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Abstract ─ An imperfect coating shall cause uncertainties 

in the analysis of electromagnetic properties. To quantify 

the influence of irregularity, complexity, and uncertainty 

of the coatings for electronic devices, an adaptive mesh 

algorithm combined with the discontinuous Galerkin 

time domain (AM-DGTD) method is developed. The 

uncertain variations are incorporated into the proposed 

algorithm by an appropriate parameterization. The 

standard statistical analysis is performed to calculate  

the appropriate moments, i.e., mean and variance. The 

developed method is validated by modeling a dielectric 

coating with uncertain flaws in an adaptive mesh grid. 

The computed quantities of interest from numerical 

estimations are compared with the analytical values, 

these results agree with the physical explanation, and  

are in good agreement with the exact values, as 

demonstrated by numerical experiments.  

 

Index Terms ─ AM-DGTD method, reflection coefficient, 

statistical analysis, uncertainty quantification. 
 

I. INTRODUCTION 
Dielectric coatings applied to surfaces of aircraft 

frames, automobile frames and ship hull are able not  

only to protect objects from sunlight, moisture, dust and 

abrasion but also to improve their appearance [1]. For 

example, cracks, voids, inclusions, structural flaws and 

material defects [2], these uncertain flaws may impact 

the coating’s electromagnetic performance and cause 

difference from the ideal manufacturing objectives, or to 

damage the essential functions of the dielectric coatings. 

In order to engage in the practical analysis and simulation, 

one must find a suitable, flexible and efficient method to 

deal with these electromagnetic problems.  

In the recent years, the method of moments (MoM) 

with probabilistic technique outlined in [3] was applied 

to determine the uncertainty in practical EM compatibility 

measurements. Polynomial chaos technique was used  

in the finite difference time domain (FDTD) method  

to study microwave circuits and free-space scattering 

problems [4]-[5]. An efficient stochastic finite difference 

time domain (S-FDTD) method [6], which uses truncated 

Taylor series approximations in the derivation, is 

employed for evaluating statistical variation in the EM 

fields caused by variability or uncertainty in the electrical 

properties of the materials in the model. To obtain static 

response characteristics of graphite/epoxy composite 

laminates with random material properties, Navaneetha 

Raj et al. employed Monte Carlo simulation and the 

finite element method (FEM) with different boundary 

conditions [7]. A hybrid approach was adopted in the 

spectral stochastic finite element method (SSFEM) and 

polynomial chaos expansion (PCE) to provide response 

analysis of a linear structure with uncertainties in both 

the structural parameters and the external excitation [8]. 

In [9], a probabilistic approach based on high-order 

accurate expansions of general stochastic processes and 

high-order discontinuous Galerkin method was applied 

to solve the time-domain electromagnetic problems with 

uncertainty in initial conditions, boundary conditions, 

sources, materials, computational domain, and/or 

geometries. In [10], Li et al. proposed a hybrid method 

which integrated an adaptive hierarchical spare grid 

collocation (ASGC) method and the discontinuous 

Galerkin time-domain (DGTD) method. The ASGC 

method is employed to approximate the stochastic 

observables of interest using interpolation functions over 

a set of collocation points determined by the Smolyak’s 

algorithm integrated with an adaptive strategy. Owing to 

the random flaws in the coatings are generally smaller, 

irregular, and more arbitrary in nature. Moreover, the 

DGTD method offers high-order accuracy to a coarse 

resolution, geometrical flexibility through fully 

unstructured grids and higher computational efficiency, 

so it could be more suitable to be employed for the 

uncertainty quantization [9]-[14].  

