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Abstract ─ In this paper, a multilevel Green’s 
function interpolation method (MLGFIM) 
combined with multilevel fast multipole method 
(MLFMM) is presented for solving the 
electromagnetic scattering from the objects with 
fine structures. In the conventional MLFMM, the 
size of the finest cube must be larger than a 
definite value, which is typically 0.2 λ; it often 
generates a large number of unknowns in each 
finest cube especially for objects with fine 
structures. Accordingly, it requires a lot of 
memory to store the near-field impedance matrix 
in MLFMM. In order to decrease the memory 
requirement of the near-field matrix in the 
MLFMM, the MLGFIM is introduced to calculate 
the near-field interactions. The number of 
unknowns in each cube can be less than a required 
number regardless of the size of the cube in the 
MLGFIM. To further reduce the computational 
complexity, many recompressed techniques, such 
as the adaptive cross approximation (ACA), QR 
factorization, and singular value decomposition 
(SVD), are applied to compress the low rank 
Green’s function matrix for speeding up the 
matrix-vector multiplication. Numerical results are 
given to demonstrate the accuracy and efficiency 
of the proposed method. 
  
Index Terms - Multilevel fast multipole method 
(MLFMM), multilevel Green’s function 
interpolation method(MLGFIM), QR 
factorization. 
 

I. INTRODUCTION 
The method of moment (MoM) [1-2] has 

found wide-spread application in a variety of 
electromagnetic radiation and scattering problems, 
When the number of unknowns is small, the 
resultant matrix equations in MoM can be solved 
directly with computational complexity of O(N3), 
where N is the number of unknowns. For moderate 
scale problems, the matrix equations are often 
solved by iterative solvers, such as the conjugate 
gradient method (CG), and the biconjugate 
gradient method (BiCG), with O(N2) operation for 
each matrix-vector product (MVP). The memory 
requirement is O(N2) for both the direct and the 
iterative solvers. The complexity of the direct or 
iterative solvers mentioned above blocks their 
application to the analysis of scattering from 
electrically large objects, the MoM can only be 
used for small scale problems. In recent years, the 
fast multipole method (FMM) [3-5] has been 
developed to accelerate the MVP with complexity 
of O(N1.5). With the multilevel fast multipole 
algorithm (MLFMM) [6-10], the complexity is 
further reduced to O(NlogN); this represents an 
impressive improvement as compared with 
conventional O(N3) or O(N2) techniques. By using 
the MLFMM, a common PC can solve problems 
which only can be solved by supercomputer in the 
past. 

The MLFMM can be applied to almost all 
electromagnetic problems, such as microwave 
circuits, antennas, scattering targets, etc. However, 
it is still very challenging to apply the method to 
objects with fine structures. Accurate 
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discretization produces a large number of 
unknowns in each of the finest cubes. 
Accordingly, the near-field interaction matrices 
grow rapidly with the surface discretization 
density. The time used to calculate the near-field 
impedance matrix is also very long. Therefore, for 
the objects with fine structures, the MLFMM still 
challenged by the CPU time and memory 
requirement. It is necessary to further improve the 
efficiency of the MLFMM. 

In order to overcome the bottleneck of 
conventional MLFMM in the near-field for the 
objects with fine structure, a multilevel Green’s 
function interpolation method (MLGFIM) [11-16] 
combined with the MLFMM (MLGFIM-
MLFMM) is proposed in this paper. The 
MLGFIM enables a highly compact representation 
and efficient numerical computation of the dense 
matrices when the source and observation cubes 
are well separated. The complexity of storage 
requirements and the MVP of the MLGFIM is 
approximately 1( )O C N  as shown in [16] while the 
complexity is 2( log( ))O C N N  for the MLFMM as 
shown in [6]. By comparing the numerical results 
of [6] and [16], the coefficient of 1C  is much 
larger than 2C . This is because when applying the 
MLGFIM into a full wave electromagnetic 
problem, the number of interpolation points must 
be enlarged to keep the accuracy of the Green’s 
function when the cube size increases. A large 
number of interpolation points drastically reduce 
the efficiency of the MLGFIM. However, the 
MLGFIM has its own merit. Compared with 
MLFMM, the octree in MLGFIM can be split until 
the number of unknowns in each cube is less than 
a required number regardless of the cube size. The 
octree structure is the same as in the low-
frequency fast multipole method (LF-FMM) [17]. 
In this paper, the MLGFIM is used to calculate 
part of the near-field interaction for reducing the 
memory requirement of the near-field while the 
MLFMM is used to calculate the far-field 
interaction. In contrast to the conventional 
MLFMM, the augmented MLFMM make the 
near-field memory requirement reduce greatly, this 
idea makes the objects with fine structure 
problems solvable by MLGFIM-MLFMM. 

The remainder of this paper is organized as 
follows. Section II gives a brief introduction to the 
electric field integral equation (EFIE) and the 

Lagrange interpolation in MLGFIM. The ACA 
technique, QR factorization, and SVD 
factorization is employed to compress the low 
rank Green’s function matrix to accelerate the 
MVP. Section III presents the numerical results 
that demonstrate the accuracy and efficiency of the 
proposed method. Finally, some conclusions are 
given in section IV. 

