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Abstract—Equivalence theorems in electromagnetic
field theory stipulate that farfield radiation pat-
tern/scattering profile of a source/scatterer can be eval-
uated from fictitious electric and magnetic surface cur-
rents on an equivalent imaginary surface enclosing the
source/scatterer. These surface currents are in turn cal-
culated from tangential (to the equivalent surface) mag-
netic and electric fields, respectively. However, due to
the staggered-in-space placement of electric and mag-
netic fields in FDTD Yee cell, selection of a single equiv-
alent surface harboring both tangential electric and mag-
netic fields is not feasible. The work-around is to se-
lect a closed surface with tangential electric (or mag-
netic) fields and interpolate the neighboring magnetic (or
electric) fields to bring approximate magnetic (or elec-
tric) fields onto the same surface. Interpolation schemes
available in the literature include averaging, geometric
mean and the mixed-surface approach. In this work, we
compare FDTD farfield scattering profiles of a dielectric
cube calculated from surface currents that are obtained
using various interpolation techniques. The results are
benchmarked with those obtained from integral equation
solvers available in the commercial packages FEKO and
HFSS.

Index Terms— Bistatic RCS, Equivalence theorem,
FDTD, Field interpolation, Near-to-farfield transforma-
tion, Total-field/Scattered-field (TF/SF).

I. INTRODUCTION
Equivalence theorems come very handy in effi-

ciently calculating farfields from a radiating source or
a scatterer. Extending the problem space to include
the farfield region is not often computationally feasible

due to time and memory costs involved. Instead, the
nearfields in the form of fictitious surface currents on
equivalent surface are used to calculate the farfield mag-
netic and electric vector potentials A and F [1]. These
vector potentials are then used to obtain either radiation
pattern in case of sources or radar cross section (RCS) in
case of scatterers. The equivalent surface fully encloses
the sources/scatterers, and small enough to keep the com-
putational costs in budget. The whole process, called
near-to-farfield transformation (NTFF), requires calcu-
lation of unknown nearfields on an equivalent surface
using analytical or numerical methods depending on the
problem at hand. Nearfields of complex scattering struc-
tures, such as an airplane or a vessel, can only be solved
numerically using techniques such as FDTD, method of
moments (MoM) and finite element method (FEM).

In FDTD, one peculiar aspect about choosing the
equivalent surface is that it is not possible for any sin-
gle closed surface to house both the tangential electric
(E) and magnetic (H) nearfields that are used to calcu-
late surface currents Js and Ms. The reason being, the E
and H fields are not co-located in the FDTD grid (stag-
gered in space along all three dimensions). This makes
it necessary to interpolate fields from neighboring Yee
cells in order to bring E and H (and thereby Js and Ms)
onto the same surface.

Arithmetic averaging has been widely used in the
literature [2–4] to interpolate and bring fields onto the
same surface in the FDTD grid. Use of geometric mean
[5] for interpolation is also demonstrated to yield bet-
ter results for 2D scattering problems. Another radi-
cal method called the mixed-surface approach [6], that
does not involve any interpolation, is also shown to per-
form better for strong backward-scattering problems. In
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this work, we compare the bistatic RCS of a dielec-
tric cube, obtained in FDTD using aforementioned in-
terpolation techniques, with those obtained from integral
equations solvers in commercial packages FEKO and
HFSS-IE. A cube scatterer, that snaps to the electric field
FDTD grid, is chosen to avoid artifacts of stair-casing
in the FDTD-calculated RCS. In FEKO and HFSS-IE,
the planewave source is used to illuminate the scatterer
in a particular direction. In FDTD, we use the per-
fect total-field/scattered-field (TF/SF) technique [7–10]
for planewave illumination of scatterer. The TF/SF tech-
nique used is perfect in the sense that the spurious field
leakage into the scattered field region is essentially non-
existent. Moreover, it is possible to launch planewave in
almost any arbitrary direction.

