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Abstract ─ In this paper, a new numerical method for 
solving of one-dimensional stationary Schrödinger 
equation has been presented. The method is based on the 
Fourier transform of a wave equation. It is shown that, as 
a result we obtain an integral equation where integral is 
replaced by sum. A main problem is transformed in the 
eigenvalue/eigenvector problem which corresponds to 
discrete energy levels as well as the Fourier transform of 
wave functions. Wave function is obtained by usage of 
the inverse Fourier transform. Discrete energy levels are 
split and form the forbidden and permitted zones for the 
one-dimensional finite crystal. The method is tested in 
many examples, and it is characterized by high accuracy 
and stability of search of the discrete energy levels. 
 
Index Terms ─ Convolution, energy levels, Fourier 
transform, Schrödinger equation. 
 

I. INTRODUCTION 
Quantum wells [1] emerging in semiconductor 

heterostructures have recently become the subject of 
significant scientific interest. They are often studied 
since their physical effects can be seen at room 
temperature and can be exploited in real devices [2]; for 
example, as a primary component of a number of 
optoelectronic devices such as: photo-detectors in 
infrared spectral range [3], quantum cascade lasers [4] 
and other optoelectronic devices [5]. A detailed theory of 
optoelectronic devices based on quantum wells is offered 
by Bastard in [6]. 

An analysis of devices based on quantum wells 
requires a solution of the stationary Schrödinger 
equation solution is reduced to the transcendental 
equation if a potential well has a rectangular form. In 
case of two or more rectangular wells, the obtained 

transcendental equation becomes much more 
complicated. In addition, a solution becomes more 
difficult if the potential well hasn’t a rectangular barrier. 
Precise solutions of one-dimensional stationary 
Schrödinger equation [7] have been obtained only for a 
small number of functional dependencies of a well 
potential. For this reason, search of solutions of one-
dimensional Schrödinger stationary equation continues; 
moreover, there are attempts to form potential energy in 
such a way to obtain a precise analytical solution of the 
corresponding equation [8-10]. 

A similar problem exists at the finding of 
propagation constants of waveguide modes in the 
gradient planar waveguides [11-16]. The methods 
described in [12-16] can be used for solving the 
Schrödinger equation as a structure of the wave equation 
is identical to the one-dimensional stationary 
Schrödinger equation for planar waveguides. On the 
other hand, the approaches developed in quantum 
mechanics, for instance, the WKB approximation [11], 
can be used to search propagation constants of gradient 
planar waveguides. 

The current state of computer technologies and the 
sophistication of software allow applied numerical 
methods to solve equations of the various types. The 
numerical method ensures high accuracy, and it is 
relatively simple. It enables its application in quantum 
mechanics and waveguide technologies. A well-known 
numerical method to find propagation constants of 
waveguide modes [16] is based on replacing the second 
derivative of the wave equation by the difference 
operator. The solution is reduced to the 
eigenvalue/eigenvector problem in this method. This 
method also can be used to search discrete energy levels 
of the stationary Schrödinger equation. However, it 
doesn’t offer high accuracy. In addition, the evidence of 
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numerical differentiation is found as a source of noise 
due to approximation in the numerical process. 

It should be noted that, the known methods of 
searching the discrete levels of energy (searching of 
propagation constants of waveguide modes) are based on 
the solution of a wave equation in a coordinate domain. 
The relevant wave functions and the primary derivatives 
of coordinate x at ±∞ are zero for discrete levels of 
energy. Therefore, there is the Fourier transform [17] of 
a wave function, and the appropriate wave equation can 
be transformed into a frequency domain by the Fourier 
transform. At the same time, integral equation will be 
obtained and also can be solved by numerical methods. 

The aim of this study is to develop a new numerical 
method to solve the Schrödinger one-dimensional 
stationary equation using the Fourier transform, and 
demonstrate some advantages in comparison with the 
known methods. The second section of this paper is 
devoted to numerical implementation of the method 
proposed. The third section presents the results of the 
numerical analysis of the stationary Schrödinger 
equation for certain functional dependencies of the 
potential energy. The fourth section presents the results 
of the solution of the Schrödinger one-dimensional 
stationary equation in accordance with the method 
proposed for the one-dimensional crystal which has 
several periods. 
 

II. ONE-DIMENSIONAL SCHRÖDINGER 
WAVE EQUATION AND ITS FOURIER 

TRANSFORM 
The one-dimensional stationary Schrödinger 

equation is: 

 
� 	 � 	 � 	 � 	xExxU

dx
xd
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22

2
�
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where U(x) is a potential energy of particle which has 
only discrete values, � 	xD  is a wave function. 

