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Abstract – In this paper, we propose a new multi-level
power series solution method for solving a large sur-
face and volume electric field integral equation-based
H-Matrix. The proposed solution method converges in
a fixed number of iterations and is solved at each level of
the H-Matrix computation. The solution method avoids
the computation of a full matrix, as it can be solved inde-
pendently at each level, starting from the leaf level. Solu-
tion at each level can be used as the final solution, thus
saving the matrix computation time for full H-Matrix.
The paper shows that the leaf level matrix computa-
tion and solution with power series gives as accurate
results as the full H-Matrix iterative solver method. The
method results in considerable savings time and memory
savings compared to the H-Matrix iterative solver. Fur-
ther, the proposed method retains the O(NlogN) solution
complexity.

Index Terms – H-Matrix, Method of Moments (MoM),
power series solution, surface electric field integral equa-
tion, volume electric field integral equation.

I. INTRODUCTION
With the use of ever increasing higher frequencies

for various defence and civilian applications in the cur-
rent world, the electrical size of electromagnetic scatter-
ing/radiation problem has grown drastically[1, 2]. Solv-
ing the electrically large problems numerically to obtain
fast and accurate results is the biggest challenge in
the Computational Electromagnetics (CEM) community.
Also, with the increase in computing power and memory,
the need for large-scale solution algorithms has grown
even more. Out of the various numerical methods in
CEM, the most popular methods are: a) the Finite Dif-
ference Time Domain (FDTD) [3] method in the time
domain and b) the Method of Moments (MoM) [4]
and Finite Element Method (FEM) [5] in the frequency

domain. Traditionally, the frequency domain methods
have been more popular than the time domain meth-
ods as most of the early experimental results were avail-
able in the frequency domain and validating the com-
putational results was convenient and easy. Out of the
various frequency domain methods, MoM based meth-
ods are highly accurate and flexible for modeling irreg-
ular structures, the MoM matrix can be computed with
the Surface Electric Field Integral Equation (S-EFIE)
for solving Perfect Electrical Conductor (PEC) problems
with surface mesh, and the Volume Electric Field Inte-
gral Equation (V-EFIE) [6] for solving inhomogeneous
dielectric problems with volume mesh. Further, the MoM
leads to a smaller number of unknowns compared to
FEM and is free from grid dispersion error. However,
the MoM matrix is a full matrix compared to a sparse
matrix for the FEM method. Hence, the solution to large
size problems with MoM in electromagnetics requires
high matrix memory and computation time due to the
dense matrix. Note that MoM dense matrix computa-
tion, matrix vector product and storage cost scales to
O(N2) for N number of unknowns. Solving the dense
matrix with an iterative solver leads to NitrO(N2) cal-
culations for Nitr iteration with O(N2) for matrix-vector
multiplication cost. With a direct solver, the complex-
ity grows as O(N3). Various fast solver algorithms like
Multi-Level Fast Multipole Algorithm (MLFMA) [6],
Adaptive Integral Method (AIM) [7], FFT [8], IE-QR
[9], and Hierarchical Matrix (H-Matrix) [10–12] have
been proposed to overcome the MoM limitations of high
memory and computation cost. Fast solver reduces the
matrix memory, matrix fill time, and matrix-vector prod-
uct time to O(NlogN). The reduced matrix-vector prod-
uct time improves the solution time to NitrO(NlogN) for
Nitr iterations with various iterative solution methods like
Bi-Conjugate Gradient (BiCG) or Generalized Minimum
Residual (GMRES).
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Fast solvers are built on the compressibility prop-
erty of the far-field interaction matrices. The compres-
sion of the far-field matrices can be done using analytical
matrix compression methods like MLFMA or AIM, and
also with numerical matrix compression methods like
H-Matrix. Compared to analytical compression meth-
ods, numerical compression methods are easy to imple-
ment and are kernel independent. All the fast solvers
depend on the iteration count of the iterative solution
methods. The convergence of the iterations depends on
the condition number of the computed MoM matrix,
and further, for a large number of unknowns, the con-
vergence iteration count also increases. The high iter-
ation count can be mitigated by using various precon-
ditions like ILUT, Null-Field, and Schur’s complement
method based preconditioners [13–15]. The matrix pre-
conditioner improves the condition number of the matri-
ces and reduces the iteration count of the overall matrix
solution. Despite the improvement in solution time, the
use of preconditioners comes with the overhead of pre-
conditioner computation time and extra preconditioner
solution time for each iteration. Also, for the solving of a
large number of unknowns, the iteration count may still
be high.

