
Distributed Markov Chain Monte Carlo Method on Big-Data Platform for 

Large-Scale Geosteering Inversion Using Directional Electromagnetic Well 

Logging Measurements 
 

 

Qiuyang Shen 1, Xuqing Wu 2, Jiefu Chen 1, and Zhu Han 1 
 

1 Department of Electrical and Computer Engineering 

University of Houston, Houston, Texas 77204, USA 

qshen4@uh.edu, zhan2@uh.edu, jchen82@central.uh.edu 

 
2 Department of Information and Logistics Technology 

University of Houston, Houston, Texas 77204, USA 

xwu8@central.uh.edu 

 

 

Abstract ─ Inversion problems arises in many fields of 

science focusing on the process that explores the causal 

factors from which a set of measurements are observed. 

Statistical inversion is an alternative approach compared 

to deterministic methods with better capability to find 

optimal inverse values. Due to the increasing volume of 

data collections in the oil and gas industry, statistical 

approaches show its advantage on the implementation of 

large-scale inverse problems. In this paper, we address 

on the solution of big-data-scale inverse problems. After 

examining both conventional deterministic and statistical 

methods, we propose a statistical approach based on the 

Markov Chain Monte Carlo (MCMC) method and its 

implementation with the scalable dataset on the big data 

platform. The feasibility and methods to apply statistical 

inversion on the big data platform is evaluated by 

examining the use of parallelization and MapReduce 

technique. Numerical evidence from the simulation on 

our synthetic dataset suggests a significant improvement 

on the performance of inversion work. 

 

Index Terms ─ Big data, geosteering, MapReduce, 

MCMC, multiple chains, well logging. 

 

I. INTRODUCTION 
Obtaining a reliable and detailed information about 

the earth’s subsurface is of great challenging and 

requirement for the scientists and engineers to figure out 

the interior structures and then to be served for economic 

exploitation or geological prediction [1]. Inversion 

process is an organized set of mathematical techniques 

for projecting data to obtain knowledge about the 

physical world on the basis of inference drawn from 

observations [2]. The observations consist of a set of 

measurements from the real world. In this article, we  

are focusing on the background of geosteering inverse 

problems. Geosteering is a technique to actively adjust 

the direction of drilling, often in horizontal wells, based 

on real-time formation evaluation by using directional 

electromagnetic (EM) logging measurements [3]. This 

process enables drillers to efficiently reach the target 

zone and actively respond while drilling to geological 

changes in the formation so they can maintain the 

maximal reservoir contact. Among different types of 

logging techniques, azimuthal resistivity logging-while-

drilling (LWD) tools are widely used in geosteering  

to provide electromagnetic measurements [3, 4]. A 

schematic model diagram of an azimuthal resistivity 

LWD tool is shown in Fig. 1. 

 

  
 

Fig. 1. The structure and schematic of an azimuthal 

resistivity LWD tool. T1, T2 T3 and T4 are the 

transmitters whose moments are with the tool axis, while 

T5 and T6 are transverse antennas that perpendicular to 

the tool axis. Similarly, R1 and R2 are the receivers 

directing along the tool axis. R3 and R4 are the vertical 

receiver antennas with directional sensitivity.  

 

A set of antennas with different polarizations and 

working frequencies are installed on the azimuthal 

resistivity tool. They play the roles as transmitters and 

receivers that always in pairs and symmetric to the center 

of the tool. Each pair of symmetric antennas can provide 

a group of electromagnetic signals while the tool is 

rotating and drilling forwards. The signals which have a 

sensitivity to layer interfaces and medium resistivity are 

collected as measurements, and serve for inverse work. 
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The formation of an earth model is usually reconstructed 

through inverted parameters such as depth-to-boundary 

and layer resistivity. However, a huge uncertainty of 

parameters is introduced due to constraint propagation of 

EM signals when the tool is far from detecting boundary 

[5]. In recent years, a new generation of azimuthal 

resistivity logging-while-drilling tools, which have longer 

spacing between antennas and lower working frequency, 

with a much larger depth of investigation have emerged 

on the market.  