 
II. THEORY 

Consider a three-dimensional electromagnetic 
problem; the object is illuminated by an incident 
wave 


iE  that induces current 


sJ  on the 

conducting surface. The current satisfies the 
following electric-field integral equation: 

tan| [ ( ') ( , ')i ss
E j J r g r r 
          

tan( ' ( ')) ' ( , ')] 's
j J r g r r ds


  

   
               (1) 

In which Green’s function
'

( , ')
4 '

jk r reg r r
r r

 




 
 

  , ω is 

the angular frequency, and k is the wave number 
which is   .   ,   are the free space 
permeability and permittivity, respectively. The 
second “tan” denotes the component that is 
tangential to the conducting surface S . By 
expanding the unknown surface current density 


sJ  

using Rao-Wilton-Glisson (RWG) basis functions 
and applying Galerkin’s method on (1) gives a 
MoM equation: 

Zx V                                  (2) 
where 

'[ ( ) ( ')mn m ns sm n
Z ds ds j J r J r  

   

 
( ( ))( ' ( '))] ( , ')m m

j J r J r g r r


   
     

 (3)  

and 
( ) ( )

m
m m is

V J r E r ds 
   

                      (4) 

Here, Z  is the impedance matrix, x are the 
coefficients of the induced current expanded in 
RWG basis functions, and V  is the vector of 
incident field. The dimension of Z  is often as high 
as millions for electrically large EM scattering 
problems. This blocks the MoM application to the 
analysis of scattering from electrically large 
objects. The FMM and its multilevel version, 
MLFMM has been developed to accelerate the 
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MVP, lower the memory requirement to O(N1.5) 
and O(NlogN). The process of the MVP in 
MLFMM is splitted in two parts as  

.NF FFZ x Z x Z x                                  (5) 
Here, the first term NFZ  is the interactions from 
the nearby cubes, and is calculated directly by 
MoM. While the second term FFZ  is the 
interactions from the well-separated cubes which 
are computed in a group-by-group manner by 
MLFMM. The computation of NFZ x  is done 
directly, while the computation of FFZ x  is done in 
three stages called the aggregation phase, the 
translation phase, and the disaggregation phase 
which are contributions from far-field interaction 
computation. These steps are now well 
documented and we refer the reader to consult the 
literature [6-8] for more details. 

For the objects with fine structures, a 
straightforward MoM for computing the near-field 

NFZ  is very expensive. Our approach is to 
approximate part of NFZ  by a matrix which can be 
stored in a data-sparse format; The MLGFIM is 
introduced in MLFMM to descript part of the 
near-field matrix by a sparse matrix format leading 
to a significant reduction in the near-field memory 
requirement.  
 

A. Data-sparse representation of the low-rank 
matrix 

Here, the free space Green function 
'( , ') / 4 'jk r rg r r e r r 

 
    

 is considered. 

r means 

the field point located in cube m  and 'r


means the 
source point located in cube n . If cube m and cube 
n are two well-separated cubes, the Green function 

'( , ') / 'jk r rG r r e r r 
 

    
can be interpolated using 

Lagrange interpolation technique, it can be written 
as 

, , , ,
1 1

( , ') ( ) ( ') ( , ' )
m n

K K

m p n q G p G q
p q

G r r r r G r r 
 

 
   

     (6)       

where , ( )


m p r and , ( ')


n q r are the pth  Lagrange 
interpolation points in cube m and qth  Lagrange 
interpolation points in cube n , , pmr denotes the  
Lagrange interpolation in cube m . K  is the 
number of interpolation points in cube m or n , 

, ,( , ' )p qm nG r r is the Green’s function matrix 

generated from interpolation point ,'
n qr in cube n  

to interpolation point , pm
r  in cube m ,substituting 

(6) into (3) gives : 
, , , ,

1 1
( , ' ) ( ) ( ) ( ') ( ') '

4

k k

mn p q m m p n n qm n s sm np q

jZ G r r J r r ds J r r ds  
  

    
     

, , , ,
1 1

( , ' ) ( ) ( ) ' ( ') ( ') '
4

k k

p q m m p n n qm n s sm np q

j G r r J r r ds J r r ds 
  

    
     
   (7) 

The submatrix mnZ can be represented in a 
factorized form 

,
, Tt s

t t s sZ W G W                         (8) 
where   1 2   

t t tW W W ， 1 2
s s sW W W     

,

1,
,

2

0

0

t s

t s
t s

G
G

G

 
   

 

                              (9) 

1 2,  mM Kt tW W    1 2
 nM Ks sW W   

, ,

1 2, 
t s t s

K KG G  
And 

1 ,( ) ( )
t

mp m m psm
W J r r ds 

  
   

2 ,( ) ( )
t

mp m m psm
W J r r ds 

  
  

1 ,( ') ( ') '
s

nq n n qsn
W J r r ds 

  
  

2 ,' ( ') ( ') '
s

nq n n qsn
W J r r ds 

  
 

,
1 , ,( , ' )

4

t s
pq p qm n

jG G r r



    

,
2 , ,( , ' )

4

t s
pq p qm n

jG G r r



                                  (10)
 

where mM and nM  denote the number of 
unknowns in cube m and n . p  is the number of 
interpolation points along each direction, in 
which 1, 2,3d , for 1-, 2-, and 3-D problems, 

respectively. Clearly, the rank of matrix 
,t s

Z  is at 
most 2×K regardless of the cardinality of t  and s , 
it is obvious that if min( , ) m nK M M , the 

computing of mW , nW  and mnG will be significantly 
faster than that of mnZ . Both the memory 
requirement and the matrix filling time are greatly 
reduced. 

