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Abstract ─ In this paper, a reweighted l1-norm constrained 

noise-free normalized least mean square (NLMS) (RL1-

CNFLMS) algorithm is proposed for dealing with sparse 

adaptive array beamforming. The proposed RL1-CNFLMS 

algorithm integrates a reweighted l1-norm penalty into 

the traditional objective function of constrained least 

mean square least mean square (LMS) (CLMS) algorithm 

to drive the weighted coefficient vector to sparsity. 

Besides, the Lagrange multiplier (LM) method and the 

gradient descent principle are employed during the 

derivation procedure for getting the update equation. 

Additionally, we utilize the l1-l2 optimization method 

to acquire the noise-free a posteriori error signal in 

normalizing process to achieve a quicker convergence 

speed, a better signal to interference plus noise ratio 

(SINR) performance as well as a higher array sparsity 

with an acceptable computational complexity. Simulation 

results turn out that by using the noise-free and norm 

constraint techniques, a fairly comparable beampattern 

is achieved by using only 38.4%, 39.4% and 69.4% 

antenna elements in contrast to the constrained NLMS 

(CNLMS), reweighted l1-norm constrained LMS (RL1-

CLMS) and reweighted l1-norm constrained normalized 

LMS (RL1-CNLMS) algorithms, respectively. 

Index Terms ─ Array beamforming, constrained LMS 

algorithm, l1-norm constraint, noise-free normalizing, 

sparse adaptive beamforming. 

I. INTRODUCTION
In the development of antenna array theory, 

adaptive beamforming algorithms have been recognized 

as a critical role in array signal processing. Based on the 

high capacity, adaptive beamforming algorithms have 

drawn significantly concern and widely applied to modern 

telecommunication systems, medical, radar, sonar and 

other areas [1].  

Extensive studies have been reported that adaptive 

beamformers can create ideal beampatterns toward the 

direction of signal of interest (SOI) to keep a high gain 

and give nulls to prevent the influence of interferences 

[2-6]. Meanwhile, in this way the SINR is enhanced [2]. 

The existing researches suggest that adaptive 

beamforming algorithms can use the array weight vector 

to increase the gain of SOI and attenuate the interferences. 

The linearly constrained minimum variance (LCMV) 

algorithm was developed by Frost [2], and then, plenty 

of adaptive algorithms based on least mean square (LMS) 

principle have been devised for adaptive beamforming 

[3-6]. Many researches focus on the resolution, robustness 

and other properties rather than the sparsity of the antenna 

array [2, 3, 7]. To pursuit high performance, large arrays 

are always crucial in practice applications, especially in 

radar and satellite communication [4]. Thus, an antenna 

array utilizing less antenna elements to generate the 

beampattern without sacrificing performance is amazing 

technique.  

Recently, a considerable method has grown up 

around the theme of sparse signal processing [8-21]. 

Inspired by sparse signal processing in system 

identification, channel estimation and other fields [8-19], 

the sparse adaptive beamforming algorithms have been 

proposed to exploit the sparsity of the corresponding 

antenna arrays [4-6]. However, new techniques are still 

needed to further improve these existing algorithms to 

achieve higher performance, e.g., low sidelobe level  
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(SLL) and fast convergence. 

The specific objective of this study is to develop a 

normalizing approach for enhancing sparse adaptive 

beamforming algorithms to accelerate the convergence. 

In [22, 23], the l1-l2 minimization method is discussed, in 

which the noise-free error signal is obtained and then 

applied to other adaptive-filtering algorithms [24]. In this 

paper, we aim to develop a new variable convergence 

factor to promote the conventional constrained LMS 

(CLMS) algorithm for sparse adaptive beamforming 

by minimizing the noise-free a posteriori error signal. 

Simulation results indicate that a similar beampattern 

performance is obtained with less antenna elements, and 

a faster convergence speed as well as a better SINR are 

achieved for a circular antenna array beamforming.  