In this work, using the node displacement method 

and the node insertion method[15]-[17], we develop an 
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adaptive spatial discrete algorithm for the high order 

DGTD method to generate an optimal number of mesh 

elements and to adapt the locations of the global nodes 

for uncertain and complex structures. The AM-DGTD 

method is used to evaluate the statistical variations of 

reflection coefficients of dielectric coating with random 

flaws in one-dimensional model. Firstly, we compare the 

high-order convergence of the AM-DGTD algorithm for 

different values of the number of element K and the order 

of polynomial N. Then, we solve three typical uncertain 

flaw problems using the developed approach: (i) slight 

deviation in the permittivity of the dielectric coating,  

(ii) variable tolerance in the thickness of coating, and  

(iii) uncertain holes in the coating. For the first two  

cases, there is only one uncertain input parameter, i.e., 

permittivity and thickness, respectively. For the third 

case, we investigate multivariable situation, e.g., the 

diameter, position, and number of holes as the stochastic 

variables. Furthermore, this article not only provides 

results of uncertainties but also insight into the expected 

statistical properties. 

 

II. ADAPTIVE MESH DGTD METHOD 
To use unstructured finite element methods, the 

computational domain must be decomposed into 

geometric elements, e.g., lines in one dimension, 

triangles in two dimensions and tetrahedral in three 

dimensions. Suppose one-dimensional computational 

domain is  = [xmin, xmax], which can be tessellated by 

K equidistant nodes. If the meshes are uniform then each 

element has the same size h = Ω/K. When the desired 

nodes, which represent the interfaces of the structure 

under study, do not coincide with the positions of the 

equidistant nodes, the uniform meshes are terrible and 

unserviceable. If setting a larger h, the discretization error 

will increase; if setting a smaller h for capturing fine 

details and maintaining Courant-Friedrichs-Levy (CFL) 

condition of the numerical methods, the computational 

memory and execution time will increase. 

For problems with uncertain desired nodes, dynamic, 

intelligent, and more robust meshes are needed to 

achieve accurate identification for the random objects.  

In this work, two types of adaptive mesh generation 

techniques are proposed as below: 

 

A. Node insertion mesh 

Firstly, the computational domain Ω is discretized 

into K equidistant non-overlapping line segments. Each 

line segment has two end nodes. Vx is introduced to 

stand for the global uniform node vector (UNV). Using 

the insertion algorithm, the desired node vector (DNV) 

can be added adaptively into UNV and the resulting 

vector is sorted to achieve overall discretization scheme. 

The new global node vectors could become nonuniform. 

Note that the number of global nodes is increased as 

inserting DNV, as shown in Fig. 1. 

The node insertion method is simple, however, it is 

time and resource-consuming, because the insertion of 

DNV into Vx cause reduction in the minimum distance 

between adjacent nodes, then the smaller time step has 

to be employed to maintain the CFL condition. Pseudo 

algorithm for this adaptive mesh by inserting node is 

provided in Algorithm 1. 
 

 
 

Fig. 1. The mesh cell mappings for node inserting mesh 

algorithm.  

 

Algorithm 1 Insertion algorithm for desired nodes 

Input: computational domain Ω=[xmin, xmax], 

number of elements K, desired node vectors DNV 

Output: updated number of elements K*, updated 

global node vector Vx* 
 

for i←1 to K do 

/* Generate a simple equidistant grid and uniform 

node vectors Vx  */ 

Vx(i) ←(xmax-xmin)*(i-1)/K + xmin 

/* Insert the DNV into the uniform node vector Vx  */  

/* Sort and return the unique values  */ 

Vx*←unique ([Vx  DNV ]) 

K*←length(Vx*)-1 

Return K*, Vx* 

 

B. Node displacement mesh 

In this type of adaptive mesh generation, the 

adaptation can be achieved through suitably displacing 

the UNV. The algorithm identifies the nodes from the 

UNV which are nearest to the set of DNV and shifts 

these nodes to the desired locations. If a DNV coincides 

with one of the UNV, such as the node ① and ②, then 

no displacement is needed; if a structure represented by 

any two of the DNV (e.g., node ② and ③) is much larger 

than uniform elements, then the nearest uniform nodes 

are modified at the boundaries; if a structure is very 

small, such as the segment composed by node ⑤ and ⑥, 

the algorithm makes sure that at least one element is 

contained. Hence, only optimal numbers of element are 

generated, as shown in Fig. 2. 