Frequency domain NTFF transformation is used to
obtain farfield scattering profile (to be exact, bistatic
radar cross section, RCS), in the three planes XY, XZ
and YZ, of the dielectric cube at a single frequency. This
involves applying DFT (Discrete Fourier Transform) to
the time-domain surface currents (on the entire equiva-
lent surface) to obtain frequency domain currents at the
desired frequency. These frequency domain currents are
then used to calculate RCS at the desired frequency.

II. LEAKAGE-FREE TF/SF TECHNIQUE
FOR A PLANEWAVE SOURCE IN FDTD

In TF/SF formulation, the FDTD problem space is
divided into two regions: a total-field (TF) region and
a scattered-field (SF) region. The interface between the
two regions is used to introduce planewave sourcing con-
ditions that excite fields inside the TF region. This is also
an application of equivalence principle, that equivalent
sources are used here to recreate fields inside a volume
bounded by a closed surface.

Exciting planewaves using TF/SF formulation in-
volves two steps [7–10]: 1) propagate a planewave, ex-
ploiting its one dimensional nature, along an auxiliary
1D FDTD grid. 2) Use the fields computed on the aux-
iliary 1D grid to enforce source conditions, in the form
of consistency corrections to the main grid update equa-
tions, at the interface between the TF and SF regions.
These consistency corrections act as equivalent source
conditions and excite the planewave in the TF region of
the main grid.

If the fields on the 1D grid undergo the same numer-
ical dispersion as that of the main grid, it is possible to
perfectly confine the planewave to the TF region, without
any leakage into SF region. The above condition is satis-
fied, as shown by [9], when px∆x

mx
=

py∆y
my

=
pz∆z
mz

= ∆r (the
rational angle condition), where px = cos φinc sin θinc,
py = sin φinc sin θinc, and pz = cos θinc. The angles θinc

and φinc specify the direction of propagation of incident

planewave. mx, my, and mz are some integers (all even or
all odd), and ∆r is 1D grid spacing.

If we intend to excite a planewave that propagates
along certain direction θinc and φinc, then we choose some
integers that roughly satisfy the following:

φinc = tan−1 my

mx
, θinc = cos−1 mz√

m2
x + m2

y + m2
z

, (1)

which are directly derived from the rational angle condi-
tion. Larger integers can be chosen to finely resolve the
angle of incidence.

The unique feature of this process is every field lo-
cation of the main grid can be mapped onto a 1D grid
(along the unit propagation vector of the planewave) and
vice-versa. This allows us to collapse the very 3D FDTD
update equations into a 1D form, thereby ensuring the
fields on the 1D grid undergo the same numerical disper-
sion as that of the main 3D grid. This in turn ensures
that the spurious leakage into SF region is negligible (as
low as −320 dB or at machine precision), as mentioned
earlier.

The polarization of the planewave is defined by Eφ

and Eθ, for example if Eθ = 1 & Eφ = 0, the planewave
will be theta-polarized. The polarization coefficients of
the electric and magnetic fields in the X, Y and Z direc-
tions are given by [4]:

Einc,x = [Eθ cos(θ̃inc) cos(φ̃inc) − Eφ sin(φ̃inc)] f (t),
Einc,y = [Eθ cos(θ̃inc) sin(φ̃inc) + Eφ cos(φ̃inc)] f (t),
Einc,z = −Eθ sin(θ̃inc) f (t),

Hinc,x =
−1
η0

[Eφ cos(θ̃inc) cos(φ̃inc) + Eθ sin(φ̃inc)] f (t),

Hinc,y =
−1
η0

[Eφ cos(θ̃inc) sin(φ̃inc) − Eθ cos(φ̃inc)] f (t),

Hinc,z =
1
η0

Eφ sin(θ̃inc) f (t),

(2)

where the function f (t) is a time-series having a suitable
profile for FDTD simulations that rises smoothly from
zero or negligible value, such as sufficiently delayed
Gaussian or modulated Gaussian pulses. The above co-
efficients are useful when hard-sourcing few initial grid
points, to initiate the planewave on the auxiliary 1D grid
of the TF/SF formulation [10]. Numerical angles (with
a ˜ , i.e. θ̃inc and φ̃inc) are used to calculate these coef-
ficients. For the relationship between numerical angles
and those given in equation (1), refer to [8].