Recently there has been a trend in the CEM commu-
nity for the development of an iteration-free fast solver
method for solving problems with a large number of
unknowns. Various fast direct solvers [16, 17] have been
proposed to overcome the iteration dependency of the
solution process. These direct solvers are based on LU
decomposition and compression methods. The methods
are complex to implement and give quadratic scaling for
complex real-world problems.

In this work, we propose a Multi-Level (ML) fast
matrix solution method based on the power series [18,
19]. The proposed method exploits the property of ML
matrix compression of the H-Matrix. The matrix is
solved for each level using the matrix computation of
the leaf level only, and the matrix solution can be ter-
minated at the desired level as per the required accu-
racy. Our experimental results show that we get good
accuracy even for the lowest level solution. The method
relies on matrix-vector multiplication at each level and
using the solution of the lowest level saves matrix com-
putation time and memory requirement for the overall
matrix solution.

The rest of the paper is organized as follows. Section
II gives a summary of MoM computation for S-EFIE and
V-EFIE, section III covers H-Matrix computation for S-
EFIE and V-EFIE. The derivation of the proposed ML
power series solver is given in section IV. The numeri-
cal results of the proposed method, and conclusion are
discussed in sections V, and VI.

II. METHOD OF MOMENTS
MoM is a popular and efficient integral equation

based method for solving various electromagnetic radi-
ation/scattering problems. MoM can be computed using
Electric Field Integral Equation (EFIE) for both surface
and volume modeling. Surface modeling can be done
using Rao Wilton Glisson (RWG) [20] triangle basis
function, whereas volume modeling can be done using
Schaubert Wilton Glisson (SWG) [21] tetrahedral basis
function. In the case of dielectric modeling compared to
S-EFIE, V-EFIE is an integral equation of the second
kind and is more well-conditioned and stable. V-EFIE
can model inhomogeneous bodies more efficiently than
surface EFIE. In this work, we use RWG basis function
for PEC surface S-EFIE modeling and SWG basis func-
tion for volume V-EFIE modeling. The surface/volume
EFIE governing equation for the conductor/dielectric
scattering body illuminated with the incident plane wave
is given as the total electric field (EEEtotal) from a scat-
tering surface/volume and is the sum of incident electric
field (EEE inc) and scattered electric fields (EEEscatt).

EEEtotal = EEE inc +EEEscatt . (1)
The scatted electric field is due to the surface cur-

rent in PEC surface or volume polarization current in the
dielectric media and is given as:

EEEscatt =− jωAAA(rrr)−∇φ(rrr). (2)

In the above equation AAA(rrr) is the magnetic vec-
tor potential and describes radiation of current, φ(rrr) is
electric potential and describes associate bound charge.
Applying the boundary condition for PEC structure the
S-EFIE can be written as:

EEE inc = jωAAA(rrr)+∇φ(rrr). (3)

Similarly, the V-EFIE can be written for a dielectric
inhomogeneous body as:

EEE inc =
DDD(rrr)
ε(rrr)

+ jωAAA(rrr)+∇φ(rrr). (4)

In the above, equation DDD(rrr) is the electric flux den-
sity and ε(rrr) is the dielectric constant of the scatter-
ing volume media. The surface current in equation (3)
for PEC structure is expanded with RWG function, and
similarly in equation (4) for dielectric volume structure
polarization current and charge is modeled with SWG
basis function. Performing Galarkin testing over each
term with integrating over the surface/volume, the final
system of equation boils down to the linear system of the
equation as below:

[ZZZ]xxx = bbb. (5)



299 ACES JOURNAL, Vol. 38, No. 5, May 2023

In the above equation, ZZZ is a dense MoM matrix, bbb
is a known incident plane wave, and xxx is an unknown
coefficient to be computed. The dense matrix leads to
high cost matrix computation and memory requirement
as well as solution time complexity. In the next section,
we discuss the implementation of the H-Matrix for the
mitigation of high cost of the conventional MoM matrix

III. H-MATRIX
The high cost of MoM limits its application to a

few λ problem sizes. This limitation of MoM can be
overcome by incorporating fast solvers. Most of the
fast solvers work on the principle of compressibility of
the far-field matrices. For the implementation of a fast
solver, the mesh of geometry is divided into blocks using
an oct-tree or binary-tree division process and terminated
at the desired level with a limiting edge or face count
in each block. The non-far-field interaction blocks at the
lowest level are considered near-field blocks and are in
the dense matrix form. The compression of the far-field
block matrix at each level can be done analytically or
numerically. The system of equations in equation (5)
can now be written as the sum of near-field and far-field
matrix form as:

