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Abstract ─ A resistive active power divider (RAPWD) 

design based on Kron’s model is introduced. The three-

way RAPWD topology is essentially constructed with  

a low noise amplifier (LNA) with input and output 

matching shunt resistances. The RAPWD S-parameter is 

analytically expressed from the Kron’s method hybridized 

with the LNA touchstone model. The RAPWD synthesis 

relation is established in function of the expected gain 

and matching access. The feasibility of the established 

Kron’s method modelling is validated with a proof-of-

concept (POC) using the surface mounted monolithic LNA 

LEE-9+ from mini-circuits. As expected, S-parameters 

are in good correlation between simulations and computed 

results from the proposed hybrid method. A relatively 

flat transmission gain of about 9+/-0.2 dB is realized  

in the very wide frequency band 0.5 to 4.5 GHz. The 

broadband tested RAPWD input and output matching 

and access port isolations are widely better than 10 dB. 

  

Index Terms─ Active microwave circuit, design method, 

hybrid model, Kron’s formalism, Power Divider (PWD), 

resistive topology, synthesis relations. 
 

I. INTRODUCTION 
The power divider (PWD) is one of the key elements 

and most useful components for the RF/microwave 

communication system. The PWD RF/microwave function 

is usually implemented in different front- and back-end 

architectures as phased array antennas [1-2] and reflectors 

[3]. 

The phased array enables to deploy several functions 

widely used in military and commercial applications as 

retrodirective antenna system for example based on the 

Van Atta Array [4]. Various design technologies have 

been deployed in function of the substrate structures [5] 

and improving the 3D radiation beam coverage [6]. The 

phased array architecture is regularly employed in the 

radar system. It allows to improve the airborne radar 

performance as can be found in the atmospheric 

meteorology research [7]. The phased array architecture 

is also popularly implemented in radio astronomy stations 

[8-10]. The array antenna is flexible to operate in low- 

frequency ranges which are potentially useful for the sky 

radio scanning [8-12]. In addition, the PWD based 

phased array architectures are potentially integrable in 

Silicon based radio frequency integrated circuits (RFICs) 

[13]. So, the phased array elements are potentially designed 

and implemented in CMOS technology for microwave 

and millimeter wave applications as 60-GHz [14] and 

77-GHz [15] transceivers.  

The PWD function can be designed in three- or 

multiple N-way topologies [16-19]. Several topologies as 

coplanar waveguide [17], metamaterial [18] and hybrid-

expanded coupled line based structures [19] were proposed. 

However, one of easiest design and implemented PWD 

are based on the Tee-shape passive circuit. The most 

popular in RF/microwave engineering is the Wilkinson 

PWD [20-25]. The Wilkinson PWD has been widely 

exploited and implemented in coplanar wave guide  

[22], microstrip [23] and hybrid technology [24] in both 

narrow- and broad-band frequencies. The Wilkinson PWD 

can be also used to design more complex microwave 

function as Balun [25]. Nevertheless, acting as passive 

devices, Tee- and Wilkinson PWD components suffer 

about insertion losses.  

To tackle this problem, active topologies may 

constitute an efficient solution in order to compensate  

the losses. The PWD active topology can be designed 

similar to multiport power amplifiers [26]. But to cope 

with the design complexity, simple implementation circuit 

as resistive and low-noise amplifier (LNA) active multi-

way PWD [27-28] is required. However, the analytical 

ACES JOURNAL, Vol. 33, No. 5, May 2018

Submitted On: September 26, 2017 
Accepted On: January 9, 2018 1054-4887 © ACES 

530



modelling should require the consideration of the LNA 

touchstone model. In this paper, we are introducing  

a simple and efficient computational method of the 

resistive active PWD topology by using the Kron’s 

formalism as deployed in [29-32]. This typically unfamiliar 

computational method is based on the tensorial analysis 

of network (TAN). 

The Kron’s formalism was initially developed for 

the modelling of electrical machine. Then, recently, it 

was extended to the modelling of complex electronic and 

electrical system electromagnetic compatibility (EMC) 

[29]. Combined with the transmission line (TL) Branin 

approach, the extended Kron’s formalism has been 

employed to the modelling of TL based interconnect 

printed circuit board (PCB) [30-31]. Moreover, the 

formalism can be potentially used to determine the S-

parameter model of PWD. The fast-computational model 

of quarter wavelength arm Y-shape unequal PWD is 

communicated recently in conference ACES-China 2017 

[32], the structure is shown in Fig. 1. In progress of this 

Kron’s modelling, we may wonder on applicability of 

the proposed method for the resistive active PWD 

(RAPWD) using LNA. 
 

 
 

Fig. 1. Y-shape PWD structure [32]. 
 

To answer to this technical curiosity, a hybridized 

model of RAPWD is developed in the present paper.  

For the better understanding, the paper is organized as 

follows. Section 2 is dedicated to the proposed circuit 

computational method. The circuit modelling based on 

the Kron’s formalism and the LNA touchstone model  

is described. Section 3 addresses the developed hybrid 

modelling by considering a circuit proof-of-concept 

(POC). S-parameters simulation results are presented 

and discussed. Last, Section 4 is the conclusion. 
 