Note that the number of global nodes remains 

unchanged, that is, K* = K. This algorithm generates 

optimal density of mesh cells over the whole Ω, 
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regardless of geometry structure. The displacement of 

nodes to different position caused non-uniformity in the 

distribution of global nodes. Realization for this adaptive 

mesh algorithm is given below in Algorithm 2. 
 

 
 

Fig. 2. The mesh cell mappings for node displacing mesh 

algorithm.  

 

Algorithm 2 Displacement algorithm for desired 

nodes 

Input: computational domain Ω=[xmin, xmax], 

number of elements K, desired node vectors DNV 

Output: updated number of elements K*, updated 

global node vector Vx* 
 

for i←1 to K do 

/* Generate a simple equidistant grid and uniform 

node vectors Vx  */ 

Vx(i) ←(xmax-xmin)*(i-1)/K + xmin 

if length(Vx) > 2*length(DNV)+2 then 

for q← 1 to length(DNV) do 
/*Generate index of DNV in set of the uniform 

node vectors UNV */ 

[Val(q) Index(q)] ← min(abs(Vx-DNV(q))) 

/* Deal with nodes which near boundary of 

the domain */ 

ConflictIndex ← find( Index(end)==Index) 

if length(ConflictIndex) > 1 then 
          Index(end) ← Index(end)+1 

return 

Vx (Index(q)) ← DNV(q) 

Vx*←Vx 

K*←length(Vx*)-1 

return 
Return K*, Vx* 

 

C. Numerical scheme for one-dimensional case 

To compute the reflection coefficients of the 

dielectric coating with random flaws, we solve the one-

dimensional Maxwell’s equations in the time domain, 

subject to a broadband initial condition, and collect one 

time-trace at an observed point in the computational 

domain. Consider a lossless material TEMz case, the 

time-dependent Maxwell’s equations can be written as  

follows: 

    0, 0,
y yx x

H HE E
z z

t z t z
 

  
   

   
 (1) 

where Ex, Hy,  and  represent the electric field, the 

magnetic field, the local electric permittivity, and the 

local magnetic permeability, respectively.  

Using the aforementioned adaptive mesh approaches, 

the computational domain  = [l, r], which is tessellated 

by K* subdomains, i.e., any one of elements of the 

physical space Dk is equal to [ , ], 1... .k k

l rz z k K *
 The 

solution of Equation (1) will be discontinuous between 

elements. In an arbitrary element Dk, the fields can be 

approximately expanded using local high-order Lagrange 

interpolation polynomial   :k

i z  
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where Np stands for the number of the local expansion. 
k

xhE  and k

yhH  contain a Np-vector of expansion coefficients 

to be solved.  k

i z  signifies an Npth order Lagrange 

polynomial. The relationship between Np and the 

polynomial expansion order N is 1.pN N   On account 

of the fact that correctly choosing interpolation nodes 

can bring about good numerical behaviors, this work 

employs the Legendre-Gauss-Lobatto (LGL) interpolating 

nodes as zi [21]-[23].  

Next, multiplying (1) by a test function  k

i z  in an 

element Dk, yields:  
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 (3) 

In order to couple with adjacent elements, Equation 

(3) are manipulated with integration by parts twice, and 

the strong variational formulation can be obtained as 

[21]: 
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 

n

n

 (4) 

Here, n̂  denotes the local outward pointing normal. 

On the right-hand side (RHS) of (4) 
* *( , )x yE H  are 

numerical fluxes to exchange the coupling between 

neighboring elements. Using the Riemann conditions 
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and for stability reasons, we use a pure upwind flux [21] 

which could strongly damp unphysical modes,   

 
  
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, (5) 

where  
1

,Z Y  


   represents the impedance of 

the medium.  