III. NTFF EQUIVALENT SURFACE FIELD
INTERPOLATION TECHNIQUES

The equivalent surface, on which near-to-farfield
transformation is performed, is placed in the scattered
field region as shown in Fig. 1. The scattered fields on
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this equivalent surface are used to calculate surface cur-
rents, that are used in the surface integrals to calculate
vector potentials. However, a single equivalent surface
will not house both the tangential magnetic and electric
fields (or surface currents), because of the staggered field
locations in FDTD grid, as shown in Fig. 2.

Fig. 1. Schematic of the FDTD problem space, showing
the dielectric scatterer, TF/SF regions and the Equivalent
surface.

Fig. 2. The tangential electric and magnetic fields on two
separate surfaces, red and blue.

One of the techniques to bring the surface currents
(Js and Ms) on to the same surface is to interpolate elec-
tric and magnetic fields using arithmetic average. Av-
erage of four H fields and two E fields (time-domain
fields) brings currents onto the same surface and to the
same location, as demonstrated in [4]. This is shown
in Fig. 3. Discrete Fourier transform (DFT) is applied
on the time-domain average to obtain frequency-domain
current components, at the desired frequencies. These

frequency-domain currents are obtained at discrete loca-
tions, covering all the six faces of the equivalent surface.

Fig. 3. Top: Average of two electric field components
highlighted red gives magnetic current component Mx.
Bottom: Average of four magnetic field components
highlighted red gives electric current component Jy.

Geometric mean interpolation is another technique
that can also be performed on the same fields as used
by arithmetic averaging, shown in Fig. 3. However, a
different sequence of steps is followed. First, the DFT
is applied on the four time-domain H fields and the two
time-domain E fields at the desired frequencies, and then
the geometric mean of the complex-valued frequency-
domain currents are obtained at all the discrete locations
of the equivalent surface. Directly applying geometric
mean on time-domain fields would force us to take the
square root and fourth root of negative real values. Ap-
plying DFT first and then taking the geometric mean
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would help avoid this.
While taking the geometric mean of complex num-

bers, the following pitfall needs to be avoided. The
phases (angles of complex numbers) range between
[−π, π] in computational software by default. The an-
gles that are less than −π (such as −1.1π and −1.5π) are
automatically wrapped-up by 2π (so that −1.1π becomes
0.9π and −1.5π becomes 0.5π). This makes it difficult to
interpolate angles (phases) to compute geometric mean
of complex numbers, since averaging the angles that are
combination of wrapped-up and those that are not pro-
duces inconsistent results. This is essentially the conun-
drum involved in choosing the correct root while taking
nth root of product of n complex numbers, i.e. the ge-
ometric mean of n complex numbers. One solution to
this problem is to first detect if there are any phase wraps
(negative angles wrapped to positive angles) among the
angles of complex numbers that we are trying to take the
geometric mean of. If there aren’t any phase wraps, sim-
ply use the average of phases of the complex numbers
to calculate geometric mean. If there are phase wraps,
we need to subtract h multiples of 2π from sum of the
phases before taking the average of phases. Here, h is the
number of positive phases among the complex operands
for geometric mean. This allows the complex geometric
mean to correctly bisect the angle between the two/four
complex operands.

