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Abstract – This research presents a compact panda-
shaped wearable antenna with a defected ground
structure (DGS). It is fabricated using a flexible mate-
rial to work at 2.4-GHz industrial scientific medical
(ISM) band, confirming the wireless body area net-
work (WBAN) application requirements. The annular
ring DGS and circular and elliptical slots in the patch aid
in achieving the operating frequency. Good impedance
bandwidth is maintained during on-body and bending
analysis. Furthermore, this antenna exhibits a peak gain
of 7.3 dB and a minimum specific absorption rate (SAR)
of 0.0233 W/kg for 1 g tissue and 1.02 W/kg for 10 g tis-
sue. The investigation shows that an antenna with good
robustness, compact, high flexibility, and very low SAR
makes it a strong candidate for WBAN applications.

Index Terms – Annular ring DGS, bending analysis,
flexible, SAR, slot.

I. INTRODUCTION
In the new millennia, there has been constant tech-

nological advancement, specifically in wireless body
area network (WBAN) communication. The technology
has been used across multiple fields, including mili-
tary and health care [1]. This significant improvement
requires the scientific world to invest time and energy
to develop WBAN systems, especially wearable anten-
nas that seamlessly integrate into people’s daily wear.
This requirement poses a significant challenge for the
scientific community to ensure that the wearable antenna
designed is flexible, conducive, compact, light-weight,
yet non-abrasive, and, importantly, meets the emission
standards put forth by international standard organiza-
tions [2]. As the antenna is expected to be used on the
human body, the parameters that need to be evaluated are
frequency shifting, efficiency degradation, and radiation

distortion when used near human tissues, as stringent
rules cover are applicable for the SAR [3]. Previous
research studies prove that the performance of the wear-
able antenna is impacted when working near a human
subject [4].

Several pieces of research have been proposed so
far for wearable application in narrowband. Some of the
notable contributions are as follows: in [5], a combina-
tion of EBG defected ground structure (DGS) technique
was employed. In this work, EBG increases the isola-
tion between the human bodies with an antenna, whereas
DGS enhances the bandwidth. The L-shaped inverted
element with DGS is proposed for the improvement of
the bandwidth and gain [6]. In [7], an asymmetric arc-
shaped DGS was utilized to reduce the cross-polarization
and enhance the gain. The ground plane is modified with
four L-shaped slots to radiate the antenna in dual band
[8]. Using floating ground planes, the authors produced
low specific absorption rate (SAR) value, reduced back-
ward radiation, and improved gain [9]. Adding the mean-
dering slits on the ground plane and fractal structure
achieved size miniaturization and bandwidth improve-
ment [10]. In [11], high gain, wideband, and low SAR
were obtained using an array antenna with an EBG
structure on the ground plane. In [12], dielectric res-
onator antenna with slotted ground suppresses the sub-
strate effect, reducing the backward radiation. Based on
the analysis, DGS is the best choice for the excellent
characteristics of the antenna as it supports miniaturiza-
tion, improving gain, bandwidth, and suppressing back-
ward radiation. This article introduces a compact panda-
shaped flexible textile antenna with annular ring DGS for
WBAN applications. The suggested antenna is designed
as the right choice for wearable applications due to its
compactness, flexibility, excellent characteristics in on-
body and bending scenarios with low SAR value, and
charming shape. There are four sections in this article.
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The antenna design topology and DGS technique are
demonstrated in Section II. The outcome and analysis of
the antenna are enlightened in Section III. The conclu-
sion part is discussed in Section IV.

II. ANTENNA DESIGN
A. Antenna topology

An elliptical-shaped patch forms the basic structure
of the antenna as the face and it is shown in Figure 1.
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The mathematical analysis of elliptical patch geom-
etry is derived using the approximated Mathieu’s func-
tion as depicted in eqn (1)–(4) [13–16], where Me f f is
the effective semi-major axis, m is the semi-major axis,
n is the semi-minor axis, εr is the dielectric constant of
substrate, t is the substrate height, e is the eccentric-
ity of ellipse, fr is the resonance frequency, and q11 is
the approximated Mathieu function. Originally, the radi-
ating patch is designed for 2.8 GHz using eqn (2). To
improve the S11 level, gain, and bandwidth, two annular
rings are attached as left and right ears on both sides. By
increasing the perimeter of the patch bandwidth broaden-
ing is achieved [17]. Further, two circle-shaped slots are
etched from the face as right and left side eyes. Finally,
at the center, an elliptical slot is also etched as a nose.
By adding more slots in the patch, more current is inter-
rupted and more energy is radiated from the slot. This
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boosts the gain and efficiency by increasing the radiated
power [18]. This slotted structure forms a panda’s head
that attracts people to wear. A feed line is extended from
the edge of the face to the bottom of the substrate.