Now substitute the expansions in (2) with the 

numerical flux of (5) into (4) and assume a smooth 

material in each element. After some algebraic 

computations, the explicit semi-discrete scheme in 

matrix-vector form can be obtained as follows: 
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D
M

D
M

 (6) 

Here, the matrices Jk, Dr, and Mk represent the local 

transformation Jacobian, differentiation matrix and mass-

integration matrix, respectively (see [21] for details). 

The semi-discrete system of (6) is ordinary 

differential equations with respect to time. The forth-

order low-storage explicit Runge-Kutta (LSERK) solver 

is employed for the time integration of (6) [24]. 

 

III. AM-DGTD FOR DETERMINISTIC 

PARAMETERS 

A. Computation model 

The objective of this article is to analyze the 

characteristics of a dielectric coating. To reduce the 

complexity of the problem, this coating is located at the 

center (i.e., xleft = 0) of the computational domain  =  

[-6.0cm, 6.0cm]. Free space is set on the both sides of the 

coating and the relative parameters r = 1 and r = 1. The 

main sensitive variables with uncertainty are supposed to 

be mean values, i.e., the average thickness of the coating 

d = 2.0cm and its average relative permittivity r = 4. 

To model the excitation source, an x-polarized,  

z-directed Gaussian pulse with respect to space is used 

and the following initial conditions (t=0) are adopted as: 

 

 
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, (7) 

where z0 and zτ are the center position and the width  

of the Gauss curve, respectively. This Gaussian pulse 

traveling in free space normally incident upon the 

dielectric coating, as illustrated in Fig. 3. 

We collect one time-trace at the observation point 

(P = -1.0cm) in the computational domain. The frequency 

response is obtained by using fast Fourier transformation 

(FFT). Moreover, the Mur’s absorbing boundary conditions 

(ABC) [25] is employed to truncate the open domain. 
 

A
B
C

z
P

xleft=0

A
B
C

-6 6(cm)

d

ε 0，µ0 ε 1，µ1 ε 0，µ0 

xright=2

z

y

x

 
 

Fig. 3. The sketch map of the dielectric coating with 

uncertain flaws. 

 

B. Reflection coefficient 

The reflection coefficients at the observation point 

are calculated by using the AM-DGTD method. The 

coating is assumed to be removed at first, that is, the 

whole computational domain lies in free space. The 

electric field data at the observation point can completely 

represent the incident field, Einc. Then, the complete 

model is simulated again. Because of the discontinuous 

interface, when the incident wave encounters the 

interface, a fraction of the wave energy will be reflected 

and part will be transmitted. Hence, the electric field data 

at the same observation point represents the total field 

Etot, which includes incident and reflected electric field 

components. The formulation for the reflected fields  

is given by .ref tot inc

x x xE E E   Figure 4 illustrates the 

relationship of incident, total, and reflected electric field 

with time at the observation point. 
 

 
 

Fig. 4. The relationship of incident, total, and reflected 

electric field. 
 

Using FFT, the frequency responses of the incident 

and reflected electric fields are obtained, then the 

reflection coefficients 
ref incE E   are achieved. 

When uncertain parameters impact on the 

computational model, supposing  is independent random 
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parameter with probability density function (PDF). The 

random parameter may come from uncertain material 

parameters, geometrical shapes, boundary conditions, 

initial conditions, computational domain, etc. To model 

the impact of these randomness and uncertainty on the 

propagation of EM waves, the solution of Einc and Eref 

can be expressed as  , ,incE z t   and  , , ,refE z t   they 

are not only a function of (z, t) but also of . Therefore, 

the reflection coefficient Γ are uncertain and stochastic, 

correspondingly. The statistical moments of the solutions, 

such as mean and variance of Γ can be quantified [18]-

[20] as: 
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

 , (8) 

where M represents the samples of the stochastic 

parameters, which are generated by using a random 

number generator. E[Γ] stands for the mean of the 

random variable Γ; Var[Γ] and Std[Γ] are the variance 

and standard deviation of the random variable Γ, 

respectively; CI[Γ] denotes the confidence interval with 

an upper and lower bounds. The n is used as the critical 

value. This value is only dependent on the confidence 

level of the test. A typical two-sided confidence level is 

as n = 1.96, which corresponds to the confidence interval 

as 95% (see [18] for details). 
 