Though more advanced techniques are applied on 

logging tools, the geosteering inverse problems are 

always challenging since given measurements are 

generally finite and imprecise and infinite number of 

solutions to the inverse problem exists due to the sparsity 

and uncertainty of the data, and incomplete knowledge 

of operating circumstance [6]. In the view of Bayes, the 

optimal solution of inverse parameters can be extracted 

from the solution set by the statistical characteristics of 

model structures, whereas the analytical solution for the 

posterior distribution is not always available anymore [7, 

8]. In practice, the Markov Chain Monte Carlo (MCMC) 

method is one of the most popular sampling approaches 

to draw the samples from an unknown distribution. The 

MCMC method guarantees asymptotically exact solution 

for recovering the posterior distribution [9], though the 

computational cost is inevitably high while the most 

MCMC algorithms suffer from low acceptance rate and 

slow convergence with long burn-in periods. Launching 

multiple Markov chains is a choice to improve the 

sampling quality since that the samples from an individual 

chain have serial independence. A multiple chain MCMC 

method weakens the correlation of each sample, and thus 

improves the possibility of convergence [10]. However, 

the computational cost will not be reduced while 

traditionally each Markov chain runs in sequence. 

Fortunately, the strategy of multiple chains is well suited 

to the platform with support of parallel computing. It 

comes to be one of our interests to deploy the multiple 

chains MCMC inversion in an efficient way. 

Meanwhile, more accurate and deeper investigation 

can produce a larger amount of measuring data. Though 

these data play a critical role in a better reconstruction of 

earth model, the sheer volume of data and the high 

dimensional parameter spaces involved in the inversion 

process means that the statistical methods can scarcely 

keep up with the demand to deliver in-time information 

for the decision-making. The current situation conforms 

to the trend of the age of big data, in which data’s 

volume, variety and velocity are defined as three primary 

criterions [11]. Hence, the objective of this article is to 

find out and examine an appropriate strategy to apply the 

big data techniques on the scalable statistical MCMC 

method of multiple chains. Moreover, we will show how 

this scheme can be fit into the MapReduce programming 

model to take advantage of the potential speed up.  

II. INVERSION ALGORITHMS 
The adjusting of real time geosteering process is 

determined by the current working condition of the 

position and attitude of the tool to minimize the gas or 

oil breakthrough and maximize the economic production. 

The operations are relying much on the output from 

geosteering inversion, from which a group of parameters 

are generated to draw a reconstructed earth model with 

the constraint of the measurements. In the real job of 

geosteering, modeling and inversion are applied to  

1D model, in which the layer interfaces are assumed 

infinitely extended and parallel to each other. A group of 

results containing distance-to-boundaries and resistivity 

of each layers are collected to represent the earth model 

at the current tool position. Along with the trajectory  

of the tool, inversion is conducted at a fixed interval  

of distance. Thus the inversed model parameters are 

grouped together to draw a whole subsurface profile.  

 
A. The deterministic inversion methods 

The deterministic inversion method in geosteering 

applications fit the model function to measured data by 

minimizing an error term between the forward model 

responses and observed measuring data. Assume a 

geosteering tool provides N measurements denoted  

by 𝑚 ∈ 𝑅𝑁 , while 𝑥 ∈ 𝑅𝑀  represents M earth model 

parameters inverted from the measured data. A 

computation model function or so-called forward function 

𝑆: 𝑅𝑀 → 𝑅𝑁 is designed to synthesize N responses from 

M model parameters. The forward transformation from 

model parameters to the responses, which is denoted as 

𝑆(𝑥) ∈ 𝑅𝑁 , is a result of the interaction of a physical 

system defined by those model parameters. The objective 

of the inverse problem is to infer the model parameters 

through observed measurement. A good agreement 

between the response of the forward model and measured 

data will be reached if the inversed parameters of the 

physical model are accurate. The difference between the 

forward response and measurements is defined as data 

misfit 𝐹(𝑥), which is defined as: 

 𝐹(𝑥) = 𝑆(𝑥) − 𝑚. (1) 

Since both forward responses and measurements are 

vectors, a cost function is defined as the square of L2 

norm of the misfit function 𝐹(𝑥) as follows: 

 𝑓(𝑥) = ∑ 𝐹𝑖
2(𝑥)𝑁

𝑖=1 = ‖𝐹(𝑥)‖2
2, (2) 

where 𝑓(𝑥)  is the cost function representing the 

magnitude of the data misfit. Hence, the inverse problem 

is to find the optimal model parameters, 𝑥 , which 

minimize the cost function given a forward model 

function and measurements. Mathematically, this problem 

is presented as: 

 minimize  
𝑥∈𝑅𝑀

𝑓(𝑥). (3) 

This is an unconstraint nonlinear least-square 

minimization problem. Many iterative numerical 

algorithms, such as gradient decent method, Gauss-
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Newton method, and the Levenberg-Marquardt algorithm 

(LMA), have been well established to solve this least-

square problem [12, 13].  

