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Abstract ─ In this paper, Support Vector Machine 
(SVM) technique is used to reconstruct the 
geometric and dielectric characteristics of 
composite conducting-dielectric cylinder. To this 
aim, the scattered electric fields at a number of 
observation points by composite conducting-
dielectric object under the different object 
parameters are calculated by stabilized 
Biconjugate Gradient Fast Fourier Transform 
method (BCG-FFT) and provide to SVM as input 
training samples, while the output of the SVM are 
the characteristics of the objects. In numerical 
results, the proposed technique is applied 
successfully to the reconstruction of the geometric 
and dielectric parameters of composite 
conducting-dielectric cylinder. The effectiveness 
of the SVM method is evaluated and also in 
comparison with the Neural Network (NN) based 
approaches.

Index Terms ─ Biconjugate Gradient Fast Fourier 
Transform (BCG-FFT), composite conducting-
dielectric cylinder, parameter reconstruction and 
Support Vector Machine (SVM). 

I. INTRODUCTION 
The research on the characteristics of 

electromagnetic scattering has particular 
significance in aspects of Electromagnetic 
Compatibility (EMC), target properties, 
classification and identification, radar sense, etc. 
of electromagnetism. In recent years, the research 
on characteristics of scattering of objective 
metallic and dielectric composite structure (such 
as lossy medium covers conductor objective,
micro-strip, micro-strip antenna, antenna-antenna 
housing system and so on) has been paid great 

attention to because of its wide application. So it is 
obvious that the research on its aspects of inverse 
scattering appears to be quite imperative and 
important. 

As for the calculation of unitary problems in 
electromagnetic inverse scattering of composite 
conducting-dielectric objects, we can adopt several 
comparatively mature algorithms, such as the 
Method of Moment (MoM), the Finite Element 
Method (FEM), the Finite Difference Time 
Domain (FDTD), etc. In MoM, a typical 
computational method for this problem is based on 
the Surface Integral Equation formulation (SIE) 
[1] or the hybrid Volume-Surface Integral 
Equation (VSIE) formulation [2-4]. In comparison 
to the SIE approach, the VSIE approach has 
several unique advantages. First, the VSIE 
approach can conveniently handle composite 
objects with arbitrarily inhomogeneous dielectric 
materials due to the use of VSIE, while the SIE 
can only consider piecewise homogeneous 
dielectric materials. Besides, for composite 
conducting-dielectric targets, the SIE approach 
requires special treatments on the conducting-
dielectric junctions to obtain accurate results [5]. 
On the other hand, the VSIE approach retains the 
same simple form, regardless of the complexity of 
the objects. Hence, the implementation is 
relatively convenient and simpler, as compared to 
the SIE approach. Also, no special treatments are 
required for problems with junctions. In this paper, 
we chose the VSIE to model the composite 
conducting-dielectric objects. 

At present, there are so few documents and 
reports about the aspects of electromagnetic 
inverse scattering of metallic and dielectric 
composite structure object. As for traditional 
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optimization iteration method, on one hand, its 
calculation on unitary algorithm is more complex 
than the calculation on comparatively pure 
conductor or dielectric objective, because of the 
complexity of objective structure; on the other 
hand, the complexity of objective structure causes 
the more powerful nolinear of the aspects of 
inversing scattering. At the same time, we also 
need to pay more attention to the slowdown or 
convergence of iteration caused by the increasing 
number of object functions and optimization 
variables, it is time-consuming and certainly it will 
go against synchronous inversion towards 
objective. 

In the last years, it’s seen that the application 
research on the aspect of Artificial Neural 
Networks (ANN) in electromagnetic inverse 
scattering has already been started up; such as the 
free space on the basis of frequency domain or 
time domain information, the problem of 
electromagnetism inversing scattering of half-
space buried-objects [6-10], etc. However, in spite 
of their success, NN-based approaches suffer from 
typical problems of neural networks (e.g., the 
overfitting, local minima, etc), which make the 
method accuracy highly training dependent. 