C. Results and analysis 

To validate the approach discussed above, the 

reflection coefficients are calculated by the AM-DGTD 

method for the sensitive variables given. The constitutive 

parameters are the same as in Subsection A. 

Figure 5 plots the computed solution at final time  

T = 10s as a function of the number of adaptive elements, 

K, and the order of the local approximation, N. Comparing 

with analytic solutions, it shows a good agreement for 

different parameter sets (N, K). There are two ways to 

improve the accuracy of Γ: (i) keep N fixed, and increase 

K, known as h-refinement, and (ii) keep K fixed, and 

increase N, known as order or p-refinement [21]. As 

shown in the magnified image at around 1.85 GHz, 

simulation results using larger N or K are closer to 

analytic results. 

Figure 6 shows the results of absolute errors 

(compared to analytic results). The errors decay fast  

with increasing N or K, while both lead to a better 

approximation. Because of smaller errors at the extreme 

points, there is better manner at the maximum and 

minimum of the reflection coefficient Γ, i.e., at 1.85 GHz 

and 3.75 GHz. But with increasing frequency, the error  

values become somewhat large. 

Inspecting results in Fig. 6, one observes that the 

results of AM-DGTD scheme are clearly convergent  

for increasing K and/or N. However, the high accuracy 

comes at a price. The higher accuracy needs the greater 

execution time. Table 1 has listed the root mean square 

(RMS) error and the execution time at different 

combinations of (N, K). Consider, as an example, an error 

of O (3.0e-5). From the results in Table 1, we see that 

this can be achieved through (2, 40), (2, 160), (3, 40), 

and (4, 20) (the bold font). Comparing with these results, 

the combination of (2, 40) has the highest order of 

approximation and the fastest running time in which the 

hosting CPU is Intel Core i3-4150 with four cores and 

clock speed of 3.5 GHz. 
 

 
 

Fig. 5. The reflection coefficient for different sets of 

parameters (N, K) compared against the exact solution. 
 

 
 

Fig. 6. Absolute errors for different sets of parameters 

(N, K) compared against the exact solution. 

 

Because the stochastic problems require generally  

a large number of the variables to calculate statistical 

properties, one must make a trade-off between accuracy 

and execution time for the employed method. According 
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to the results of Table 1, the combination of (N, K) = (2, 

40) has been chosen, because of its higher accuracy and 

lesser time. 

To analyze execution time efficiency, an ultra-thin 

coating is handled by the AM-DGTD method. Comparing 

with traditional DGTD method, the AM-DGTD approach 

can save more execution time. For example, when the 

thickness of the ultra-thin coating is 0.05cm, the execution 

time is 1724.4648s and 205.0989 s, respectively, using 

the traditional DGTD and the AM-DGTD methods. It  

is clearly exhibiting that the AM-DGTD technique helps 

achieving very fast numerical computations.  

 

Table 1: RMS error (GHz), total execution time (s) 

N       K 20 40 80 130 160 

1 
5.3615e-3 1.1319e-3 2.8409e-4 1.0901e-4 7.1152e-5 

5.1219 6.4955 10.0083 14.0528 16.5547 

2 
1.8919e-3 2.4724e-5 5.1515e-5 1.4265e-5 2.7230e-5 

6.5837 9.6089 16.4490 24.8534 30.1344 

3 
5.3715e-5 2.7734e-5 1.9115e-5 2.0471e-5 1.2255e-5 

9.1618 15.0469 26.7811 42.7873 52.5584 

4 
3.0970e-5 2.3152e-5 2.0652e-5 1.3980e-5 1.2212e-5 

12.5116 21.9100 41.4415 67.3585 82.5465 

5 
2.4773e-5 1.3339e-5 1.3075e-5 1.5433e-5 1.3684e-5 

17.1342 30.7708 59.2901 97.0274 120.9001 

6 
3.1082e-5 1.7996e-5 1.5677e-5 1.4709e-5 1.2306e-5 

22.2469 41.6919 81.7953 134.7709 167.9819 

7 
1.6191e-5 1.9432e-5 1.3092e-5 1.3431e-5 1.3097e-5 

28.1425 54.0226 106.8370 176.5143 220.7351 

 