Though most of the aforementioned optimization 

algorithms are robust and have satisfying performance 

for convergence, most inverse problems are ill-posed 

with infinite solutions given finite measurements. In 

many nonlinear cases, the solution of gradient-based 

methods is highly dependent on the initial guess or 

getting trapped in a local minimum. Improvement can be 

made by using regularizer as an additional constraint. 

For example, the objective function can be regularized 

subjecting to the minimization of neighboring inverse 

points. For example, total variation (TV) regularized 

inverse problems can be written as: 

 minimize  
𝑥∈𝑅𝑀

‖𝑆(𝑥) − 𝑚‖2
2  

   s. t   |𝑚 − 𝑚𝑝𝑟𝑒| < 𝜆, (4) 

where the constraint 𝜆 regularizes the maximum change 

between neighboring inversed parameters 𝑚𝑝𝑟𝑒  and 

current model parameters, 𝑚 [14]. However, this kind of 

methods rely much on the assumption that the prior 

underground information has been acquired fully and  

the ill inverse only happens in some of inverse points. 

Hence, the limitation of deterministic inversion methods 

becomes more prominent especially with the increasing 

scale of the problem. 

 
B. The statistical inversion methods 

Statistical methods arise as an alternative approach 

to deal with many ill-posed scientific inverse problems. 

This sort of methods based on the Bayes’ theorem has 

attracted many attentions nowadays. It can be concluded 

as a method to obtain the posterior distribution from 

which the solution is deduced after combining the 

likelihood and the prior. The assumptions made by the 

forward model 𝑦 = 𝑓(𝑥)  (𝑦  is data and 𝑥  denotes the 

earth model parameter) may not include all factors that 

affect measurements. Suppose the noise is additive and 

comes from external sources, the relationship between 

observed outputs 𝑦̃ and corresponding model parameters 

can be represented as: 

 𝑦̃ = 𝑓(𝑥) + 𝜀, (5) 

where 𝜀  denotes an additive noise. The experiments 

empirically suggest the additive noise usually follows a 

zero-mean Gaussian random distribution: 𝜀 ~ 𝒩(0, 𝜎2𝐼). 

With the given hypothesis to model parameters 𝑥  and 

observed data 𝑦̃, the likelihood can be deduced as: 

 𝑝(𝑦̃|𝑥) ~ 𝒩(𝑦̃ − 𝑓(𝑥), 𝜎2𝐼). (6) 

Suppose the prior distribution of 𝑥 is governed by  

a zero-mean isotropic Gaussian distribution such that 

𝑝(𝑥) ~ 𝒩(0, 𝛽2𝐼). By virtue of the Bayes’ formula, the 

posterior distribution of 𝑥 is given by: 

 𝑝(𝑥|𝑦̃)~ 𝒩(𝑦̃ − 𝑓(𝑥), 𝜎2𝐼)𝒩(0, 𝛽2𝐼). (7) 

It suggests that the posterior distribution of model  

 

parameters 𝑥  given observations 𝑦̃  can be obtained by 

calculating the product of two Gaussian distributions. 

The solution of 𝑥 can be sampled and estimated according 

to the probability distribution function 𝑝(𝑥|𝑦̃) . It is  

an effective way to overcome the shortcomings of 

deterministic inversion especially when the problems  

are underdetermined (ill-posed) because of the large 

parameter space and the sparsity of the measurements. 

The earth model parameters are determined by sampling 

from posterior distribution 𝑝(𝑥|𝑦̃) while the measurements 

𝑦̃ have been acquired.  

Drawing samples from posterior distribution 𝑝(𝑥|𝑦̃) 

is challenging when 𝑓  indicates a non-linear mapping 

relationship between 𝑥 and 𝑦̃ since the analytical solution 

for the posterior distribution is not always available. In 

practice, the MCMC method is one of the most popular 

sampling approaches to draw the samples from an 

unknown distribution while the state of the chain after a 

number of steps can reach its equilibrium. Then the 

samples are selected to draw a desired distribution.  