In recent years, a new artificial intelligent 
technique-Support Vector Machine (SVM) has 
been proposed to solve electromagnetic inverse 
scattering problems. In [11] and [12], the SVM is 
used to the detection of buried object by 
frequency-domain data of scattered electric fields, 
combined with the Finite Element Method (FEM) 
and the Finite Difference Time Domain (FDTD) 
method, respectively. In particular, as in the case 
of the using of neural networks, SVM are used to 
estimate the unknown function that relates the 
scattering field to the target’s properties. After a 

proper learning phase, the SVM can obtain 
reconstruction in real-time. Moreover, in SVM, 
the original problem is recasted into a Constrained 
Quadratic Programming (CQP) problem and it 
avoids typical drawbacks as overfitting or local 
minima occurrence [13]. 

This paper deals with the SVM-based 
reconstruction of composite conducting-dielectric 
objects starting from frequency-domain 
electromagnetic scattering data. To this aim, the 
stabilized Biconjugate Gradient Fast Fourier 
Transform method (BCG-FFT) is applied to solve 
the hybrid VSIE for composite conducting-

dielectric cylinder, and the electromagnetic data 
exploitable for inversion are the amplitude of 
scattered fields collected at some receiving points. 

II. THE MATHEMATICAL 
FORMULATION OF VSIE 

Let’s consider a mixed conducting and 

dielectric scattering target illuminated by an 
incident field iE . It is assumed that the dielectric 
materials are nonmagnetic, namely, 0=� � for all 
regions and in the following formulation the time 
factor is j te � and is suppressed. Using the 
equivalence principle, the conducting bodies are 
replaced by equivalent surface currents SJ and the 
dielectric materials are replaced by equivalent 
volume currents VJ . All the currents radiate in 
free space, and hence the free-space Green’s
function is used in the formulation. The scattered 
field sE is the total contribution of the surface 
current SJ and volume current VJ , which can be 
calculated by [4]: 

s ( ) j ( ) ( ) j ( ) ( ),S S V V� ��� ��� � ���E r A r r A r r (1) 

where , , ,S V S V� �A A are the vector and scalar 

potentials produced by the surface current SJ and

volume current VJ , respectively; and given by: 
'

0

' '0
'

( ) ( ) d = , ,
4

jk

u uu

e u u S V�
�

� �

�
�	

r r

A r J r
r r

 (2) 

'
0

' '

'
0

1
( ) ( ) d = , .

j 4

jk

u uu

e u u S V
� �


� �

� � � ��
�	

r r

r J r
r r

 (3)

On all conductor surfaces S , the boundary 
condition requires that the total tangential electric 
field is zero; i.e.:

i

tan
( )+ ( ) 0s S� 
 � �� �E r E r r . (4) 

This is the surface electric field integral equation. 
In the dielectric region, the total electric field is 
equal to the sum of the incident field and the 
scattered field; i.e.: 

total i s( ) ( ) ( ) V� � �E r E r E r r , (5) 

the volume current VJ is related to the total 

electric field total ( )E r by: 
total

0( ) j ( ( ) ) ( )V V� 
 
� � �J r r E r r , (6) 

where ( )
 r is the permittivity of the dielectric 
material. 
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Put equation (5) into equation (6), the volume 
integral equation is given by: 

i

0

( )
= ( )+ ( ) .

j ( ( ) )
sV V

� 
 

�

�
J r E r E r r

r
 (7) 

Equations (4) and (7), together with (1)-(3), 
constitute a hybrid volume-surface integral 
equation in terms of the surface current SJ on the 

conducting surface and the volume current VJ in 
the dielectric region. 