Impact of DGS – on the Antenna Behavior
In the DGS technique, the ground is etched with

a defect or slot to improve the antenna’s performance
regarding resonance frequency, S11, gain, bandwidth, and
efficiency [19], [20]. It interrupts the current path of
the ground surface and enhances the performance [21].
The shape, size, and position of DGS are calibrated
to meet the optimal characteristics. This article intro-
duces a novel idea of annular ring DGS etched on the
ground surface. Due to the impact of DGS, resonance
frequency shifted from 2.8 to 2.44 GHz with an improved
level of S11 from –22 to –53 dB. Further, it also raises
the bandwidth from 40 to 130 MHz. Thus, the over-
all performance of the antenna is satisfied only with the
presence of DGS. The construction of antenna topology
is presented in a step-by-step process and is shown in
Figure 2. Table 1 shows the detailed measurement of
the antenna and the simulation is carried out with CST
microwave studio software. The front and back views of
the designed antenna are depicted in Figure 3.

B. Fabricated antenna
The ground structure and patch are fabricated with

flexible conductive fabric having 0.05Ω/square surface
resistivity. The commonly available jeans cloth is used
as a substrate. Its dielectric constant is 1.7, and its
thickness is 1 mm [22]. The material is chosen due
to its lower dielectric constant value, reducing the sur-
face wave losses and enhancing impedance bandwidth
[23]. The substrate thickness is selected as the minimum
value of 1 mm to increase the antenna efficiency. The
loss tangent value of denim jeans is 0.025. The precise
shape of the patch and ground is cut by a laser machine
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SENFNNG – SF1610. This process provides extreme
accuracy and clean cuts and minimizes fraying. The sub-
strate is attached to the patch and ground fabric using
fabric glue. A 50Ω SMA connector is affixed to the feed
line for the antenna’s excitation. Figure 4 depicts the
antenna prototype in different views.

III. ANTENNA PERFORMANCE
Analysis of the antenna in on-body and free space

scenarios was performed to study the standard param-
eters and SAR and bending analysis. A body phantom
with dimension 100 × 100 × 13 mm consisting of skin,
fat, and muscle is created using a CST microwave stu-
dio for on-body simulation. Table 2 lists the physical
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B. Fabricated Antenna 
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surface resistivity. The commonly available jeans cloth 
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its thickness is 1mm [22]. The material is chosen due to 
its lower dielectric constant value, reducing the surface 
wave losses and enhancing impedance bandwidth [23]. 
The substrate thickness is selected as the minimum 
value of 1mm to increase the antenna efficiency. The 
loss tangent value of denim jeans is 0.025. The precise 
shape of the patch and ground is cut by a laser machine 
SENFNNG – SF1610. This process provides extreme 
accuracy andclean cuts and minimizes fraying. The 
substrate is attached to the patch and ground fabric 
using fabric glue. A 50 SMA connector is affixed to the 
feed line for the antenna’s excitation. Figure4 depicts 
the antenna prototype in different views. 
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Fig. 4. Antenna topology. (a) Front view. (b) Back 
view. 
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(20 MHz) and a reduction in S11 magnitude [25, 26].
Though there is a deviation in resonance frequency, it
covers the required impedance bandwidth.

B. Far-field radiation pattern
A shielded anechoic chamber measuring 5.7 × 3.5
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frequency was used. The photographs of the antenna
placement in E-plane and H-plane directions are shown
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and cross-polar) in both E-plane and H-plane directions
for on-body, free space flat, and bending antennas are
presented in Figures 8 and 9. In H-plane and E-plane,
the antenna produces nearly a bi-directional and omni-
directional pattern, respectively, at 2.4 GHz. From the
radiation characteristics, it is evident that there is a good
isolation between co-polarization and cross-polarization
in all scenarios due to the presence of DGS [27]. The
radiation patterns are slightly changed when the antenna
is bent with higher radius, due to the deformity of the
antenna structure. The suggested antenna achieved stable
measured radiation performance, which is a good matchB. Far-Field Radiation Pattern 
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Fig. 9. Simulated and measured radiation pattern in free
space. (a) Flat antenna. (b) Bending antenna at 80-mm
radius. (c) Bending antenna at 60-mm radius. (d) Bend-
ing antenna at 40-mm radius.

with the simulation results in on-body, free space flat and
bending antennas.

