to 

reorthonormalize [Umr] and [Vrn] and the equation 

(4) can be obtained as 

        (5) 

where [U] and [V] are both orthogonal. These 

techniques can reduce the required amount of 

storage of MDA, while the asymptotic complexity 

of the approximation remains the same. 

MDA-SVD is one of the most popular methods 

for analyzing three-dimensional electromagnetic 

problems, but the far-field matrix assembly time 

of MDA-SVD is much longer than that of 

MLFMA. In order to reduce the matrix assembly 

time of MDA-SVD, a new hybrid method is 

proposed in the following. 

 

III. FORMULATION 
According to [3-6], MLFMA has been widely 

used to solve the scattering from the 

electrically-large size objects. When it is applied 


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into analyzing the scattering from the multi-scale 

objects where dense discretization is necessary to 

capture geometric features accurately, the memory 

usage of MLFMA is very large. MDA-SVD is 

another popular technique for solving the three 

dimensional problems in [7-8], but the far-field 

matrix assembly time of MDA-SVD is much 

longer than that of MLFMA. In this section, a 

hybrid method called MDA-SVD-MLFMA is 

proposed. 

Take three dimensional problems into account, 

both MLFMA and MDA-SVD are based on the 

data structure of the octree. In Fig.1, the box 

enclosing the object is subdivided into smaller 

boxes at multiple levels, in the form of an octal 

tree. The largest boxes not touching each other are 

at level 2, while the smallest boxes are at level L. 

The subdivision process runs recursively until the 

finest level L. 

 

 
Fig. 1. The sketch of the octree structure. 

 

It is well known that when the box size is less 

than 0.2 , MLFMA will suffer from the “low 

frequency breakdown” phenomenon. The relative 

error of MLFMA and MDA-SVD corresponding 

to the size of the finest level box is analyzed. The 

formulation of the relative error is described by 

Relative error ＝
,
 

where M denotes the bistatic scattering from PEC 

sphere computed by Mie series while T is the 

bistatic scattering computed by MLFMA or 

MDA-SVD. The incident direction is 

 and the scattered angles vary from 

 to  in azimuth direction when pitch 

angle is fixed at . The number of unknowns is 

15918 and the MDA-SVD truncating tolerance is 

10-3 relative to the largest singular value. Figure 2 

shows the relative error of MLFMA will increase 

greatly when the size of the finest level box is less 

than 0.2 . It can be seen that MDA-SVD has an 

acceptable precision even when the finest level 

box size is below 0.2 . 

 

 
Fig. 2. Relative error of MLFMA and MDA-SVD 

for a sphere corresponding to the size of finest 

level box for bistatic scattering. 

 

When the multi-scale problems are analyzed, 

MDA-SVD is adopted for the level with the box 

size smaller than 0.2  while MLFMA is adopted 

for other cases. The details of the hybrid method 

are shown in algorithm I. 

 

Algorithm I: MDA-SVD-MLFMA 

1) Grouping on the target to achieve multilevel 

structures with the largest level L. When the 

number of basis functions of the box is less 
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than or equal to the number of equivalent 

RWG sources of the box, the finest level L is 

gained. At each level, the sizes of the boxes 

are same. 

2) For each level, determine which algorithm is 

applied according to the box size. MDA-SVD 

is adopted for the level with the box size 

smaller than 0.2  while MLFMA is adopted 

for other cases. LMLFMA is the level beginning 

of the MLFMA. 

3) Calculation of the impedance matrix 

a) MoM is used to calculate the near 

interaction impedance matrix. 

b) From l = L : LMLFMA+1 

MDA-SVD is applied to calculate the 

impedance matrix 

End 

c)    From l = LMLFMA: 2 

MLFMA is used to calculate the 

impedance matrix 

End 

4) Iterative solution of the matrix equation 

d) The direct matrix-vector production is 

used to the near interaction impedance 

matrix. 

e) From l = L : LMLFMA+1 

MDA-SVD is applied to speed up 

matrix-vector production 

End 

f) From l = LMLFMA: 2 

MLFMA is used to speed up 

matrix-vector production 

End 

This new method takes advantages of the 

virtues of both MLFMA and MDA-SVD, which 

uses MLFMA to reduce the matrix assembly time 

of MDA-SVD and utilizes MDA-SVD to alleviate 

the near field burden of MLFMA. The efficiency 

of the method is demonstrated by the numerical 

results. 

In this paper, the FGMRES is used as the 

iterative solver for the EFIE to further accelerate 

the convergence [9-12]. Consider the iterative 

solution of equations of the form Ax=b. The 

GMRES algorithm with right preconditioning 

solves the modified system AM-1(Mx)=b, where 

the preconditioner M is constant. However, in 

FGMRES, the preconditioner is allowed to vary 

from one step to another in the outer iteration. We 

have GMRES for the inner iterations whose 

preconditioner is chosen as the near interaction of 

MDA-SVD-MLFMA. 