To solve the hybrid volume-surface integral 
equation, the conducting surface S is discretized 
into small quadrangle patches, while the dielectric 
region V is divided into hexahedron elements. 
However, the quadrangle-hexahedron mesh is not 
the only choice. Other types of meshes, such as 
triangular for surface and tetrahedral for volume 
can also be used. The unknown surface current SJ
and volume current VJ can be represented by the 
pulse basis functions and be substituted into (4)
and (7), testing a linear system consisting of 
independent equations is obtained and can be 
written as a sub-matrix form in the following: 

i
SS SV sn sn

i
VS VV vn vn

Z Z I E
Z Z I E

� 
� 
 � 

� � �� � � �

� � � � � �
, (8)

where ( , , , )tuZ u S V t S V� � is the impedance

matrix, ,sn vnI I are the expansion coefficient 
matrix of surface current and volume current, 
respectively and ,i i

sn vnE E  are the electric voltage 
matrix of metal surface and dielectric internal, 
respectively. Once we get the surface current SJ
and volume current VJ by matrix equation (8), we 
can get the scattering field of arbitrary point in 
space, as long as we put them into equation (1). 
Specifically, the numerical integration involved in 

the sub-matrix SSZ and VVZ , ( , )t t
a G dt� �� 	 r r

( ,t S V� ), will show singularity when ��r r ; i.e., 
the field point coincides with source point. To 
avoid this singularity, an approximate numerical 
method should be taken to yield accurate result. 
As for the surface integral, it can be solved 
approximately by solving the integral within the 
corresponding circular whose area is equal to 
rectangle in polar coordinate. In terms of volume 
integral, we use the integration of the sphere, 

which has the equal volume of the cube to obtain 
the numerical solution: 

0 0 0 0
1 0 02

0 0

1 1
[ ( 1) ]jk r jk rI j e r e
k jk

�� � �� � � , (9)

where 3
0

3

4

Vr
�
�

� is the radius of the sphere whose 

volume is equal to the V� of the cube volume. 
Along with the development of computer 

technology, as for the solving of matrix equation 
(8), there have been brought forward numerous 
fast algorithms towards the matrix equation 
solving. Fast algorithms which are frequently 
used, includes Fast Multipole Method (FMM) [14] 
and its extension, the Multilevel Fast Multipole 
Algorithm (MLFMA) [15], Conjugate Gradient 
Gast Fourier Transform method (CG-FFT) [16],
the Adaptive Integral Method (AIM) [17], etc.;
which are all being obtained with widely
application. This paper adopts stable BCG-FFT 
method [18], which provides the solving of the 
aspects of electromagnetic inverse scattering with 
high-performance unitary algorithm, along with 
the effective reduction of memory requirements 
and computation time of computer. 

III. SVM-BASED INVERSE 
SCATTERING PROCEDURE 

Generally speaking, a regression problem is 
the process through when an unknown function f
is approximated by means of a function f on the 

basis of some sample � �
1,...,

( , )n n n N
v e

�
, being nv

an input pattern and ne the corresponding target 

� �( )n ne f v� . As far as parameters reconstruction 

of composite conducting-dielectric object are 
concerned, the dimension ( )r and the complex 

permittivity ( , )r
 � of the scatter must be retrieved 
and each unknown parameters is dealt with 
separately. Consequently, ( )s

n nv E� and 

( )n i ne �� .
SVM is a new paradigm that have been 

recently proposed for the solution of pattern 
recognition and function approximation tasks. 
Briefly (the reader can refer to [19] for more 
details), the SVM-based procedure aim at finding 

a smooth function f that approximates f while 
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keeping at most, a deviation 
 from the targets ne
for all samples. Thus, f is approximated in a 
linear way: 

( ) ( )nf v w v c� �� � , (10) 

where w represents the vector of weights of the 
linear function, ( )� � is the mapping that projects 
the samples from the original into the higher 
dimensional feature space and c is the bias. 