In the next section, we will first elaborate the 

implementation of the MCMC sampling method by the 

Metropolis-Hastings algorithm, and then explore the 

applicability pf the parallel computing scheme that suits 

MCMC statistical inversion and is scalable to large 

inverse problems. Finally, an application of the 

MapReduce model, a prevailing scheme on the big data 

platform, and its implementation on the statistical 

inverse problems, will be introduced. 

 

III. LARGE-SCALE GEOSTEERING 

INVERSE PROBLEMS  

The Metropolis-Hastings (MH) algorithm [15] is a 

popular MCMC method. In brief description, a MH step 

of invariant distribution 𝑝(𝑥) and proposal distribution 

or jumping function 𝑞(𝑥∗|𝑥)  involves sampling a 

candidate value 𝑥∗ given the current value 𝑥 according 

to 𝑞(𝑥∗|𝑥). The Markov chain then moves towards 𝑥∗ 

with the following acceptance probability: 

 𝒜(𝑥, 𝑥∗) = min {1,
𝑝(𝑥∗)𝑞(𝑥|𝑥∗

)

𝑝(𝑥)𝑞(𝑥∗
|𝑥)

}, (8) 

otherwise it remains at 𝑥 . In the random walk MH 

algorithm, a zero-mean normal distribution is a popular 

choice of 𝑞(𝑥∗|𝑥) as a symmetric candidate-generating 

function, which helps reduce the moving probability to 

𝑝(𝑥∗) 𝑝(𝑥)⁄ . Algorithm 1 presents the MH algorithm for 

sampling from the posterior distribution: 

 

Algorithm 1: The Metropolis-Hastings algorithm for 

sampling from 𝑝(𝑥|𝑦̃) 

input: initial value 𝑥(0) , jumping function 

𝑞(𝑥(𝑖)|𝑥(𝑗)) 

output: 𝑥(𝑘) where 𝑘 ≤ 𝐾 

begin 
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    Initialize with arbitrary value 𝑥(0) 

    while length of MCMC chain < pre-defined length  

𝐾 do 

        Generate 𝑥(𝑘) from 𝑞(𝑥(𝑘)|𝑥(𝑘−1)) 

        𝒜(𝑥(𝑘), 𝑥(𝑘−1)) = min {1,
𝑝(𝑥(𝑘)

|𝑦̃)

𝑝(𝑥(𝑘−1)
|𝑦̃)

} 

 

        Generate 𝒜0 from uniform distribution 𝒰(0,1) 

        if 𝒜0 < 𝒜(𝑥(𝑘), 𝑥(𝑘−1)) then 

            keep 𝑥(𝑘) 

        else 

            𝑥(𝑘) = 𝑥(𝑘−1) 

        end 

        save 𝑥(𝑘) in the chain 

    end 

end 

 

A. Distributed multiple chains MCMC methods 

Although the MCMC method guarantees 

asymptotically exact recovery of the posterior distribution 

as the number of posterior samples grows, it may suffer 

from a large number of “burn-in” steps to reach the 

equilibrium and slow convergence [10]. Noted that the 

time cost may be prohibitively high for the inverse 

problem when the forward model computation is 

required by every sample drawn from the MH, which 

may take at least O(N) operations to draw one sample 

[9]. Meanwhile, with the increasing space of model 

parameters, burn-in period may reach over thousands of 

steps. As both data volume and the space of model 

parameters increase explosively, a dispersion manner of 

the MCMC algorithms, which distributes computation to 

multi-processor and multi-machine, is urgently required. 

It is in our interests to investigate and provide answers  

to these questions on how to extend the proposed 

framework to serve for our statistical inverse problems 

that involve in big volume of data measurements, variety 

of measurement types and require high speed on data 

processing.  

The essence of the distributed implementation is 

enlightened by the application of multiple chains (or 

multiple sequence) of the MCMC method proposed by 

Gelman and Rubin, 1992. It is based on the idea that the 

samples from a sequence of chain has a tendency to be 

unduly influenced by slow-moving realization of the 

iterative simulation. Whereas a multiple starting points 

are needed to avoid inferences being influenced [10]. 

The evidence apparently shows in geosteering statistical 

inversions and it is not generally possible to reach 

convergence by running a single chain MH algorithm. 