Geometric mean approach theoretically produces no
nearfield error while interpolating fields of a planewave.
This can be shown using a simple example: consider the
four H fields in the bottom portion of Fig. 3. The po-
sition vectors of these four field locations starting with
bottom left location and going in anti-clockwise direc-
tion are (x, y + 1

2 ∆y, z), (x + ∆x, y + 1
2 ∆y, z), (x + ∆x, y +

1
2 ∆y, z + ∆z), (x, y + 1

2 ∆y, z + ∆z). Also, consider a free
space planewave propagating in arbitrary direction repre-
sented in frequency domain form: e− k·r, here k is prop-
agation vector and r is position vector. If we want to
interpolate the planewave at the location of Jy shown in
bottom portion of Fig. 3 using the geometric mean of
four H fields mentioned above, we obtain:

(3)exp
(
k ·

1
4
[
(x + x + ∆x + x + ∆x + x) ax

+ (y +
1
2

∆y + y +
1
2

∆y + y +
1
2

∆y + y +
1
2

∆y) ay

+ (z + z + z + ∆z + z + ∆z) az
])

= exp
(
k ·

[
(x +

1
2

∆x)ax + (y +
1
2

∆y)ay + (z +
1
2

∆z)az
])
,

that is exactly the same as can be obtained by substituting
the position vector (x + 1

2 ∆x, y + 1
2 ∆y, z + 1

2 ∆z) of Jy in
the planewave representation.

Another technique to overcome the staggered-nature
of planes containing tangential currents in FDTD for per-
forming near-to-farfield transformation is mixed-surface
approach introduced in [6]. Similarities exist between
mixed-surface approach and TF/SF formulation. For ex-
ample, the fictitious surface currents introduced at the
TF/SF interface in the TF/SF formulation, in the form of
consistency corrections to the FDTD update equations,
where they excite equivalent planewave fields inside the
total field region, required no interpolation. This mixed-
surface approach is a dual of the TF/SF formulation, in
the sense that it also does not use field interpolation to
launch equivalent farfields outside the equivalent surface.

During the consistency corrections to the electric
field in TF/SF formulation, for example, we add or sub-
tract incident magnetic field to the right hand side of the
update equation. This is analogous to placing a mag-
netic field-generated electric surface current at the elec-
tric field location, i.e. shifting the location of electric sur-
face current from the location of its associated magnetic
field. Similarly, the location of magnetic surface current
is changed from the location of its associated electric
field. This mixing of field and current locations, when
applied to near-to-farfield transformation, is referred the
Mixed-Surface approach [6].

The implementations of the mixed-surface approach
is shown in equations (4) and Fig. 4:

N =

‹

S h

n̂ ×H|S h e kr̂·r′e dS ′ =

‹

S h

Js|S e e
kr̂·r′e dS ′,

L = −

‹

S e

n̂ × E|S e e
kr̂·r′h dS ′ =

‹

S e

Ms|S h e kr̂·r′h dS ′,
(4)

where S e and S h represent two surfaces on which the
tangential electric and magnetic fields are present, re-
spectively, in FDTD grid. When evaluating the sur-
face integral for N using the magnetic fields on S h, the
surface electric currents caused by the magnetic fields
(Js = n̂ × H) are assumed to be placed on S e. There-
fore, the distance (between the reference point, i.e. the
center of the volume enclosed by equivalent surface, and
the current location on S e) r′e is used in the exponential
inside integral.

Similarly, when evaluating the surface integral for L
using the electric fields on S e, the surface magnetic cur-
rents caused by the electric fields (Ms = −n̂ × E) are as-
sumed to be placed on S h. Thus, the distance r′h is used in
the exponential term inside integral. Finally, a separate-
surface approach, that does not involve any mixing of
field and current location and similar to mixed-surface
approach in all other aspects, is implemented.
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.

Fig. 4. Top: Magnetic field-produced electric currents
are placed on S e. Bottom: Electric field-produced mag-
netic currents are placed on S h.

IV. FREQUENCY DOMAIN
NEAR-TO-FARFIELD TRANSFORMATION

IN FDTD
The frequency domain near-to-farfield projection is

defined in terms of vector potential functions A and F in
equations (5):

A(r̂, ω) =
µ0e− kR

4πR

‹

S

Js(r′, ω)e kr̂·r′dS ′ =
µ0e− kR

4πR
N,

F(r̂, ω) =
ε0e− kR

4πR

‹

S

Ms(r′, ω)e kr̂·r′dS ′ =
ε0e− kR

4πR
L.