Dimensionless equation is used [7] frequently in 
quantum mechanics, which is obtained by replacing the 
variables. The dimensionless equation (1) can be 
presented as: 

 
� 	 � 	 � 	 � 	xExxU
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Function � 	xD  is a solution of the stationary 
Schrödinger equation, which corresponds to discrete 
levels of energy, and their primary derivatives tend to 
zero at x → ±∞. Therefore, the Fourier transform for 
these functions as well as for their primary and secondary 
derivatives exists. Let’s write the appropriate 
proportions for � 	xψ . Thus, the Fourier transform of 
� 	xψ  and its primary and secondary derivatives are zero 

[17], and it can be written as follows: 
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In addition, for functions for which a Fourier 
transform exists, the next conditions are satisfied [17]: 
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where E F...F  is the Fourier transform. Expression (6) 
describes the content of the convolution theorem. 

Let’s execute the Fourier transform of left and right 
parts of equation (2) by using equations (3), (5) and (6). 
As a result we obtain: 

 
� 	 � 	 � 	 � 	�

3

3

D�D�D* uEdvvvuUuu 224 . (7) 

Therefore, we have moved from the differential 
equation (2) for eigenfunctions and eigenvalues to the 
integral one equation (7). In the last equation we can 
replace integral by sum, so the continuous values u and 
v can be replaced by discrete ones: 

� 	 � 	 � 	 � 	
� 	

� 	

� 	�D���D����D�* �


�

sEppsUss
N
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where ,/max Nu��  ,�� sus  �� pvp , � 	 sN C 2/1 , 

� 	 2/1C Np , s and p are integers; 2/maxuu B ; values 

of � 	xD  are almost equal to zero. Value of N must be 
large and preferably unpaired. Obviously, sum in 
equation (8) should have N elements. 

Let’s write the last equation for all discrete spatial 
frequencies ,�� sus  where s  changes between 
� 	 2/1 N  and � 	 2/1N . Then a set of equations in 

the amount of N can be written in a matrix form, where 
E is common for all values of s: 

 � 	 D�D� EUP , (9) 

where P  is a diagonal matrix with elements � 	24 �*s , U  
is a square symmetric matrix with elements � 	�� ksU , 
D  is a vector-column with elements � 	�D s . 

Therefore in the last case, the problem is reduced to 
the problem of eigenvalues (energy) and eigenvectors 
(the discrete Fourier transform of � 	xD ) which 
corresponds to the given value of energy. We can have 
many eigenvalues and its corresponding eigenvectors. 
By carrying out the inverse discrete Fourier transform of 
eigenvector, we obtain the eigenfunction � 	xD . All 
eigenvalues (discrete levels of energy) are determined 
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inside the potential well for quantum-mechanical 
problems. If, the potential well has finite depth, then the 
precision is determined by N and .�  If, the potential 
energy varies from zero to infinity (for example 2xU � ), 
then in this method the potential energy is limited; i.e., it 
serves up to a certain value as � 	xU , and further acquires 
a constant value. Obviously, in this case, the lowest 
levels of energy can be determined with the highest 
accuracy. In our numerical calculations whose results are 
presented below, we used the simplest way to replace 
integral by sum. 
 

III. EXAMPLES OF NUMERICAL 
SIMULATION 

Example 1. Schrödinger equation according to 
equation (2), for which potential energy is: 
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,
-
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,,
2

2
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axx

U . 

Numerical process parameters are: sampling 
number 1001,N �  maximum frequency max 8.0u � . The 
25 eigenvalues of energy are obtained by numerical 
calculations. There are 13 lowest energy levels which 
have next values: 50000000002.10 �E , ..., 

6 13.00000000025,E �  ..., 12 24.999999971,E �  and 
they accurately fit the data of [7], where 2 1.nE n� �  
However, error is large enough at potential energy 
� 	 2xxU �  for 24 48.64036656,E �  which is 

sufficiently accurate for our model potential. Figure 1 
shows the wave functions (not normalized) for the three 
lowest values of energy. One can see well that points fit 
with continuous curves. 

Example 2. Schrödinger equation according to 
equation (2) where potential energy is: 
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Numerical process parameters are next: 1001,N �  
max 25u � . The 11 smallest eigenvalues nE  are found at 

these data, there are: 0 1.0603646,E �  ..., 

5 21.238375,E �  ..., 10 50.256257E � . This quantum 
problem is not solved precisely by analytical methods, 
therefore the value of the lowest level of energy is found 
by approximation at which 0 1.156194E 6  [7]. In other 
words, the approximate value is found with a large error. 
In addition, this problem can be solved by the numerical 
difference method [16], however, it offers solutions with 
low accuracy: 0 1.0603593,E �  ..., 5 21.237897,E �  ..., 

10 50.253695E � . 
 

 
 
Fig. 1. Wave functions of the three lowest energy levels. 
The continuous curves correspond to exact wave 
functions, while the points correspond to the results of 
calculation obtained by the method proposed in this 
study. 
 

IV. NUMERICAL SIMULATION OF ONE-
DIMENSIONAL CRYSTAL 

One-dimensional crystal consists of periodic 
placement of potential wells, which are described by the 
following analytical function: 

 � 	 � 	2exp xaaxU *� , (10) 
where a is a certain positive number determining the 
depth of a potential well. 