The main difficulty is that the random walk can remain 

for many iterations in a region heavily influenced by the 

starting distribution, especially in the case of sampling 

multidimensional random variables with a strong 

correlation. Hence, a multiple chains MCMC method has 

been proposed by starting multiple independent chains 

of the iterative sampling at multiple starting points. The 

target distribution and the estimation of model parameters 

can be obtained more quickly by the samples using 

between-sequence as well as within-sequence information 

[10]. Once all sequences reach the maximum chain 

length, an easy estimation of model parameters can be 

accomplish by sampling results from each chain instead 

of an inference from the time-series structure of samples 

from one single chain. 

However, efficiency cannot be achieved while 

multiple chains are running on a single thread since all 

sequences are queued up and executed one by one. Due 

to a rapid expansion of computer science, the parallel 

computing technique is well developed serving for the 

parallelized tasks [16]. The parallelism can be supported 

not only within the level of a single machine with 

multiple-cores or multiple-processors, but also on the 

scale of clusters, grids and clouds. The multiple chains 

MCMC method is able to take full advantage of data and 

task parallelism. A simple strategy of a distributed 

MCMC method is built on the parallelization of multiple 

chains, which distributes the data and the task of the 

MCMC sampling method to multiple processing units.  

Nevertheless, hundreds of measured data are 

collected for one measuring point by the geosteering  

tool and tons of measurements will be yield while the 

operating region may extend to thousand feet long. 

Therefore, the computation structure of the geosteering 

inverse problem needs to be able to accommodate 

multiple level of parallelism. The parallelization scheme 

of geosteering inversion is depicted in Fig. 2. The point-

wise inversion tasks with respective measured data are 

distributed to multiple cluster nodes by the master node. 

Within each task, multiple chains are launched and run 

in parallel on the multiple processors or cores. Saturated 

with huge volumes of collected data, the computation 

power is well utilized by distributing the task and data to 

every computing node and thread. A facile solution for 

solving the large-scale statistical inverse problem in 

parallel is to take the advantage of the big data platform. 
 

 
 

Fig. 2. Parallelization of large-scale statistical geosteering 

inverse problems on distributed clusters. 
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B. Large-scale geosteering inversion on MapReduce 

To keep up with the requirement for large-scale 

parallel computing, we need a platform that allows  

easy access to data and is transparent to its scheduling 

process. Moreover, the platform should be able to 

dynamically allocate it computing resources, such as  

the number of cluster nodes or processing units, and 

achieve high scalability with low implementation costs. 

MapReduce is an idea model to meet these requirement.  

MapReduce is a programming model and an 

associated implementation for processing and generating 

large data sets with a parallel, distributed algorithm  

on a cluster [17]. It serves for a purpose that allows 

programmers without any experience with parallel  

and distributed systems to easily utilize resources in  

a distributed computing environment. The model is 

composed of a map function which performs a 

preprocessing to the data collection, and a reduce 

function that performs a summary operation. A simple 

diagram of MapReduce is shown in Fig. 3. A master 

node is responsible for generating initial starting value 

set and assigning each starting value to a map function. 

The mappers filter and sort the allocated data and 

generate associative value. These intermediate outputs 

are sent to the reducers which aggregate the data and 

make calculation for the final outputs. 

 

 
 

Fig. 3. Diagram of MapReduce programming model. 

 

In the case of geosteering inverse problems, the 

MapReduce programming model can be suitably applied 

on the multiple chains MCMC method. Initially, multiple 

sets of initial values of model parameters are generated 

by a master node as the starting value for multiple chains. 

Each set is sent to a mapper where MCMC are running 

simultaneously for all sets. Samples generated by each 

chain are cached locally on map nodes for subsequent 

map-reduce invocations. After intermediate data is 

collected, the master node coordinates the mappers and 

reducers and in turn invokes the reducers to process 

samples from Markov chains. The reducer will calculate 

the variance within and between chains, evaluate 

convergence and statistical characteristics of all samples 

and output them as the final result. 

IV. EXAMPLES AND DISCUSSIONS 
In this section, we will evaluate the computation and 

convergence performance of the parallel multi-chain 

statistical geosteering inversion. We will take a synthetic 

earth model as an instance to examine the scheme. It  

is noted that the synthetic data is generated based on 

analytical EM wave solutions for the 1D multi-layer 

model with dipole transmitters and receivers. The speed 

of inversions depends largely on the forward program. In 

the experiment, the forward model is treated as a black 

box that returns a group of measurements given earth 

model parameters. The test ran on a DELL PowerEdge 

T630, with dual Intel Xeon E5-2667 V3 3.2GHz 20M 

Cache 8C/16T, and 8x16GB RDIMM 2133MT/s.  