The optimal linear function in the transformed 
space is selected by minimizing the structural risk, 
which is the combination of the training error 
(empirical risk) and the model complexity 
(confidence term). The first term is calculated 
according to a 
 � insensitive loss function and 
can be expressed by means of nonnegative slack 
variables � and *� , which measure the distance 
(in the target space) of the training samples lying 
outside the 
 � insensitive tube from the tube itself. 
The second term of the cost function is expressed 
through the Euclidean norm of the weight vector 
w , which can be inversely related to the 
geometrical margin of the corresponding solution 
and thus, to the complexity of the model. The cost 
function to minimize becomes: 

2*
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1
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subjected to the following constraints: 
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C is a regularization parameter that allows one to 
tune the tradeoff between the complexity (or 

flatness) of the function f and the tolerance to 
empirical errors. 

The constrained optimization problem in (11)
can be reformulated through a Lagrange function, 
which leads in the dual formulation to a Convex 
Quadratic Problem (CQP) and thus, to a unique 
solution (the global minimum of the cost function). 
The final prediction function in terms of the 
samples in the original input domain, becomes: 

*( ) ( ) ( , )n n n
n N

f v k v v c# #
�

� � �� , (13) 

where n# and *
n# represent the Lagrange 

multipliers of the CQP and (.,.)k is a kernel 

function, which allows one to evaluate the 
similarity between a pair of sample in the 
transformed feature space as a function of the 
samples in the input space. The commonly 
adopted kernels are polynomial and Gaussian 
Radial Basis Function (RBF) kernels. In SVM, the 
samples associated with a nonzero Lagrange 
multiplier are called support vectors, the other 
samples have no weight in the definition of the 
result since they fall within the 
 � tube. The CQP 
problem can be solved using standard optimization 
techniques. In this work, a very effective 
procedure, Sequential Minimal Optimization 
(SMO) [20] is adopted. The parameter c can be 
computed by means of the Karush-Kuhn-Tucker 
conditions of the CQP at optimality [19].

Some attractive features of the SVM result 
from the analytical formulation presented earlier 
and are as follows [21]: 
1) Good intrinsic generalization ability, owing to 

the use of the 
 � insensitive cost function and 
the optimization of both empirical error and 
model complexity to drive learning process; 

2) Limited complexity and high stability of the 
learning process, due to the convexity of the 
optimization problem and the use of the kernel 
trick; 

3) Ease of use, since relativity few free 
parameters (or hyperparameters; i.e., the 
regularization coefficient C , the width of the 
insensitive tube 
 and the kernel types and 
parameters) have to be tuned. 

IV. NUMERICAL RESULTS 
A. The electromagnetic scattering of composite 
conducting-dielectric objects

In order to prove the correctness, two valuable 
objects of two-dimension metal/dielectric 
composite structure are considered by BCG-FFT
method and making comparison with the FDTD 
method. 
1) Inhomogeneous medium covering conducting 

cylinder. 
A unit TM plane wave reflects upon the 

indefinite medium covering conductor cylinder 
along X-axis (suppose the cylinder axis is Z-axis), 
the radius of conductor is 0.2$ and the thickness 
of medium is 0.1$ ; two kinds constitute the 
medium and the relative dielectric constants are 

1 24.0, 20.0,r r
 
� � respectively. Medium 1 
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locates under X-axis, which medium 2 is above X-
axis. Figure 1 provides with the bistatic Radar 
Cross Section (RCS) � of the object (using
normalization of wavelength). The result obtained 
by FDTD also shown in the figure, which 
indicates good correspondence with the result of 
the approach above. It is worth noting that some 
deviation are shown in the range of 0 0200 300� .
This can be explained in the following two 
aspects: first, the relative simple substitute of 
rectangle to cube, which may cause deviation and 
the another may result from the process of central 
point matching. 

Fig. 1. Bistatic RCS of a conducting cylinder 
( 1.256ka � ) with a inhomogeneous coating 
( 1.884, 4.0rkb 
� � and 20.0 ). 

2) Metal-medium constituting the compound 
square column. 
A unit TM plane wave reflects into the object 

of metal/medium composite square column, the 
angle of arrival is 0270% � , half the object is a 
conductor (left), while half the object is a medium 
(right); both of the cross sections of the metal and 
the medium are squares with the length of a side 
0.2$ and the relative permittivity is 4.0. Figure 2 
puts up the � of the object. It’s obtained result 
matches with the result of the document [22] and 
Fig. 2 also provides with the computing result of 
FDTD. 