(5)

The above equations are functions of frequency and
farfield position unit vector r̂ along r shown in Fig. 1.
The unit vector also represents farfield angles θ and φ.
The closed surface integral is over the equivalent surface,

and the frequency domain currents Js and Ms (complex-
valued) are functions of position on the equivalent sur-
face (represented by primed position vector r′ shown in
Fig. 1) and the frequency. R is the magnitude of the
vector R = r − r′, also shown in Fig. 1.

The auxiliary vectors N and L in equations (5), that
represent only the surface integrals, are then used to cal-
culate the θ and φ components of electric field, given by
equations (6):

Eθ(θ, φ, ω) = −
e− kR

4πR

(
Lφ + η0Nθ

)
,

Eφ(θ, φ, ω) =
e− kR

4πR

(
Lθ − η0Nφ

)
.

(6)

Similarly, the θ and φ components of RCS are given
by equations (7):

RCS θ(θ, φ, ω) =
k2

8πη0Pinc

∣∣∣Lφ + η0Nθ

∣∣∣2,
RCS φ(θ, φ, ω) =

k2

8πη0Pinc

∣∣∣Lθ − η0Nφ

∣∣∣2, (7)

where k and η0 are the free-space wave-number and the
intrinsic impedance, respectively. The surface integra-
tion in equations (5) are carried as discrete summations
(Riemann sum). And, Pinc is the power density of the in-
cident planewave, given by Pinc = 1

2η

(
E2
θ + E2

φ

)
· |F(ω)|2.

Here F(ω) is the Fourier transform of time-series f (t),
defined in equations (2), sampled at the desired fre-
quency ω. The θ and φ components of the auxiliary vec-
tors N and L are defined by equations (8) [4]:

Nθ =

‹

S

(
Jx cos(θ) sin(φ) + Jy cos(θ) sin(φ)

− Jz sin(θ)
)
e kr′ cos(ψ)dS ′,

Nφ =

‹

S

(
− Jx sin(φ) + Jy cos(φ)

)
e kr′ cos(ψ)dS ′,

Lθ =

‹

S

(
Mx cos(θ) sin(φ) + My cos(θ) sin(φ)

− Mz sin(θ)
)
e kr′ cos(ψ)dS ′,

Lφ =

‹

S

(
− Mx sin(φ) + My cos(φ)

)
e kr′ cos(ψ)dS ′.

(8)

V. ERROR COMPARISON WITHOUT A
SCATTERER

As a way to benchmark the accuracy of the above in-
terpolation schemes, an empty region (no-scatterer) is il-
luminated by a planewave using discrete planewave tech-
nique with TF/SF formulation described earlier. Then,
the farfields are obtained from the nearfields which are
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interpolated using different schemes dealt with in the
previous section, and compared. Since the fields in the
scattered-field region for this case are down to the ma-
chine precision, the equivalent surface to perform NTFF
transformation is placed inside the total-field region. As
one might expect, the no-scatterer case should ideally re-
sult in zero farfield. Any electric farfield based on equa-
tion (6) observed is an error (the noise floor). Errors can
be because of: numerical dispersion inherent in FDTD,
approximations in calculation of Js and Ms, discrete sur-
face integration, discretization in space and time, and
truncation of fields (finite word length).

Although this work does not attempt to separate the
above mentioned error types, the farfield error caused by
the error in approximating (interpolating) the nearfield
surface currents Js and Ms is the main differentiator.
This is because, all the other error contributors men-
tioned above are identical for all the interpolation tech-
niques. Therefore, it is expected that the interpolation
scheme that gives minimum farfield performs better than
the rest in terms of accuracy. The above interpolation
schemes are compared for three different simulation pa-
rameters: resolution of the FDTD grid, incident angle of
the planewave, and size of the equivalent surface.