To verify the computational efficiency of the parallel 

computing, we firstly examine the time cost by launching 

multiple chains at fixed length on different numbers of 

processing units. The inversion is conducted on a single 

point of a three-layer model with five parameters: the 

resistivities of the upper, middle and lower layers are  

10 Ω∙m, 50 Ω∙m and 1 Ω∙m, respectively. The distance 

to the upper and lower boundary is 7 ft and 10 ft. Figure 

4 shows the relationship between the time cost and  

the number of processing units. We archived significant 

performance gain when increasing processing unit from 

one to four. And the improvement is observed for all 

chain lengths. We also noted that the performance gain 

became less when adding more processing units. We 

think the execution latency variation is due to other 

shared resource conflicts when running the test on a 

shared memory platform. 

 

 
 

Fig. 4. Comparison of time cost by different total length 

of chain on different number of processing units. 

 

To examine the convergence of inversion, we  

run two instances separately. First, we tested a single 

chain with 640 iterations. Second, we run eight chains 

simultaneously with the same number of iterations. We 

compare the accuracy of the inversed results through the 

unnormalized parameters misfit, a L2 norm of the 
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difference between the inverted model parameters and 

the true model parameters. In Fig. 5, the result shows that 

both instances have reached the equilibrium state after a 

burn-in period. The parameter misfit of multiple chains 

is smaller and inversed results are more close to the 

ground truth in comparison with the single chain result. 

The test demonstrates the advantage of using multiple 

chains to reduce negative effects of parameter correlation 

and improve convergence accuracy. It should be noted 

that the time cost for running eight chains simultaneously 

is nearly the same as running a single chain on our 

parallel testing bed.  
 

 
 

Fig. 5. Comparison of model misfit convergence.  

 

Our next test is to reconstruct a subsurface profile 

by applying the parallel multi-chain MCMC statistical 

inversion to a three-layer model. The earth model in  

Fig. 6 (a) is a three-layer model with the resistivities of 

10 Ω∙m, 50 Ω∙m and 1 Ω∙m in the upper, middle and 

lower layer respectively. The central green line indicates 

the tool’s navigation trajectory. In this case, we assume 

the tool dip angle is fixed as 90 degrees. The inversion is 

conducted at each 1ft while the total working region 

extends to 80 ft. The depth to either the upper or lower 

boundary is varying on different position. The largest 

depth to boundary (D2B) is around 18 ft and the smallest 

is around 2 ft. Both operations, point-wise inversion  

and multi-chain MCMC sampling, are parallelized. We 

validate the feasibility of the implementation for large-

scale inverse problems on the big data scheme. Figure  

6 (b) shows the inverse result which provides a successful 

and satisfying reconstruction of the earth model compared 

with the Fig. 6 (a). 

Figure 7 also shows the quantified interpretation for 

the uncertainty of inversed results. The variance at each 

inversed point denotes the uncertainty of the estimation 

of the parameter. One can see from Fig. 7 that when the 

tool is far from the top boundary (the beginning part), the 

earth model cannot be well reconstructed. In other 

words, the uncertainty involved in solving the inverse 

problem is high. The reason is that the sensitivity of the 

measurements is relatively poor when the tool is far from 

the layer interface. As the tool moves forward and the 

top boundary bends downward, the inversion can clearly 

resolve both the upper and lower boundaries. 

 

 

 
 

Fig. 6. (a) A synthetic three-layer earth model in 80 ft 

horizontal region, and (b) the inverse earth model. 

 

 
 

Fig. 7. The inverse earth model with uncertainty.  

 

V. CONCLUSION 
Since more advanced measuring technologies have 

been commercialized and pushed into the market around 

these years, the increasing volume of measured data 

undoubtedly will require a more efficient solution for 

solving large-scale inverse problems. The proposed 

work in this articles takes full advantage of the latest 

technology in big data in exploration of computationally 

efficient methods for solving statistical inverse problems. 

The multiple chains MCMC method is well suited for 

using the MapReduce framework in a distributed or 

cloud environment. Our simulation verifies the feasibility 

of solving large-scale inverse problem on a big data 

platform. The techniques developed in this research 
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could have a large positive impact in exploring 

computationally efficient method to solved real-time 

statistical inverse problem. 
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