II. THEORY ON THE KRON’S FORMALISM 

AND TOUCHSTONE HYBRID MODEL OF 

RESISTIVE ACTIVE POWER DIVIDER 
The present section is focused on the hybrid 

modelling of the three-way PWD. The synoptic of the 

proposed topology is depicted in Fig. 2. In the present 

configuration, Port  is assumed as the input, and Port 

 and Port  are the outputs. 
 

 
 

Fig. 2. Synoptic of the RAPWD under study. 

 

The RAPWD is basically implemented by using 

shut resistances associated with LNA as active elements. 

Similar to all microwave circuit, in the remainder part of 

the paper, the proposed theory is established based on  

the topology S-parameter investigation referenced to  

the source and load impedance R0=50 Ω. The calculation 

principle of the hybrid modelling under study will be 

illustrated in the coming paragraphs. 

 

A. Resistive and LNA based elementary cell 

The elementary cell constituting the proposed 

RAPWD is sketched in Fig. 3.  

 

 
 

Fig. 3. Considered resistive and active cell constituting 

the proposed RAPWD. 

 

It consists essentially of an LNA combined with 

input and output shunt resistances respectively Rin and 

Rout. To establish the RAPWD S-parameter, the LNA 

model is assumed to be provided by the manufacturer in 

touchstone data. Acting as a two-port S-parameter, the 

equivalent model can be merely written as: 

 

  11 12

21 22

( ) ( )
( )

( ) ( )

LNA LNA

LNA

LNA LNA

S j S j
S j

S j S j

 

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 
  
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. (1) 

The LNA is supposed as a unilateral RF/microwave 

component. Furthermore, it is characterized the input 

and output matching level equal to SLNA11=SLNA22=r. 

Meanwhile, the LNA can be represented by the matrix: 
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Based on the S-to-Z transform, the equivalent Z-matrix 

is given by: 
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B. Graph model of the two-way RAPWD 

The RAPWD circuit diagram is illustrated in Fig. 3. 

The LNAs are inserted at the PWD input and output  

three arms. The resistance R1 is connected in shunt at the  

input for controlling the input matching. Similarly, the 

resistances R2 and R3 are connected in shunt at the outputs 

for controlling the output matching. The intermediate 

resistance Rm ensures the stability and the LNA interstage 

matching. Before setting the Kron’s formalism, the system 

must be traduced in graph representation. The graph 

equivalent topology of the circuit introduced in Fig. 4. 

This graph is essentially built by the branches and the 

black box representing the LNA touchstone S-parameter 

model. The circuit is fed by voltage sources V1, V2 and 

V3 respectively connected at Port , Port  and Port . 

It induces the branch currents I1, I2 and I3. The LNA input 

and output voltages Vα and fictive currents Iα with α={a, 

b, … , i} are indicated in this circuit for mesh law 

elaboration. 
 

 
 

Fig. 4. Circuit topology of the RAPWD. 

 

To construct a symmetrical or balanced PWD, we just 

have to generate S21=S31 and S22=S33. This condition can be 

achieved by implementing same arms at the PWD output 

branches. In other word, same output shunt resistances 

R2=R3 must be used. This idea guarantees the symmetry 

between the PWD output arms. Consequently, the overall 

three-port device S-parameter can be determined with 

the S-parameter of two port system by taking S23=S32=0 

in addition to the equality S21=S31 and S22=S33. In this 

case, the graph introduced in Fig. 5 can be reduced as 

shown in Fig. 6. The shunt impedance ZLNA represents in 

the LNA input impedance which is previously given in 

expression (3). 
 

 
 

Fig. 5. Equivalent graph topology of the PWD introduced 

in Fig. 4. 

 

 
 

Fig. 6. Reduced equivalent diagram of the graph 

established in Fig. 5. 

 

C. Discussion on the advantages and the limitation of 

the RAPWD topology 

The combined Kron’s formalism and LNA touchstone 

data hybrid model can be established from the reduced 

graph proposed in Fig. 6. In order to calculate, the overall 

system S-parameter, we would start with the three port 

Z-matrix defined by: 

 

 1 1

2 2

( ) ( )

( ) ( )

V j I j
Z

V j I j

 

 

   
    

   
, (4) 

with 

 

  11 12

21 22

( ) ( )
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Z j Z j
Z

Z j Z j

 

 

 
  
 

. (5) 

The analytical expressions governing the system 

under study can be extracted from the Kron’s formalism 

by assuming that the mesh spaces represented by the 

current fictive meshes Iα with α={a, b, … , i}. It implies 

the following equation system: 

 

1 1

2 2

( ) ( ) ( ( ) ( ))

( ) ( ) ( ( ) ( ))

( ) ( ) ( ( ) ( ))
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b

c d
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e f

e
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   

   


  

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, (6) 

by denoting the total intermediate impedance as: 

 

0

0

(1 )
/ /

(1 ) (1 )

m
x m LNA

m

R Z r
Z Z Z
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
 
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. (7) 

In addition to this system, we can consider the LNA 

model by the transfer matrix: 

 

  11 12

21 22

( ) ( )
( )