[ZZZN +ZZZF ]xxx = bbb. (6)

In the above equation ZZZN is a near-field block
matrix and ZZZF is far-field compressed block matrices
for the MoM fast solver matrix. Numerical compression
of far-field matrices is easy to implement and is kernel-
independent. A few of the popular fast solvers using
numerical compression methods are IE-QR, H-Matrix.
In this work, we have implemented H-Matrix for ML
matrix compression. For the ML compression computa-
tion, the mesh is divided into ML binary tree division-
based subgroups. H-Matrix works on the computation
of a far-field matrix for the interaction blocks satisfy-
ing the admissibility condition given in equation (7). The
admissibility condition states that η times the distance
between the observation cluster (Ωt ) and source cluster
(Ωs) should be greater or equal to the minimum diam-
eter of the observation cluster or source cluster for far-
field computation, where η is the admissibility control
parameter, and its value is taken as 1.0.

η dist(Ωt ,Ωs)≥ min(diam(Ωt),diam(Ωs)). (7)

The far-field matrix block compression is done in
such a way that its parent interaction matrix should not
be computed at the top level. Matrix compression at each
level is carried out using Adaptive Cross Approximation
(ACA) [22] [23] method. The method exploits the rank
deficiency property of the far-field matrix blocks. The
low-rank sub-block of the far-field ZZZsub with m rows and

Fig. 1. Compressed far-field and dense near-field matrix
blocks layout.

n columns is decomposed into approximate UUU (m×k) and
VVV (k×n) matrices where k is the numerical rank of the low-
rank sub-block far-field matrix such that k <<min(m,n).
In this work, for memory savings, we only compute half
of the H-Matrix [12] by making the computation pro-
cess symmetric, and to maintain the accuracy of the H-
Matrix, we use re-compressed ACA [24] for far-field
block compression. The solution of the iterative solver is
iteration count dependent, and further, the convergence
iteration count depends on the condition number of the
matrix. Also, as the number of unknowns increases, the
iterating count for the convergence increases. In the next
section, we discuss our proposed method, which is an
iteration count and far-field level block independent solu-
tion process.

IV. MULTI-LEVEL POWER SERIES
SOLUTION

The full H-Matrix is a combination of near-field and
far-field block matrices. The far-field compressed block
matrices are computed for various levels, and in equation
(6), the far-field matrix (ZZZF ) can be further decomposed
into the different matrix levels as below:

[ZZZF ] = [ZZZF1]+ [ZZZF2]+ [ZZZF3]. (8)

In the above equation far-field matrix ZZZF1 is for level
1, ZZZF2 is for level 2 and, ZZZF3 is for level 3. Level 3 forms
the leaf level of the binary tree and level 1 as the top
level of the tree. Figure 1 shows the H-Matrix layout for
a two-dimension strip. In Fig. 1, light gray boxes rep-
resent ZZZF1 far-field matrix at level 1, dark gray boxes
as ZZZF2 is for level 2 and large white boxes as ZZZF3 for
level 3, the black boxes are the near-field dense matrices.
For illustrative purposes, the near-field matrix is a diago-
nal block form for a two-dimension strip. The real-world
problems are three-dimension in structure, giving a non-
diagonal block near-field matrix. To implement our ML
power series solution method, we must diagonalize the
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near-field block matrix. The near-field matrix in equation
(6) is diagonalized using diagonal scaling coefficient [ααα],
as computed in [15] such that the scaled diagonal block
near-field matrix can be given as:

[Z̃ZZN ] = [ααα][ZZZN ]. (9)

Expanding equation (8) and scaling it with the scal-
ing coefficients [ααα] gives:

[ααα][ZZZN +ZZZF1 +ZZZF2 +ZZZF3]xxx = [ααα]bbb, (10)

[Z̃ZZN ]xxx+[ααα][ZZZF1]xxx+[ααα][ZZZF2]xxx+[ααα][ZZZF3]xxx = b̃bb. (11)

In the above equation b̃bb is a [ααα] scaled vector bbb and
can be further simplified as:

xxx+[Z̃ZZN ]
−1[ααα][ZZZF1]xxx+[Z̃ZZN ]

−1[ααα][ZZZF2]xxx

+[Z̃ZZN ]
−1[ααα][ZZZF3]xxx = [Z̃ZZN ]

−1b̃bb.
(12)

Let [Z̃ZZN ]
−1[ααα][ZZZF1] = [UUU1], [Z̃ZZN ]