A. Resolution sweep
Figure 5 shows how different interpolation schemes

compare for different resolution of the grid. The verti-

cal axis is the maximum of
√
|Eθ|

2+|Eφ|
2 · ∆t in dB ob-

served across angles in the farfield principal planes (XY,
XZ, and YZ planes). Here ∆t is the FDTD discretization
time step. The horizontal axis is the grid resolution in
terms of cells per wavelength. The frequency at which
the farfields are calculated is 2 GHz.

10 15 20 25 30 35 40

Resolution, cells per wavelength

-280

-260

-240

-220

-200

-180

d
B

Arthmetic Mean

Mixed Surface

Separate Surface

Geometric Mean

Fig. 5. Maximum farfield error in dB for different grid
resolutions.

On the other hand, Fig. 6 shows average of

√
|Eθ|

2+|Eφ|
2 · ∆t observed across angles in the farfield

principal planes.

10 15 20 25 30 35 40

Resolution, cells per wavelength

-280

-260

-240

-220

-200

-180

d
B

Arthmetic Mean

Mixed Surface

Separate Surface

Geometric Mean

Fig. 6. Average farfield error in dB for different grid res-
olutions.

The incident angle for the planewave is φinc =

35.50, θinc = 380 and the size of equivalent surface is
(1λ)3. As expected, the farfield error decreases with in-
crease in resolution as the dicretization errors in FDTD
get minimized when the grid gets finer. The geometric
mean approach produces the lowest farfield as one might
expect because it interpolates the nearfields exactly as
shown in section III, closely followed by arithmetic and
mixed-surface approaches, followed by distant separate
surface approach.

B. Incident angle sweep
Figures 7 and 8 show how maximum and average

errors compare for different interpolation schemes at dif-
ferent incident angles of the planewave. The vertical
axis is the same as described before and the horizontal
axis specifies the θinc direction of the planewave while
the φinc = 23.20. The size of the equivalent surface is
(5λ)3 and the grid resolution is 10 cells per wavelength.
The frequency at which the farfields are calculated is 2
GHz. The trend suggests that as incident planewave di-
rection gets close to the axes directions (θinc = 0, 900),
the farfield errors increase. This could be because of
FDTD numerical dispersion errors becoming worse for
waves propagating along the axes directions as demon-
strated in [11].

C. Equivalent surface size sweep
Figures 9 and 10 show how maximum and average

errors compare for different interpolation schemes for
different equivalent surface sizes. The vertical axis is
same as described before and the horizontal axis specifies
the size of equivalent surface as multiple of λ in 6(nλ)2.
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0 20 40 60 80 100

Incident angle (
inc

), degrees

-260

-240

-220

-200

-180

-160

-140
d
B

Arthmetic Mean

Mixed Surface

Separate Surface

Geometric Mean

Fig. 7. Maximum farfield error in dB for different
planewave incident angles.

The incident angle for the planewave is φinc =

35.50, θinc = 380, and the grid resolution is 10 cells per
wavelength. The frequency at which the farfields are cal-
culated is 2 GHz. Again, the geometric mean performs
best, while arithmetic and mixed-surface approaches per-
form better than separate surface approach.

As expected, the farfield errors increase as size of
equivalent surface increases. This is because, the phase
errors in FDTD accumulate more as the wave travels in
the grid longer and longer. All the above comparisons
show that the geometric mean, mixed surface and arith-
metic mean interpolation schemes perform consistently
and considerably better when compared to the separate
surface approach. Importantly, the geometric mean ap-
proach produces minimum farfield error, and the arith-
metic & mixed surface approach produce similar errors.

0 20 40 60 80 100

Incident angle (
inc

), degrees

-260

-240

-220

-200

-180

-160

-140

d
B

Arthmetic Mean

Mixed Surface

Separate Surface

Geometric Mean

Fig. 8. Average farfield error in dB for different
planewave incident angles.

0 2 4 6 8 10

Size of equiv. surface, n in 6(n )
2

-280

-260

-240

-220

-200

-180

d
B

Arthmetic Mean

Mixed Surface

Separate Surface

Geometric Mean

Fig. 9. Maximum farfield error in dB for various equiva-
lent surface sizes.