( ) ( )
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
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. (8) 

This transfer matrix is obtained from the LNA 

touchstone model via the S-to-T transform:  
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
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. (9) 

Therefore, we have the complementary equation 

system: 
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The solution of the combined equations allows to 

express the unknown voltage in function of the branch 

currents given by: 

11 12

21 22

1

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

b f

PWD PWD

b f

PWD PWD
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  


 

. (11) 

Finally, the RAPWD S-parameter matrix: 

 

  11 12

21 22

( ) ( )
( )

( ) ( )
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, (12) 

can be determined from the Z-to-S matrix transform. The 

expected S-parameter model is given in (13). It can be 

pointed out that in this ideal case, the PWD isolation 

losses are zero because of the LNA unilaterality: 
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D. Proposed RAPWD synthesis relations 

The synthesis relations allowing to determine the 

RAPWD parameters R1, Rm and R2 can be extracted from 

this equation system in function of the specified PWD: 

• Input and output matching level m>0 (assumed 

to be identical). 

• And insertion gain g>0. 

Doing this, the proposed RAPWD synthesis formulas 

are determined from the equations:  

 

11
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1
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. (14) 

As a matter of fact, the formulas enabling to express 

the RAPWD parameters are written as: 
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with 
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III. SIMULATION VALIDATION RESULTS 
This section is focused on the validations of the 

developed hybrid modelling concept. A POC of RAPWD 

is designed and fabricated following the synthesis 

approach described in the previous section. The POC 

modelled computed results are compared with simulations 

run in the ADS® environment of the electronic circuit 

designer and simulator.  

 

A. RAPWD POC description 

The PWD POC is a three-port active microwave 

circuit. This POC was designed with the surface mounted 

monolithic LNA LEE-9+ from mini-circuits. Figure 7 

represents the schematic of the POC circuit prototype.  

Initially, the RAPWD expected generating 

transmission gain of about 9 dB and access port reflection 

coefficients better than 10 dB was synthesized. Therefore, 

the calculated RAPWD parameters are R1=R2=R3=200 Ω 

and Rm=62 Ω. The circuit was biased with V0=5VDC power 

supply. The designed, fabricated, simulated and measured 

POC is represented in Figs. 7. The bias circuits are 

consisted of self-inductance L=75 nH and Cp=100 pF. 

The DC blocking capacitors are C=100 pF. 

 

 
 

Fig. 7. RAPWD POC simulated circuit design  

 

B. S-parameter results 

The validation simulations were performed from 0.5  
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to 4.5 GHz by using the LNA touchstone model provided 

by the manufacturer. Figure 8 represents the comparison 

between the simulated and ideal theory S-parameters 

obtained from the POC depicted in Fig. 7. 
 

 
 

Fig. 8. Comparison of the simulated and ideal theory  

S-parameters: (a) transmission gains, (b) reflection 

coefficients, and (c) isolations. 

 

It acts as a very broadband PWD. As seen in Fig.  

8 (a), the RAPWD presents a transmission gain with 

excellent flatness of about 9+/-0.2 dB from 0.5 GHz to 

4.5 GHz. Then, as shown in Fig. 8 (c), the isolations are 

better than 10 dB. The result is very well-correlated to 

the targeted transmission gain. In addition, as shown in 

Fig. 8 (b), the three-port access matching is better than 

10 dB. 

 

C. Discussion on the advantages and the limitation of 

the RAPWD topology 

The presented RAPWD topology is particularly 

advantageous in terms of: 

 The isolation because of the LNA unilaterality. 

 The gain flatness is not easy to achieve for most 

of passive PWD expected the fully resistive 

ones. However, with the proposed topology, we 

have a possibility to generate a very wide 

bandwidth by choosing the expected LNA. 

 The stability which is not, in general, easy to 

control if the passive PWD to be cascaded with 

the LNA is not very well matched even out of 

the operating frequency band. 

However, the RAPWD presents drawbacks in matter of: 

 The power efficiency because of the shunt 

resistor which is susceptible to consume and 

waste energy via Houle effect. 

 And the complexity of bias network associated 

with the DC blocking circuitry. 
 

IV. CONCLUSION 
A hybrid modelling methodology of resistive active 

PWD is investigated. The active topology is mainly 

consisted of LNA element and shunt resistances. The 

introduced PWD topology enables to compensate losses 

and minimize the interbranch isolation in difference with 

the popular passive PWD topologies. The developed 

modelling concept is built with the Kron’s formalism  

and the LNA touchstone model. The PWD S-parameter 

model in function of the LNA S-parameter is established. 

Then, the synthesis formulas enabling to determine the 

PWD parameters are expressed. The established theory 

is validated with resistive active PWD POC. The S-

parameter simulation confirms the expected values 

specified in the synthesis formulas. 

It should be emphasized that the proposed RAPWD 

is advantageous to generate competitive gain flatness, 

isolation and matching. But it presents some weakness in 

terms of power efficiency and bias/DC blocking circuitry. 

In the future, we expect to apply the proposed hybridized 

Kron’s method to more complex active RF/microwave 

topology by taking into account the power efficiency. 
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