C. Bending analysis
The bending analysis was performed to ascertain

that the antenna is congruous and robust. The simulation
and measurements for different radius curves are pre-
dicted in Figures 10 and 11. The bending is done with
an 80-, 60-, and 40-mm radius in free space simulation
and measurement. The result shows the resonance fre-
quency is being shifted to the left side in the E-plane
direction. Contrarily to this, the resonance frequency is
shifted to the right side in the H-plane direction. But in
both conditions, it nearly covers the required bandwidth.
The simulated and measured values are almost the same
except for the magnitude of S11, as seen in the graph. It
may be due to the antenna’s deformity and losses in the
fabricated antenna [28].

D. Efficiency and gain response
The efficiency response and gain measurement are

illustrated in Figure 12. In a free space environment, the
designed antenna achieves a gain of 7.3 dBi in simulation
and 5.3 dBi in measurement. The gain variation is due to
the losses in the fabricated antenna.
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Table 3: Comparison of DGS antenna with plain ground
antenna

Parameters Antenna without
DGS

Antenna with
DGS

Resonance
freq. at

2.8 GHz 2.44 GHz

Bandwidth 40 MHz 130 MHz
Gain 3.8 dB 7.3 dB

Efficiency 73% 86%

In practical scenario, SAR is calculated by tak-
ing an average volume of 1 and 10 g tissue. For 1-
g average tissue, the permissible SAR value is < 1.6
W/kg as per Federal Communication Commission (FCC)
standard. For 10 g tissue, the allowable SAR value is
< 2 W/kg as per European Standard of the Interna-
tional Electro-Technical Commission (IEC) [30]. The
simulated SAR Distribution at frequency 2.4 GHz is
shown in Figure 13. Prolonged exposure will result in
a high SAR value, which is hazardous to the human
body, while the lower value of SAR is desirable as it
enhances efficiency. This antenna exhibits a minimum
of SAR 0.233 and 1.02 W/Kg for 1 and 10 g tissue,
respectively. The value of SAR falls below the standard
limits in both cases, making the antenna suitable for
wearable applications.

F. Overall comparison in the presence and absence of
DGS

Finally, the impact of DGS has been compared with
many antenna parameters in the presence and absence
of DGS. Table 3 indicates that the antenna with DGS
structure has exactly resonated at 2.44 GHz with broader
bandwidth and higher gain. It also fulfilled the SAR
safety limit with better efficiency. This proves that the
presence of DGS is required to achieve the optimal
result.

The proposed work has been compared with the
results from various literatures in Table 4. The originality
of this work is the elegant shape with extreme flexibility
in terms of both conductive and substrate materials. The
suggested antenna exhibited higher gain (7.3 dBi) in the
smaller dimensions structure within SAR safety limits.

Fig. 13. Simulated SAR at 1 g tissue (left-side) and 10 g
tissue (right-side).
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Table 4: Comparison of proposed antenna with existing antenna

References Size (mm2) Substrate material Patch material
Operating
frequency
(GHz)

Gain (dBi)
SAR (W/Kg)

Ref. [4] 100 × 100 Felt Nickel–copper–
polyester tape

4.55–13 6 10 g: 0.107

Ref. [10] 39 × 39 Roger RT/duroid
5880

Copper cladding 2.4 2.06 1 g: 0.34
10 g: 0.26

Ref. [24] 115 × 123 Cotton Zari–silver metallic
yarn

2.4 7.11 1 g: 0.032
10 g: 0.0115

Ref. [30] 40 × 30 FR-4 Copper etching 2.4/5.8 5.08 1 g: 0.19
10 g: 1.18

Ref. [31] 81 × 81 Felt Nora-Dell-CR fab-
ric

2.4 7.3 1 g: 0.554
10 g: 0.23

Ref. [32] 50 × 16 Jean Copper tape 2.4 1.98 1 g: 0.52
10 g: 0.27

Proposed work 50 × 40 Jean Copper fabric 2.4 7.3 1 g: 0.233
10 g: 1.02

IV. CONCLUSION
This research paper proposed a panda-shaped flexi-

ble textile antenna that can operate in 2.4 GHz and sup-
port WBAN applications. This antenna covers the entire
ISM band (2.40–2.4835 GHz). The annular ring DGS
was developed to boost antenna bandwidth, gain, and
efficiency. In the free space scenario, 7.3 dBi gain is
observed at 86% efficiency. On-body condition exhibits
4.8 dBi gain at 82% efficiency. The antenna had good
radiation properties with minimal cross-polarization in
simulations and measurements. The bending analysis
proves that the antenna performs well in E- and H-plane
orientations. The value of SAR stays within permissi-
ble limits in both 1 and 10 g average tissue. Because of
its flexibility and attractive shape, this delightful panda-
shaped antenna will blend well with the design of gar-
ments. The exhibited features of the proposed antenna
make it most appropriate for use in WBAN applications.
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