Fig. 2. Bistatic RCS of a composite conducting 
dielectric square column with the length of side 
0.2$ and relative permittivity 4.0. 

B. The reconstruction of composite conducting-
dielectric cylinder
1) The reconstitution of the relative permittivity 

r
 and the medium covering thickness b .
A unit TM plane wave ( 1f GHz� ) vertically 

reflects into the lossless medium covering 
conductor cylinder (Fig. 3) with its inside radius 
and outer radius are a and b , respectively; 

6a $� , suppose the values range of b is at [7, 

23] cm, while the values range of r
 is at [1.5, 
5.0]. In the “learning phase”, a data set of 135 

examples: 
1.5 0.25 , 0,1,...,14r n n
 � � � 7.0 2 ( ),b n cm� �

0,1,...,8n � , is considered and defined a suitable 
set to train SVM for the reconstruction problems. 
Because SVM has been developed to solve one-
output learning problems [19], two different 
SVMs, one for the reconstitution of the relative 
permittivity r
 and the other for the reconstitution 
of the medium covering thickness b are trained by 
using the SMO algorithm. Gaussian RBF kernel 
(with kernel width 2& ) are considered as kernel 
functions, due to their capability to work as 
universal approximator [11]. In order to obtain the 
scattering electric field of objective truly and 
perfectly, we place 12 observation points of 
scattered filed, which evenly distribute at the 
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distance from the circular arc with the center 
radius of $ and the length of 3 2�$ , just as Fig. 3 
shows. The sample information are all the 
amplitude of scattered field of observation point, 
which can directly get by the analytic method.
After proper trained, the values of the 
hyperparameters of the SVM are given in Table 1. 

Fig. 3. Conductor cylinder coated with dielectric 
material illuminated by a plane wave. 

Table 1: The values of the SVM hyperparameters 

 C 2&

r
 0.001 999.8545 0.2460

b 0.001 1004.6867 0.2441

In order to compare SVM and NN 
performances under the same “conditions”, the 

same training set has been considered during the
NN training phase. In this studies, the network 
structure having 12 input ports, 12 nodes in the 
hidden layer and 2 output ports (means 12-12-2
network) is considered. In training phase, a 
Backpropagation algorithm is used to train the NN 
(BPNN) in this work. 

The performances of the BPNN and SVM-
based procedure are illustrated and compared by 
considering a test set made up of 96 examples 
( 1.55,1.80,2.05,2.30,2.55,2.76,3.05,3.30,3.80,r
 �
4.50,4.55,4.90 ; 8.0 2 ( )b n cm� � , 0,1,...,7n � ). The 

relative permittivity r
 and radius b are different 

from those of the training set. Figures 4 and 5
show the estimated versus the actual scatterer 
properties when the SVM-based and BPNN-based 
approaches are taken into account, respectively. 

(a) 

(b) 

Fig. 4. SVM-based approach. Estimated versus 
real scatterer properties: (a) r
 and (b) b .

(a) 

TM wave
Observation 
points
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(b) 

Fig. 5. BPNN-based approach (12-12-2). 
Estimated versus real scatterer properties: (a) r

and (b) b .

Results of the reconstruction errors are 
summarized in Table 2, where the Maximum 
Absolute Error (MAE), Average Absolute Error 
(AAE), Maximum Relative Error (MRE) and 
Average Relative Error (ARE) achieved in the 
reconstruction are listed. As can be seen, 
reconstruction results are very good, since both the 
relative permittivity and the medium covering 
thickness are reconstructed with an average 
relative error less than 2%. Comparison of the 
performance of the 12-12-2 network is carried out 
by examining the results summarized in Table 3.
As expected, SVM enhances the performances 
achieved with the BPNN approach, due to the 
solution of the CQP problems. 