−1[ααα][ZZZF2] = [UUU2]
and [Z̃ZZN ]

−1[ααα][ZZZF3] = [UUU3] equation (12) can further be
simplified as:

xxx+[UUU1]xxx+[UUU2]xxx+[UUU3]xxx = [Z̃ZZN ]
−1b̃bb, (13)

[III +UUU1]xxx+[UUU2]xxx+[UUU3]xxx = [Z̃ZZN ]
−1b̃bb, (14)

xxx+[III +UUU1]
−1[UUU2]xxx+[III +UUU1]

−1[UUU3]xxx

= [III +UUU1]
−1[Z̃ZZN ]

−1b̃bb.
(15)

Let [III +UUU1]
−1[UUU2] = [VVV 2] and [I +UUU1]

−1[UUU3]
= [VVV 3] equation (15) can further be simplified as:

xxx+[VVV 2]xxx+[VVV 3]xxx = [I +UUU1]
−1[Z̃ZZN ]

−1b̃bb, (16)

xxx+[III +VVV 2]
−1[VVV 3]xxx = [III +VVV 2]

−1[III +UUU1]
−1[Z̃ZZN ]

−1b̃bb.
(17)

Let [III +VVV 2]
−1[VVV 3] = [WWW 3] and equation (17) can be

written as:

xxx+[WWW 3]xxx = [III +VVV 2]
−1[III +UUU1]

−1[Z̃ZZN ]
−1b̃bb, (18)

xxx = [III +WWW 3]
−1[III +VVV 2]

−1[III +UUU1]
−1[Z̃ZZN ]

−1b̃bb. (19)

In the above equations [III +WWW 3]
−1,[III +VVV 2]

−1 and
[III +UUU1]

−1 can be solved independently at each level
using a power series solution method with the expansion
as below:

[III +UUU1]
−1 = [III +[Z̃ZZN ]

−1[ααα][ZZZF1]]
−1, (20)

[III +VVV 2]
−1 = [III +[III +UUU1]

−1[UUU2]]
−1

= [III +[III +[Z̃ZZN ]
−1[ααα][ZZZF1]]

−1[Z̃ZZN ]
−1[ααα][ZZZF2]]

−1,
(21)

[III +WWW 3]
−1 = [III +[III +VVV 2]

−1[VVV 3]]
−1

= [III +[III +[III +UUU1]
−1[UUU2]]

−1[III +UUU1]
−1[UUU3]]

−1

= [III +[III +[III +[Z̃ZZN ]
−1[ααα][ZZZF1]]

−1[Z̃ZZN ]
−1[ααα][ZZZF2]]

−1

[III +[[Z̃ZZN ]
−1[ααα][ZZZF1]]

−1[Z̃ZZN ]
−1[ααα][ZZZF3]]

−1.

(22)
From equations (20), (21), and (22), it can be

observed that the solution of these equations is depen-
dent on that level and the lower levels of the binary tree
block interaction matrix. At each level, the inverse of the
matrix system equation can be efficiently computed by
using a fast power series solution [18]. The fast power
series iterative solution converges in two fixed iterations.
The solution process only depends on the matrix-vector
product of the H-Matrix, thus retaining the complexity of
O(NlogN)[18]. The ML solution can be computed at the
desired level per the required accuracy. Our results show
that the solution at the leaf level gives an accurate result
leading to time and memory savings.

V. NUMERICAL RESULTS
In this section, we show the accuracy and efficiency

of the proposed method. The simulations are carried out
on 128 GB memory and an Intel (Xeon E5-2670) pro-
cessor system for the double-precision data type. The H-
Matrix computation is done with the ACA matrix com-
pression error tolerance of 1e-3 [22] and solved with
GMRES iterative solver with convergence tolerance of
1e-6 [12]. For a compressed or dense matrix [Z] if we
want to expand [1 + Z]−1 in power series, the neces-
sary and sufficient condition for convergence is |Z| < 1
and we choose 0.1 for our simulations [25]. The con-
ductor and dielectric geometry with dielectric constant
εr is meshed with an element size less than λ/10 and
λ/(10

√
εr) respectively. To show the accuracy of the

proposed method, the RCS results are compared with
full H-Matrix iterative solver [12]. In the further subsec-
tions, we demonstrate the far-field memory and compu-
tation time savings in along with in solution time saving
with our proposed ML power series solution with differ-
ent examples.