II. MATHEMATICAL MODEL
As is shown in Fig. 1, a narrowband beamformer 

with N omnidirectional antennas is considered, and the 

output signal at time index k is formulated by: 
Hy ,k k w x (1) 

where wk=[w1,…,wN]T is the weighted coefficient vector, 

while (·)T and (·)H represent the transpose and Hermitian 

operators. The (M+1) input signal which composed of 

directed SOI (θs, φs), and interferences with direction of 

(θi, φi) (i=1,2,…M) is given by: 

,k s k i k k  x A E A i n (2) 

where As and Ai are the steering matrices corresponding 

to the SOI and interferences, Ek as well as ik are the 

complex SOI and interferences envelope vectors. nk 

denotes the zero-mean white Gaussian noise vector. 

Fig. 1. The narrowband beamformer model. 

Then, the beampattern for a given direction (θ, φ) is: 

H 2
( , ) exp .

j
B


 



 
  

 

Ap
w  (3) 

Herein, A is the steering matrix consists of As and Ai, λ 

is the transmission wavelength, and p is the positions of 

antenna elements. The output SINR of a beamformer is 

expressed as [8]: 

2 H 2

H

n+i

| |
SINR= ,s s w A

w R w
(4) 

where 
2

s is the SOI power, and Rn+i is the covariance

matrix of the interference-plus-noise which is depicted 

as: 

 ( H

n+i = ) ) ,k k k kE  R (i N i N (5) 

where E{·} represents the expectation operator. 

III. THE PROPOSED RL1-CNFLMS

ALGORITHM 

A. Review of the CLMS and CNLMS algorithms

The CLMS algorithm exerts a constraint condition

on the cost function of LMS algorithm to solve the 

following problem [25]: 
2

min    subject to  ,kE e  
 

H

w
C w f (6) 

where ek=dk-wHxk represents the estimation error, and 

dk is the desired output, while C and f are constrained 

matrix and vector which relates to the SOI and 

interferences. 

The solution is then found out by using the LM 

method, and then, we obtain the following cost function: 
2 H H

1( ) ( ).clms k kL k E e  
 

+ λ C w f (7) 

In (7), λ1 is regarded as the LM vector. The gradient 

descent principle is also used for carrying out the 

solution of (6). In this case, the update equation is 

expressed as: 

1 - ( ),k k clmsL k 
w

w w g (8) 

where μ acts as the convergence factor and gwLclms(k) is 

gradient vector. 

The instantaneous estimate is used to calculate the 

gradient vector gwLclms(k), and we have: 

2 1( ) - .clms k kL k e 
w

g x Cλ (9) 

Then, the final updating function is obtained and 

given by: 

1 ,k k cμe
   w P w x f

k k
(10) 

with 
1

1

( ) ,

( ) .c







  




H H

H

P I C C C C

f C C C f

N N
(11) 

Then, the CNLMS algorithm is proposed to speed 

up the convergence process, which is the normalized 

version of CLMS algorithm [4, 25]. In the CLMS, the 

step size is fixed. If we use a variable step size μk that can 

minimize the instantaneous posteriori squared error, the 

convergence process will be greatly accelerated. That’s 

to say, the CLMS algorithm can be normalized by letting 

the derivative in terms of μ be 0, which is to calculate 

[25]: 

     *2

* *

[| | ]
0,

ap apap

k k

e k e ke k

μ μ

   
 

 
(12) 

where 
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   H1 .ap k k k ke k e μ  x Px (13) 

Thus, we have: 

0

H
.k

k k c







x Px
(14) 

where ξc>0 is to avoid excessively large convergence 

factor, and μ0 is the initial convergence factor. 