Table 2: Errors in the reconstruction of r
 and b
achieved by using the SVM 

MAE AAE MRE ARE

r
 0.1518 0.0532 7.20% 1.88%

b 0.2992 0.0835 2.31% 0.57%

Table 3: Errors in the reconstruction of r
 and b
achieved by using the BPNN (12-12-2) 

MAE AAE MRE ARE

r
 0.3494 0.0900 12.87% 3.27%

b 0.2601 0.0972 2.74% 0.83%

2) The reconstitution of the relative permittivity 

r
 , the medium covering thickness b and the 
conductivity � .
In this example, the installation of incident 

wave, objects and observation points shares the 
same as the last example. The total number of 
training samples is 800 and the training set’s 

variation rules are: 1.5 0.4 , 0,1,...,9,r n n
 � � �

8.0 2.0 ( ),b n cm� � 0,1,...,7n � and 
3 0.110 , 0,1,...,9,n S m n� � �� � respectively. After 

training phase, the values of the hyperparameters 
are given in Table 4. 

Table 4: The values of the SVM hyperparameters 

 C 2&

r
 0.001 1001.8193 0.1665

b 0.01 1000.1480 0.1667

� 0.00001 10000 0.2512

Results refer to the processing of a test set 
made up of 216 examples that do not belong to the 
training set: 9.0 2 ( ), 0,1,...,5;b n cm n� � �

1.65,2.05,2.5,3.3,4.0,4.9 ;r
 � 10 ,t S m� ��

2.95,2.81,2.75,2.55,2.35,2.15.t � The sample 
information is the amplitude of scattering field of 
observation points, we can get it with BCG-FFT 
method. Figure 6 shows the estimated versus the 
actual scatterer properties. Table 5 shows the 
results of the reconstruction errors. Under the 
same conditions, similar results have been 
obtained also when the BPNN (12-12-3) approach 
is adopted for reconstruction problems and are 
given in Table 6. 

(a) 
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(b) 

(c) 

Fig. 6. SVM-based approach. Estimated versus 
real scatterer properties: (a) r
 , (b) b and (c) � .

Table 5: Errors in the reconstruction of r
 b
and � achieved by using the SVM 

MAE AAE MRE ARE

r
 0.2032 0.0533 12.32% 1.92%

b 0.2004 0.0727 1.82% 0.56%

� 0.0020 5.3987e-4 181.48% 25.81%

Table 6: Errors in the reconstruction of r
 b
and � achieved by using the BPNN (12-12-3) 

MAE AAE MRE ARE

r
 0.2550 0.0531 15.45% 2.15%

b 0.2900 0.1001 2.23% 0.74%

� 0.0023 7.8362e-4 99.61% 34.46%

Figure 6 shows the estimated versus the actual 
scatterer properties when the SVM-based 
approach is taken into account. As for the 
reconstruction of relative permittivity r
 and the 
medium covering thickness b , from Tables 5 and 
6, both of those two methods result sound; what’s 

more, SVM method has an advantage over BPNN 
method. However, both of those methods also 
result in big relative errors during the 
reconstruction of the conductivity � . It is possible 
that the big error just corresponds to the small 
actual value according to theoretical analysis. 

V. CONCLUSION 
In this letter, an innovative inverse scattering 

methodology, based on the implementation of a 
support vector machine has been presented and 
applied to the reconstruction of composite 
conducting-dielectric objects. The samples data 
fed to the SVM are the amplitude of scattered 
fields from composite conducting-dielectric 
objects collected at some receiving points and 
obtained by using the BCG-FFT method. The 
training of SVM requires the solution of a 
constrained quadratic optimization problem. This 
is a key point of the proposed approach, which can 
overcome the typical drawbacks as over-fitting or 
local minima occurrence (with respect to NN). The 
efficiency of the proposed technique was 
illustrated in the case of the reconstruction of 
geometric and dielectric properties of composite 
conducting-dielectric objects. Some numerical 
results validate the accuracy and efficiency of the 
method by comparing with the BPNN method. 
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