0 2 4 6 8 10

Size of equiv. surface, n in 6(n )
2

-280

-260

-240

-220

-200

-180

d
B

Arthmetic Mean

Mixed Surface

Separate Surface

Geometric Mean

Fig. 10. Average farfield error in dB for various sizes of
equivalent surface.

VI. BISTATIC RCS COMPARISON FOR A
DIELECTRIC CUBE

To further validate the performance of different
FDTD interpolation schemes, the bistatic RCS of a di-
electric cube (εr = 5, µr = 1) is calculated at a single fre-
quency of 1 GHz. This FDTD farfield scattering profile
is compared with those obtained from integral equation
solvers available in FEKO and HFSS.

The auxiliary vectors N and L in equations (5), that
represent only the surface integrals, are used to calcu-
late the θ and φ components of RCS, given by equa-
tions (7). The dielectric cube of size λ/2 on each side
(at 1 GHz) is illuminated with a planewave incident at
θinc = 38.00 and φinc = 35.50. This incident angle is ren-
dered by the choice of integers (mx,my,mz) as (7,5,11)
in the perfect TF/SF formulation described in the ini-
tial sections. These angles in FDTD indicate the direc-
tion of planewave propagation (direction of propagation
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vector). Contrary to this, HFSS and FEKO would re-
quire the direction the planewave comes from (opposite
to the direction of propagation vector). Consequently,
the planewave arrival angles, θarrival = 180 − θinc and
φarrival = 180 + φinc, are used in these solvers. The
time-profile of the theta-polarized planewave is a modu-
lated Gaussian pulse, with frequency spectrum centered
around 1 GHz.

The RCS results from the four interpolation schemes
of interest –arithmetic averaging, geometric mean,
mixed-surface, separate-surface approach– are compared
with RCS profiles obtained from FEKO-MoM and
HFSS-IE in Fig. 11.
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Fig. 11. The θ component of bistatic RCS in different
farfield planes (XY, XZ and YZ respectively).

These figures show that the geometric mean, mixed
surface and arithmetic averaging schemes match very
close to each other and to at least one integral equation

solution (FEKO in this case) confirming the clear advan-
tage they have over the separate surface approach. Here,
the FDTD grid resolution used is 40 cells/wavelength at
1 GHz. Also, only RCS θ is shown on the three farfield
principal planes as the RCS φ results do not deviate from
each other to a perceivable degree. The absorbing bound-
ary condition used is Convolutional Perfectly Matched
Layer (CPML) for the simulations involving dielectric
cube. The CPML depth is 10 cells and there is a 10-
cell gap between NTFF equivalent surface and CPML.
The dielectric cube case is presented as a practical case
to show how the errors in the FDTD NTFF formulation
manifest themselves in RCS for different interpolation
schemes, while keeping all other conditions (including
type of ABC and distance to ABC) exactly same. No
significant difference is observed between FDTD results
(obtained using geometric mean, arithmetic averaging,
mixed-surface approaches) and MoM-based FEKO re-
sults as shown in this section.

VII. SUMMARY AND CONCLUSION
Four interpolation approaches (arithmetic averag-

ing, mixed-surface, geometric mean and separate sur-
face scheme) for performing the frequency-domain near-
to-farfield transformation in 3D FDTD are compared in
terms of their baseline farfield errors and bistatic RCS
for a dielectric cube. The planewave is excited in the
FDTD grid using the error-free total-field/scatterd-field
technique. To establish the baseline for farfield error
comparison, nearfields without any scatterer in the total-
field region are transformed to farfields. In this com-
parison, the geometric mean interpolation produces min-
imum farfield error as expected, followed by compet-
ing arithmetic averaging and mixed surface approaches,
while the separate surface approach produces maximum
error. Also, the FDTD RCS profiles calculated using ge-
ometric mean, arithmetic averaging and mixed-surface
approaches for a dielectric cube match very close with
that calculated using integral equation technique.
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