IV. AM-DGTD FOR STOCHASTIC 

PARAMETERS 
The actual form of flaws in the dielectric coating may 

not be known, causing the introduction of the uncertainty 

in some sensitive parameters. These uncertainties can  

be based on pure speculation, on measured data, or on  

other available information. In this section, a few typical 

uncertain flaws are discussed and validated by the  

AM-DGTD approach. To reduce the complexity of  

the simulations, the uncertain flaws are expressed as 

stochastic variables, characterized with appropriate 

probability distributions. And these stochastic variables 

are statistically independent. 
 

A. Uncertainty in material 

Deterministic solutions require accurate input 

parameters, however, there always exist uncertain 

material properties such as from imprecise measurement 

or manufacturing. In this section, the case of uncertainty 

in permittivity is considered, that is, tolerances and 

uncertainties lie in the relative permittivity r.  

For the model in Fig. 3, a randomness in the relative 

permittivity of the dielectric coating is assumed as [9]: 

   2

2

1

, 0.1
4 (1 )

1

r

x coating

x
otherwise

  






  
 



, (9) 

where  is a Gaussian variable with zero mean and unit 

variance. With the uncertainty of the formula (9), the 

relative permittivity r is guaranteed to remain positive 

in the domain of the dielectric coating. Note that our 

concern is not the correctness of the probabilistic law 

chosen in (9) for the uncertainty of the r, since for any 

reasonable law, the techniques presented in this paper 

should work equally well.  

Other parameters are fixed as the computational 

domain  = [-6.0cm, 6.0cm], the thickness of the coating 

d = 2.0cm, the position of the observed point P = -0.1cm, 

the total computational time T = 10s. 

The mean and standard deviation of the reflection 

coefficient Γ of have been evaluated by the AM-DGTD 

method at the observation point. Table 2 shows the 

results of the quantitative uncertainties of the Γ versus 

different tolerances of the relative permittivity r, i.e.,  

the minimum, maximum, mean and 95% confidence 

intervals (CI) of Γ at the maximum 1.85 GHz. With the 

increasing of the r, it has been found that the E[Γ] is 

far away from the value of r = 0. When the r is 

negative, i.e., the value of r turns small, the E[Γ] is 

reduced and the region of 95% CI[Γ] widens, e.g.,  

r = 3.8612, then E[Γ] = 0.5878, CI[Γ] = [0.5690, 0.6067]. 

On the contrary, the r is positive, i.e., the value of r 

turns big, the E[Γ] is increased and the region of 95% 

CI[Γ] also widens, e.g., r = 4.2994, then E[Γ] = 0.6214, 

CI[Γ] = [0.5924, 0.6505]. 

To study the relationship of the deviation of reflection 

coefficient Γ and permittivity r, another 1000 independent 

random variables are used. The results of uncertainty 

quantification of reflection coefficient with different 

deviations in permittivity r over a 0-4 GHz frequency 

range are shown in Fig. 7. It is obvious that the minimum 
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reflection point, i.e., 3.75 GHz, turn worse with the 

tolerances of r increase. When the tolerance of r is 

changed, the value of this point is increased, i.e., the 

value of r decreases, this point shifts a bit to higher 

frequency; when the values of r increases, the point 

shifts a bit to lower frequency. The increased offset 

indicates an increased tolerance existing in the results. 
 