 

IV. NUMERICAL RESULTS 
To validate and demonstrate the accuracy and 

efficiency of the proposed MDA-SVD-MLFMA, 

some numerical results are presented in this 

section. All the computations are carried out on a 

personal computer with 1.86 GHz CPU and 

1.96GB RAM in single precision and the 

MDA-SVD truncating tolerance is 10-3 relative to 

the largest singular value. The restart number of 

GMRES is set to be 30 and the stop precision for 

restarted GMRES is denoted to be 10-3. Both the 

inner and outer restart numbers of FGMRES are 

30. The stop precision for the inner and outer 

iteration in the FGMRES algorithm is 10-2 and 

10-3, respectively. The normalized RCS is defined 

as 

 ,   (6) 

for any direction ( ), where and  

represent the scattered and incident electric fields. 

A. The plane-cylinder geometry 

The multi-scale examples are analyzed in the 

following. The first multi-scale example is 

plane-cylinder geometry. The edge length of the 

square plane is 4 m, the radius of the small 

column is 0.1 m, and the height of small column is 
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2 m. The rotation axis is z-axis. Here, the small 

column is densely discretized in comparison to the 

plane part of the structure. The incident and 

observed angles are ( ) and 

( ), respectively. The size 

of the lowest-level box of the 

MDA-SVD-MLFMA is 0.16 , while the size of 

the lowest-level box of the MLFMA is 0.33 . 

Figure 3(a) shows that the result of 

MDA-SVD-MLFMA agrees very well with the 

FEKO [21]. 

Table 1 summarizes the matrix assembly time 

and the memory storages of the 

MDA-SVD-MLFMA, MDA-SVD, and MLFMA. 

“MVP time” in the table indicates the time of one 

matrix-vector production. It can be observed that 

the matrix assembly time of the 

MDA-SVD-MLFMA is half less than that of 

MDA-SVD and is, also, less than that of MLFMA. 

The total memory consumption of 

MDA-SVD-MLFMA is half less than that of 

MLFMA and is less than that of MDA-SVD. The 

MVP time of MDA-SVD-MLFMA is, also, much 

less than that of either MLFMA or MDA-SVD.  

 Figure 3(b) gives the convergence history 

curves of MDA-SVD-MLFMA solved with 

GMRES and FGMRES. In this numerical 

experiment, GMRES requires 6190 s with 5896 

iterative steps, while FGMRES requires only 667 

s with 46 outer iterative steps. The solving time of 

GMRES is 9 times longer than that of FGMRES 

in this example. 

 

(a) 

(b) 

Fig. 3. (a) Bistatic scattering cross section of 

plane-cylinder geometry. (b) Convergence 

histories of MDA-SVD-MLFMA solved with 

GMRES and FGMRES. 

 

Table 1: The total memory, the matrix assembly time, and one matrix-vector multiplication time of 

MLFMA, MDA-SVD, and MDA-SVD-MLFMA of plane-cylinder geometry 

Frequency 

(MHz) 
Unknowns Algorithms 

Matrix assembly 

time (s) 

Memory 

(MB) MVP time (s) 

200 28756 

MDA-SVD-MLFMA 400 458  1.05  

MDA-SVD 1101  666  1.53  

MLFMA 415 968 1.70 

0 , 0i i   

0 180 , 90s s     




-20

-10

0

10

20

30

40

0 30 60 90 120 150 180

Theta(degree)

N
or

m
al

iz
ed

 R
C

S
(d

B
)

MDA-SVD-MLFMA
FEKO
MLFMA
MDA-SVD

 

1.E-3

1.E-2

1.E-1

1.E+0

1 10 100 1000 100

Number of iterations

R
el

at
iv

e 
re

si
du

al
 e

rr
or

With FGMRES

Without FGMRES

919JIANG, ET. AL: PRECONDITIONED MDA-SVD-MLFMA FOR ANALYSIS OF MULTI-SCALE PROBLEMS



B. The missile geometry 

The second multi-scale example is missile 

geometry. The height of the cylinder is 4.7 m, and 

the radius of the cylinder is 0.5 m. The rotation 

axis of missile geometry is z-axis. The incident 

and scattered angles are ( ) and 

( ), respectively. The size 

of the lowest-level box of the 

MDA-SVD-MLFMA is 0.14 , while the size of 

the lowest-level box of MLFMA is 0.29 . Table 

2 shows the matrix assembly time, the memory 

storages, and MVP time of MDA-SVD-MLFMA, 

MDA-SVD, and MLFMA. Again, the matrix 

assembly time of MDA-SVD-MLFMA is half less 

than that of MDA-SVD and is, also, less than that 

of MLFMA. The memory usage of 

MDA-SVD-MLFMA is half less than that of 

MLFMA and is less than that of MDA-SVD. The 

MVP time of MDA-SVD-MLFMA is also much 

less than that of MLFMA and MDA-SVD. The 

bistatic RCS by use of MDA-SVD-MLFMA is 

shown in Fig. 4(a), and is agreed well with FEKO. 