Then, taking (14) into (10), we get the iteration 

equation for the CNLMS algorithm: 

1 0 H
[ ] .k k

k k c

k k c

e



   



x
w P w f

x Px
(15) 

B. The proposed RL1-CNFLMS algorithm

In this paper, a RL1-CNFLMS algorithm for sparse

adaptive beamforming is proposed, which uses the norm 

constraint technique to solve: 

2

1

;
min    subject to  

|| || ,

k

k

k k

E e
t

 
    

H

w

C w f

s w
(16) 

where t is the sparseness constraint factor which is to 

force the small coefficients to zero, and sk is presented as 

[8]: 

  ,
1 1

1
1,..., ,

| |
k i

rl k i

i N
 

 


s
w

(17) 

and ξrl1>0 is a constant analogous to ξc in (14). 

The first step in finding out the solution is to utilize 

the LM method, and the corresponding cost function is: 

=

,

2

1 1

1 1

( ) ( )

[|| || - ]

rl k k

rl k k

L k E e

t

  
 



H H
+ λ C w f

s w

(18) 

where λ1 and λrl1 are the LMs. 

Then, the instantaneous gradient estimation of (18) 

is given by: 

1 1 1 1( ) 2 + ( ),rl k k rl rlL k e k  
w

g x Cλ B (19) 

with 

1

1 1

sgn( )
( )= ,

| |

k

rl

rl k

k
 

w
B

w
(20) 

where sgn(·) is the sign function which transforms each 

element in the vector as -1 for x<0, 0 for x=0 and 1 for 

x>0, respectively.

The gradient descent concept is used to address (16),

resulting in the following update equation: 

1 1- ( ).k k rlL k 
w

w w g (21) 

The LMs λ1 and λrl1 are assessable by using the 

constraints in (16). An approximating approach which 

considers the iteration process at the steady-state (i.e., 

wk+1=wk) is chosen to help to obtain the following 

equation [4, 6]: 

,H

1

1 1( ) .

k

rl kk t





 




C w f

B w
(22) 

Based on (16), (19), (21) and (22), we finally 

acquire the equations below, for λ1 and λrl1, respectively: 

e1 1 1

H

H 1

1 1

(2 ( )),

2 ( )-2
( )( ( ) )+ ,

k k rl rl

k rl k

rl rl k

k

e k
t k

nμ n









  



 


λ D x B

B Px
B w

(23) 

with 
H 1 H

2

1 2

( ) ,

|| ( )|| .rln k

 



D C C C

= PB
(24) 

Then, substituting λ1 and λrl1 into (19) and (21), we 

can derive the updating equation: 
*

1 0 1( ),rl+μ e k  w w U f
kk k

(25) 

where 

,H

1

H

1 1

1

1

H 1

1 1

( )

( ) ( ),

( ) ,

( )
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( )
( ) ( ( ) )( ).
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rl rl
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k
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rl rl k
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q k

m

k
k t k

m


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H H
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P I C C C C

B
U P x

PB
f B w

N N

(26) 

To enable the algorithm to reach the steady-state 

more fleetly, the noise-free normalizing procedure is 

adopted in our proposed algorithm. The noise-free error 

signal obtained via the l1-l2 minimization method is 

introduced to many adaptive-filtering algorithms [24].  

First, we rewrite the a priori error signal as: 

,, ( )k nf ke e n k  (27) 

where n(k) is the noise-component and enf,k is the 

expression of the a priori noise-free error signal, which 

is given by: 

, .nf k k k ke d  x w (28) 

Similarly, we use the a posteriori error signal: 

,H H

, 1 1=(1- ) -nf k k k k k k k rl kd e   x w U x f x (29) 

Taking (27) into (29), and using straight-forward 

calculations, we have: 
H H H

, , 1(1- ) + ( )- ( ) .nf k k k nf k k k rl ke n k n k   U x U x f x (30) 

Then, take the expectation of the a posteriori squared 

error at time index k: 
2 H 2 2 2

, ,

H 2 2

H H

, 1

H 2

1

[ ] [(1- ) ]+ [ ( )]

- [( ( )) ]

[2(1- ) ]

+ [( ) ].

nf k k k nf k

k k

k k nf k rl k

rl k

E E e E n k

E n k

E e

E

 









U x

U x

U x f x

f x

(31) 

In the formulations given above, n(k) is a statistic 

independence and identically distributed white Gaussian 

signal, and enf,k is very small when the algorithm 

converges so that its dependence is ignored. To keep the 

simplicity of the equation, as UHxk and f
H 

rl1xk are scalars, 

their instantaneous estimation is used in our derivation. 