Table 2: Uncertainty quantification of Γ versus different 

deviation in r 

r        
Γ Min Max Mean 95% CI 

-0.4056 0.4737 0.5999 0.5595 [0.4905,  0.6286] 

-0.2831 0.5287 0.5999 0.5735 [0.5311,  0.6159] 

-0.1388 0.5681 0.5999 0.5878 [0.5690,  0.6067] 

0.0 0.5999 0.5999 0.5999 [0.5999,  0.5999] 

0.1287 0.5999 0.6267 0.6098 [0.5943,  0.6253] 

0.2994 0.5999 0.6474 0.6214 [0.5924,  0.6505] 

0.4232 0.5999 0.6668 0.6286 [0.5882,  0.6690] 

 

 
 

Fig. 7. Distribution of Γ with respect to different deviation 

in r. 
 

B. Uncertainty in thickness of coating 

Suppose that the physical thickness of the dielectric 

coating is unknown, i.e., when there is uncertainty 

associated with the position of the right boundary of the 

coating. Uncertainty in the thickness of d can be modeled 

by choosing rightx  a random variable and keeping leftx  

as constant. And the randomness rightx  is a random 

parameter with some associated PDF. 

The uncertain deviation in the right boundary 

position is chosen, so that the thickness of the coating is 

of variable value. The position of the right boundary is 

assumed to be  rightx d g   , this allows 
rightx  to be 

positioned on both sides of the mean position. Here g() 

(the deviation in thickness d) is a uniform variable. The 

mean is chosen as 0.1, 0.2 and 0.3 with a tolerance  

of 0.01, i.e., g()/d is uniformly distributed in the 

interval [0.09cm, 0.11cm], [0.19cm, 0.21cm], and 

[0.29cm, 0.31cm], respectively. 

Figure 8 shows how the uncertain deviation in 

thickness of the dielectric coating affects the reflection 

coefficient Γ at the observation point P = -0.1cm, which 

are computed using the AM-DGTD formulation outlined 

in Section III. In the frequency 0-5 GHz range, the 

magnitude of the mean of Γ for 1000 samples of the 

random thickness is shown in the Fig. 8. When d = 0, 

the numerical results are in good agreement with analytic 

solutions. With the thickness d decreasing, e.g., the 

average thickness is from 2.3cm to 1.7cm, it has been 

observed obviously that the curves of the reflection 

coefficient Γ are extended towards the x axis and the 

minimum reflection frequency points shift from low to 

high frequency. 

 

 
 

Fig. 8. Mean of Γ for 1000 samples drawn from the AM-

DGTD simulations. 

 

C. Random holes in coating 

In this experiment, the AM-DGTD method is 

employed to analyze the reflection coefficients of 

imperfect dielectric coating caused by blotch, bubble, or 

recessed hole on a film. The different number, different 

radius, and random positions of holes in the dielectric 

coating of the range of [0.0cm, 2.0cm] are simulated. 

 

1) Single hole 

The hole parameters are assumed as rh = 1, rh = 1. 

The arbitrary mesh is represented in Fig. 9, the radius and 

random position of the hole are statistically independent. 

The number of the elements is set as K = 40. Degrees  

of two (N = 2) polynomials are enough to ensure that 

convergence is achieved in the physical space. The 

randomness of the holes can be incorporated into the 

AM-DGTD method by introducing uncertainty in the 

local computational mesh. To accomplish this, a 

displacement mesh is employed around each uncertain 

portion of the geometry. 
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Fig. 9. The sketch of the model with one uncertain hole. 

 

Three cases with random position and radius r as 

0.025cm, 0.05cm, and 0.1cm are considered, respectively. 

Comparisons of the mean of the reflection coefficient Γ 

with and without these random holes over a 0-10 GHz 

frequency range are presented in Fig. 10. When the 

radius r is increased, the mean Γ becomes worse. For 

instance, the maximum reflection coefficient at 1.85 GHz 

is decreased, and the minimum value at 3.75 GHz is 

increased. And the curves of frequency-domain response 

are shifted a bit to higher frequency. 

 

 
 

Fig. 10. One hole with random positions and variable 

diameter. 