The convergence curves are plotted for 

MDA-SVD-MLFMA solved with GMRES and 

FGMRES in Fig. 4(b). GMRES requires 7964 s 

with 4958 iterative steps, while FGMRES requires 

only 1095 s with 65 outer iterative steps. The 

solving time of GMRES is 7 times longer than 

that of FGMRES, in this example. 

 

(a) 

 

(b) 

Fig. 4. (a) Bistatic scattering cross section of 

missile geometry. (b) Convergence histories of 

MDA-SVD-MLFMA solved with GMRES and 

FGMRES. 

 

 

 

 

Table 2: The total memory, the matrix assembly time, and one matrix-vector multiplication time of 

MLFMA, MDA-SVD, and MDA-SVD-MLFMA of missile geometry 

Frequency 

(MHz) 
Unknowns Algorithms 

Matrix assembly 

time (s) 

Memory 

(MB) MVP time (s) 

300 38145 

MDA-SVD-MLFMA 600 638  1.60  

MDA-SVD 1757  949 2.01  

MLFMA 643 1272 2.22 
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C. The VIAS geometry 

The third multi-scale example is the VIAS 

geometry [22]. The geometry fits within a cuboid 

with aspect radio  and the maximum 

dimension is  at 300 MHz. The incident and 

scattered angles are ( ) and 

( ), respectively. The size 

of the lowest-level box of the 

MDA-SVD-MLFMA is 0.18 , while the size of 

the lowest-level box of MLFMA is 0.37 . The 

matrix assembly time, the memory storages and 

MVP time of MDA-SVD-MLFMA, MDA-SVD, 

and MLFMA are shown in Tab. 3. The matrix 

assembly time of MDA-SVD-MLFMA is much 

less than that of MDA-SVD and is, also, less than 

that of MLFMA, while the memory usage of 

MDA-SVD-MLFMA is much less than that of 

MLFMA and is less than that of MDA-SVD. The 

bistatic RCS by use of MDA-SVD-MLFMA is 

shown in Fig. 5(a), and is agreed well with that of 

MLFMA and MDA-SVD. The convergence 

curves are plotted for MDA-SVD-MLFMA solved 

with GMRES and FGMRES in Fig. 5(b). GMRES 

requires 2403 s with 1190 iterative steps, while 

FGMRES requires only 411 s with 84 outer 

iterative steps. The solving time of GMRES is 5 

times longer than that of FGMRES in this 

example. 

 

 

 
(a) 

 

(b) 

Fig. 5. (a) Bistatic scattering cross section of 

VIAS geometry. (b) Convergence histories of 

MDA-SVD-MLFMA solved with GMRES and 

FGMRES. 

 

 

 

 

Table 3: The total memory, the matrix assembly time, and one matrix-vector multiplication time of 

MLFMA, MDA-SVD, and MDA-SVD-MLFMA of VIAS geometry 

Frequency 

(MHz) 
Unknowns Algorithms 

Matrix assembly 

time (s) 

Memory 

(MB) MVP time (s) 

300 61099 

MDA-SVD-MLFMA 811 661 2.02  

MDA-SVD 2631 922 2.43 

MLFMA 827 1284 2.90 
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In summary, the memory of 

MDA-SVD-MLFMA is much less than that of 

MLFMA and the matrix assembly time of 

MDA-SVD-MLFMA is much less than that of 

MDA-SVD. The matrix-vector multiplication of 

MDA-SVD-MLFMA is more efficient than that of 

either MLFMA or MDA-SVD. It can be applied to 

the monostatic RCS calculation of the complex 

object in future. The MDA-SVD-MLFMA is 

much more efficient than either MLFMA or 

MDA-SVD for the multi-scale problems. It is 

observed that the convergence rate of GMRES is 

remarkably accelerated by the application of 

FGMRES algorithm. 

 

V. CONCLUSIONS 
In this paper, a new efficient hybrid method 

named MDA-SVD-MLFMA is proposed. The 

MDA-SVD-MLFMA takes advantage of the 

virtues of both MLFMA and MDA-SVD, which 

uses MLFMA to reduce the matrix assembly time 

of MDA-SVD and utilizes MDA-SVD to alleviate 

the near field burden of MLFMA. The numerical 

results demonstrate that the memory of 

MDA-SVD-MLFMA is much less than that of 

MLFMA and the matrix assembly time of 

MDA-SVD-MLFMA is much less than that of 

MDA-SVD. It is observed that the convergence 

rate of GMRES is remarkably accelerated by the 

application of FGMRES algorithm. 

MDA-SVD-MLFMA combined with FGMRES is 

very efficient for analyzing the multi-scale 

problems. 
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