With these assumptions, by minimizing E[ε
2 

nf,k ] with 

respect to μk, yields:  
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 
 

,

2 H

, 1 ,

H 2 2

,

[ ] [ ]

[ ] [ ( )]

nf k rl k nf k

k

k nf k

E e E e

E e E n k









f x

U x
(32) 

where 0<β<1 is a constant and E[n2(k)]=σ
2 

n  is the 

variance of noise. 

Then, we will capture E[e
 

nf,k] and E[e
2 

nf,k]. The latter 

term E[e
2 

nf,k] can be approximated by the squared time 

average of e
 

nf,k writing as: 

1-2 2 2

, , -1 ,[ ] [ ]sign[ ] ( ) .nf k nf k k nf kE e E e e e   (33) 

The parameter α acts as the forgetting factor within (0, 

1). In this case, the major task for us is to get the 

expression for enf,k so as to address E[e
 

nf,k] and E[e
2 

nf,k].  

According to maximum a posteriori probability 

(MAP) [23], enf,k can be recovered form ek via the 

optimization problem: 

,2

, , ,[ ] 0.5 | | | |nf k k nf k nf kf e e e e   (34) 

where γ is a threshold parameter which balances the 

representation error and the sparsity. The optimal 

estimation of enf,k is then calculated by minimizing f [e
 

nf,k] 

with respect to enf,k, which is given by [23, 24]: 

,
ˆ sign[ ]max(| | ,0).nf k k ke e e   (35) 

The threshold parameter γ is chosen as [22-24]: 

,2

nQ  (36) 

with 1<Q<4. 

Until now, we have essentially studied all the 

expressions for μk which are summarized as follows: 

 
 

,

2 H

, 1 ,

H 2 2

,

[ ] [ ]

[ ] [ ( )]

nf k rl k nf k

k

k nf k

E e E e

E e E n k









f x

U x
(37) 

where 

1- ,

,

2 2

,

,

2

2

, -1 ,[ ] [ ]sign[ ] ( )

ˆ sign[ ]max(| | 0

.

, )

nf k nf k k nf k

nf k k k

n

E e E e

Q

e e

e e e
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 


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











(38) 

Finally, replacing μ0 with μk in (25), we can acquire 

the updating equation for RL1-CNFLMS algorithm which 

is omitted here for brief. It is found that the difference 

between the two algorithms, namely the RL1-CNLMS in 

[6] and our proposed RL1-CNFLMS is the calculation of

step size, which requires a little computational complexity.

That is to say, our proposed algorithm provides an

acceptable computational complexity comparing to the

existing algorithm.

IV. SIMULATIONS
In our experiments, a circular array is used to receive 

five QPSK narrowband signals. The signals, composing 

of an SOI and four interferences, come from the azimuths 

of 90°, 30°, 58°, 127°, 163°, respectively, with a uniform 

elevation of 45°. The interference to noise ratio is set to 

30 dB. Other parameters are given in Table 1 in detail.  

Fig. 2. Beam patterns of the proposed algorithm versus 

the CNLMS algorithm and the RL1-CNLMS algorithm 

in [6]. 