 

2) Multiple holes 

An arbitrary mesh with two uncertain holes is 

represented in Fig. 11, all parameters are same as that of 

single-hole case. With the increasing of hole radius, the 

mean of reflection coefficient Γ becomes worse. For 

example, the value of the maximum becomes smaller 

and the value of the minimum becomes bigger. 

The properties of results are similar to those of the 

single-hole case, but for the two random holes, the curve 

shifts more bit to the higher frequency, as shown in Fig. 

12. The comparison results of the mean of the reflection 

coefficient of the model with 0-3 random holes are 

summarized in Fig. 13. It has been found that the mean  

Γ becomes worse with the number of the holes increasing. 
 

 
 
Fig. 11. The sketch of the model with two uncertain 

holes. 

 

 
 

Fig. 12.  Two holes with random positions and variable 

radius. 

 

 
 

Fig. 13. Comparison of the Γ for different numbers of 

random hole. 

 

Figure 14 shows the estimation of mean Γ and 95% 

CI for the imperfect dielectric coating with random 

number of holes computed by the AM-DGTD method. 

And the radius of hole is supposed to equal to 0.1cm, and 

the positions of hole are randomly selected. The limits  

of the 95% CI are obtained from the PDF, such that  
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the 2.5% of the data goes beyond the lower and upper 

bounds, respectively. The mean Γ of 2.5% quartile near 

the minimum is observed to perturb slightly and the 

mean Γ of 97.5% near the maximum is observed to shift 

slightly, all indicating an increased uncertainty exists in 

the results. 
 

 
 (a) 

 
 (b) 

 
 (c) 

 

Fig. 14. The deviation in the mean and in 95% confidence 

intervals for Γ when the solution with stochastic holes is 

compared against the solution without holes: (a) one hole, 

(b) two holes, and (c) three holes. 

 

Figure 15 (a) shows the mean of the Γ for the 

dielectric coating without holes by using the AM-DGTD 

method. The mean Γ with only one uncertain hole at  

the maximum 1.85 GHz are concentrated in the interval 

[0.581, 0.598], however, the values drop to range of 

[0.562, 0.597] and [0.544, 0.596] for the two and three 

holes, respectively, as shown in Figs. 15 (b)-(d). These 

numerical results are agreed with the physical explanation. 

In term of the value of the interval, we clearly see the 

smaller mean Γ have worse flaws corresponding to a 

larger number of holes. 

From Fig. 16, it is clearly seen that the mean Γ at 

different frequencies is different for different numbers of 

random holes. For 0 ≤ Γ ≤ 0.4, the values are increased 

with increasing of the number of the random hole; the  

Γ = 0.5 results slightly changed; and for 0.5 < Γ ≤ 0.6, 

the values are decreased with the increasing of the 

number of the random hole. 

 

 
 
Fig. 15. Distribution of the reflection coefficient with 

different number of random holes: (a) the analytic 

solution of Γ without hole, (b) the distribution of Γ with 

one random hole at 1.85 GHz, (c) the distribution of Γ 

with two holes, and (d) the distribution of Γ with three 

random holes. 

 

 
 
Fig. 16. The relationship between the mean of Γ and the 

number of hole. 

 

V. CONCLUSION 
In this paper, we discussed the use of an adaptive 

mesh integrated into discontinuous Galerkin method  

to research the impact of uncertain flaws in the 1D 

propagation problems. These sources of uncertain flaws 

are considered: the varied relative permittivity, thickness 

of coating and multivariable holes in the medium. The 

adaptive spatial discrete algorithm for the high order 

accurate DGTD method has been developed to solve 
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these irregular, complex, and random flaws in the 

dielectric coating.  

The adaptive mesh technology, which generated by 

the displacement of nodes and the insertion of nodes, can 

provide efficient and optimum number of mesh elements 

as compared to simple uniform mesh. The simulation 

results have been shown that the new approach can save 

computational resources because of avoiding redundant 

division of the computational domain. Three typical 

experiments validate significant advantages of the AM-

DGTD approach and show potential for further study of 

uncertain problems. 
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