A. PEC square plate
To show the accuracy and efficiency on a PEC object

in this subsection, we consider a square plate of size
15.0 λ along x and y axis meshed with 67,200 unknown
edges. The square plate mesh is divided with binary tree
division till level 6. The PEC S-EFIE H-Matrix is solved
with ML the power series solution method and H-Matrix
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iterative solver. The ML power series converges in 2 iter-
ations, and the iterative solver solution converges in 686.
Only the far-field matrix at leaf level 6 is computed for
the ML power series solution, ignoring far-field compu-
tation from levels 1 to 5 of the binary tree.

Fig. 2. Bi-static RCS of the PEC square plate with VV
polarized plane wave incident at θ = 0◦, φ = 0◦, and
observation angles θ = 0◦ to 180◦, φ = 0◦.

Figure 2 shows the Bi-static RCS of a PEC square
plate, and from the figure it can be observed that the
solution with the ML power series solver matches with
the H-Matrix iterative solver. Table 1 shows the savings
in memory, computation, and solution time of the ML
power series solution method as compared with a con-
ventional H-Matrix-based iterative solver.

Table 1: Matrix memory, fill and solution time for a PEC
square plate

Memory
(GB)

Matrix
Fill Time

(H)

Solution
Time
(sec)

H-Matrix 5.04 1.24 500.85
ML Power Series 4.71 1.08 3.95

B. Dielectric slab
To show the accuracy and efficiency for a consider-

able size dielectric problem in this subsection, we con-
sider a dielectric slab elongated along the y-axis with a
height of 10.0 λ length, 1.0 λ width, and 0.1 λ thickness
and dielectric constant (εr = 2.0) meshed with 120,080
tetrahedral faces. The ML power series converges in 2
iterations, and the regular H-Matrix iterative solver con-
verges in 33 iterations.

The dielectric slab mesh is divided with binary tree
division till level 10. Only the far-field matrix at leaf
level 10 is computed for the ML power series solution.
The accuracy of the method for a Bi-static RCS is shown

0 50 100 150
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Fig. 3. Bi-static RCS of the dielectric slab with VV polar-
ized plane wave incident at θ = 0◦, φ = 0◦, and observa-
tion angles θ = 0◦ to 180◦, φ = 0◦.

Table 2: Matrix memory, fill and solution time for a
dielectric slab

Memory
(GB)

Matrix
Fill Time

(H)

Solution
Time
(sec)

H-Matrix 2.09 6.12 24.52
ML Power Series 0.50 1.46 7.50

in Fig. 3. Table 2 shows the significant matrix memory,
matrix fill and solution time savings of the ML power
series solution compared to the conventional H-Matrix-
based iterative solver.

Fig. 4. Bi-static RCS of a dielectric hollow cylinder with
VV polarized plane wave incident at θ = 0◦, φ = 0◦, and
observation angles θ = 0◦ to 180◦, φ = 0◦.

C. Dielectric hollow cylinder
In this subsection, we consider a dielectric hol-

low cylinder elongated along the y-axis with a size of
6.0λ length, 0.4λ outer radii, and 0.05λ thickness with
a dielectric constant (εr = 2.0), meshed with 158,830
tetrahedral faces. The ML power series converges in 2
iterations, and the H-Matrix iterative solver converges
in 24 iterations.
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The hollow cylinder mesh is partitioned with a
binary tree division till level 8, and for the ML power
series solution only the far-field matrix at leaf level 8
is computed. Figure 4 shows the close match in the bi-
static RCS computed using the ML power series method
and that with regular H-Matrix iterative solver. Table 3
shows the memory and time saving of the ML power
series solution compared to the conventional H-Matrix
iterative solver.

Table 3: Matrix memory, fill and solution time for a
dielectric hollow cylinder

Memory
(GB)

Matrix Fill
Time (H)

Solution
Time
(sec)

H-Matrix 3 .38 10.00 54.52
ML Power Series 0.44 1.26 16.16

VI. CONCLUSION
It can be observed from the illustrative examples in

the previous sections that our proposed ML power series
solution method gives considerable matrix memory, fill
and solve time saving for significant size problems. The
solution method is as accurate as the H-Matrix iterative
solver. The savings may not be substantial for small-
size mesh structures. Still, the method will give signif-
icant savings for large-size problems taken up for illus-
tration and for complex and sizeable electrical problems
like antenna arrays and complex composite structures.
Also, the technique is entirely algebraic in nature and
can apply to fast analytical solver-based methods like
AIM and MLFMA. The matrix block in each level can be
computed independently, and the solution of the method
only depends on the matrix-vector product of the system
matrix. Hence, the proposed method is amenable to effi-
cient parallelization.
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