Table 1: Parameters in simulations 

Parameters CNLMS RL1-CLMS RL1-CNLMS RL1-CNFLMS 

Step-size (μ) 5×10-3 5×10-9 2×10-2 - 

Elements’ interval 2/λ 2/λ 2/λ 2/λ 

l1-norm constraint 0.93 0.93 0.93 0.93 

Signal frequencies 8GHz 8GHz 8GHz 8GHz 

ε 5×10-3 5×10-3 5×10-3 5×10-3 

α - - - 0.52 

δ - - - 0.12 

Q - - - 1 

The first set of experiment examined the impact of 

the developed RL1-CNFLMS algorithm on beampatterns. 

The performance comparison of the proposed RL1-

CNFLMS, CNLMS, RL1-CLMS and RL1-CNLMS 

algorithms [6] are presented in Fig. 2. It can be seen that 

these algorithms are able to give resistant to the 

interferences by forming nulls and they can still remain 

high gain against the SOI around main lobe. As for our 

introduced algorithm, it has a quite similar main lobe 

with other algorithms as well as the same level of SLL. 
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(a) 

(b) 

Fig. 3. The Mean square error (MSE) performance and 

the l1-norm of coefficients for the proposed algorithm 

versus other related algorithms. (a) MSE performance, 

(b) l1-norm.

Figure 3 shows the MSE performance and the 

coefficients’ l1-norm of the proposed RL1-CNFLMS 

algorithm in contrast to other related beamforming 

algorithms. From Fig. 3, we can find that the proposed 

RL1-CNFLMS have a superior convergence speed which 

validates the results in adaptive filtering and other fields, 

and verifies the effectiveness of our algorithm.  

Figure 4 presents the beamformed antenna arrays. 

The sparse ratio, which is the proportion of the active 

antenna elements to the entire array, are set to be 65.2%, 

55.4% and 38.4%, for RL1-CLMS, RL1-CNLMS and 

RL1-CNFLMS algorithms. Considering Fig. 4 and 

referring to Fig. 2 and Fig. 3, it is obvious that our 

proposed algorithm has the ability to enhance the array 

sparsity and accelerate the convergence procedure with 

good beamforming properties. 

In Fig. 5, the output SINR for different 

beamforming algorithms is discussed. We can see that 

the proposed RL1-CNFLMS algorithm achieves better 

SINR for various SNRs in comparison with the related 

sparse adaptive beamformers.  

(a) 

(b) 

(c) 

Fig. 4. Sparse arrays shrinked by RL1-CNFLMS 

(proposed), RL1-CLMS and RL1-CNLMS [6]. 

Fig. 5. Output SINR versus the input SNR. 

SHI, LI, SUN, YIN, ZHAO: NORM CONSTRAINED NOISE-FREE ALGORITHM FOR SPARSE ADAPTIVE ARRAY BEAMFORMING 713



From the discussions above, our developed RL1-

CNFLMS algorithm achieves a better capacity in 

sparsity, convergence process and output SINR with a 

comparable beampattern compared with other relevant 

sparse adaptive beamformers. As a consequence, the 

proposed RL1-CNFLMS is worthwhile for practical 

applications.  

V. CONCLUSION
In this paper, a RL1-CNFLMS algorithm for sparse 

adaptive beamforming has been proposed and analyzed 

in detail. By means of the l1-l2 minimization method, 

the noise-free a posteriori error signal is obtained and 

adopted to normalize the sparse CLMS algorithm. The 

proposed RL1-CNFLMS algorithm generates the desired 

beampattern while achieving a better performance in 

sparsity, convergence speed and output SINR along 

with an acceptable computational complexity. However, 

during the derivation procedure, as we use lots of 

approximations, the parameters maybe difficult to adjust. 

Also, the coupling in the array is neglected in our 

mathematical model, which may cause estimate error. 

All in all, we still have much more efforts to do in the 

future study.  

In the future, we will consider the subarray method 

to construct the sparse blocked array beamforming using 

the technique in [26-28]. In addition, we will develop a 

platform to verify the proposed algorithms in a MIMO 

antenna array beamforming to analyze the effects of the 

mutual coupling in the array [29-31]. 
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