The Fourier transform of this function is: 
 � 	E F � 	 � 	2exp uauaxUF *$� . (11) 

If we have N1 number of periodically placed (N1 is 
unpaired) potential wells on a distance Λ from each 
other, we will receive one-dimensional crystal, whose 
potential energy will be described as following 
expression: 

 � 	 � 	> ?
� 	

� 	
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A*�
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2/1

2
1

1

exp
N

Nn
kr nxaaxU . (12) 

After simple mathematical transformations we 
obtain the Fourier transform of equation (12): 

 � 	E F � 	 � 	 > ?
� 	u

uNuauaxUF kr A*
A*

*$�
sin

sinexp 12 . (13) 

The five energy levels are found ( 100a � ): 
0 16.539595,E �  1 47.036248,E �  2 72.011285,E �  
3 90.446940,E �  4 99.832730E �  for the potential 

energy according to equation (10) at parameters of the 
numerical process 1001N �  and max 10 20u � G . 

A more detailed dependence of the calculated 
energy levels as function on maxu  is presented in Table 
1. Table 2 shows the dependence of the calculated energy 
levels on N at max 15u � . Analysis of Table 1 indicates 
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that there is a frequency range at sufficiently large N in 
which values of energy are constant (these values of 
energy in the Tables are shown in bold). 

Four levels are split into 11 sublevels and form the 
permitted zones, but level 4E  splits only into two 

sublevels: 4,0 99.041696E �  and 4,1 99.551008E � . 
The widths of permitted zones increase with the 

increase of energy. The fact that the fourth level splits 
into two sublevels only can be understood from Fig. 2. 

 
 
Table 1: The dependence of the calculated energy levels on maxu  at 1001N �  

maxu  4 6 10 14 20 24 28 

0E  16.54607358 16.53959718 16.53959510 16.53959509 16.53959509 16.53959509 16.53959510 

1E  47.08219239 47.03626733 47.03624767 47.03624767 47.03624767 47.03624767 47.03624768 

2E  72.15044578 72.01136385 72.01128540 72.01128540 72.01128540 72.01128540 72.01128541 

3E  90.66025796 90.44709161 90.44693968 90.44693968 90.44693968 90.44693968 90.44693969 

4E  99.88445912 99.83277513 99.83272955 99.83272955 99.83272955 99.83272950 99.832729002 
 
Table 2: The dependence of the calculated energy levels on N  at maxu = 15 

N  101 201 401 601 801 1001 1501 
0E  16.53959512 16.53959510 16.53959511 16.53959509 16.53959509 16.53959509 16.53959509 

1E  47.03624768 47.03624766 47.03624768 47.03624767 47.03624767 47.03624767 47.03624767 

2E  72.01128540 72.01128539 72.01128542 72.01128540 72.01128540 72.01128540 72.01128540 

3E  90.44694122 90.44693968 90.44693970 90.44693968 90.44693968 90.44693968 90.44693968 

4E  99.76898968 99.82787662 99.83270759 99.83272945 99.83272955 99.83272955 99.83272955 

 

 
 
Fig. 2. Dependence of potential energy on the coordinate and energy level (horizontal line): (a) single potential well, 
and (b) one-dimensional crystal. 
 

The numerical analysis of one-dimensional crystal 
was carried out at the following parameters: 1001�N , 

25max �u , 2�A . 

Figure 2 demonstrates the potential energies and 
energy levels for single potential well and one-
dimensional crystal. The scales of Figs. 2 (a) and 2 (b) 
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are vertically the same; the starting point of the 
coordinates for both pictures is combined. The lowest 
level is split to the least degree: 533261.1610,0 �E . Level 

3E  is split at most: 157709.870,3 �E , 704412.9310,3 �E . 
Table 2 leads to a conclusion that the calculated 

energy tends toward a certain value at increase of N for 
certain frequencies. 
 

V. CONCLUSION 
The new numerical method for solving stationary 

Schrödinger equation based on the Fourier transform is 
developed. The integral equation is obtained as a result 
of mathematical manipulations. The next step is to obtain 
the eigenvalue/eigenvector problem by replacing 
integral by sum and to write the corresponding equation 
for a set of discrete frequencies, where the eigenvalues 
correspond to energy levels and eigenvectors do to the 
discrete Fourier transforms of wave functions. Carrying 
out the inverse Fourier transform of the eigenvector, the 
wave function in a coordinate domain is obtained. The 
method is tested on a number of examples, and it shows 
high accuracy of the energy levels for a single potential 
energy. The method is characterized by numerical 
stability. 

The discrete levels of energy have been determined 
for one-dimensional crystal, consisting of 11 regularly 
placed potential wells. It demonstrates that discrete 
levels are split and form permitted zones during the 
formation of one-dimensional crystal, and the 
multiplicity of splitting equals to a number of potential 
wells that form one-dimensional crystal. The energy 
width of the permitted zone expands at the increase of 
energy of corresponding discrete level of a single 
potential well. This conclusion is consistent with the data 
of [18]. 
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