From above, we know that the MLGFIM is a 
rank-based method; it is realized by using the 
Lagrange interpolation technique in Green’s 
function when the source and observation cubes 
are well separated. Applying the MLGFIM to the 
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low-ranked impedance matrix will result in 
significant memory reduction and computational 
time savings. For this, a cube tree is first needed to 
construct. We first enclose the entire object in a 
large cube, and then the cube is partitioned into 
eight smaller cubes. Each subcube is recursively 
subdivided into eight smaller cubes until the finest 
cubes satisfy the termination criterion. For 
MLFMM, the finest cube size is about half a 
wavelength. After constructing a tree, numerical 
operations can be performed on it. Two cubes are 
well separated if the ratio of the cube-center-
distance to the cube size is greater than or equal 2. 
The impedance matrix between them is low-
ranked. Otherwise, they are near each other, share 
at least one edge point, and the impedance matrix 
is full-ranked. This will cost a lot of CPU time and 
memory for the near-field computation if the 
number of unknowns contained in every cube is 
large. By the MLGFIM technique in the near-field 
computation, we can continue to subdivide the 
cube tree until the number of unknowns in each 
cube is less than or equal to a given number which 
is a parameter to control the tree depth. Therefore, 
the number of basis functions contained in every 
cube is reduced a lot, the MoM for the near-field 
computation is reduced; part of the near-field in 
MLFMM now can be computed by MLGFIM. In 
order to explain the implementation of the 
MLGFIM in the near-field computation in the 
MLFMM clearly, a brief description of its 
workflow is presented in the following. 

As a simple example, a PEC plate is considered 
as shown in Fig. 1; it is a 1 λ wide square plate. 
With MLFMM, a 2-level division is used. The 
finest cube size is 0.25 λ, the line-filled cubes are 
the neighbors of cube 5, and the interaction 
between them is computed by MoM and stored in 
memory. The other cubes are the far-field of cube 
5, the interaction between them is computed by the 
MLFMM. With the MLGFIM in the near-field 
computation, the cubes at level-2 are subdivided 
into cubes at level-3. Therefore the number of 
basis functions contained in every cube at level-3 
reduced to about one-fourth of the original 
compared with the cube at level-2. Cube 5 at level-
2 is the parent of cube 6 at level-3, with the 
MLFMM all the line-filled and the darkened cubes 
at level-3 are the near-field of cube 5 at level-2. 
While with MLGFIM at level-3, the interaction 
between the Cube 6, and the darkened cubes are 
computed by MoM; the interaction between the 

Cube 6 and the line-filled cubes are computed by 
MLGFIM. Therefore, the total near-field 
computation in the MLFMM is decomposed into 
two parts by using MLGFIM. One part of the near-
field is computed directly by the MoM, the other is 
computed by MLGFIM. From above, we know 
that the MLGFIM is a rank-based method; 
applying the MLGFIM to the low-ranked 
impedance matrix will result in significant 
memory reduction and saves computing time. 
Therefore, the total near-field memory 
requirement is reduced in MLFMM. 

 
B. Lagrange interpolation technique in the 
Green’s function 

The rank-deficiency of the proposed method is 
realized by the interpolation of the Green’s 
function technique. Therefore, the accuracy 
analysis of the Green function interpolation 
technique is very important. From [11], it can be 
seen that for static problems or problems having 
small electric sizes, the number of interpolation 
points K in every cube keeping constant at all 
levels can keep the accuracy across all levels of a 
cluster tree. However, for full-wave problems, the 
use of constant rank cannot keep the accuracy to 
the same order when the size of the cube increases. 
This can be analyzed as below. 

 In MLFMM, we known that the lower the tree 
is, the larger the cube size is. The phase of the 
Green’s function oscillates rapidly when the 
separation between the cubes increases. Obviously 
to accurately compute the Green’s function 
between two points in two well separated cubes, 
the number of interpolation points should be 
increased when the frequency increases or when 
the sizes of the cubes increase. Consequently, to 
employ the MLGFIM to the full-wave problem, 
K should be replaced by lK , in which subscript l  
denotes the level index. lK  means the number of 
interpolation points in every cube at level l . Since 
increasing frequency is equivalent to increasing 
the tree depth, in order to keep the same order of 
the accuracy across all tree levels, the interpolation 
points lK  should be increased when the size of the 
cubes increase. From paper [12], we observe that 
when the electric sizes of the cubes are smaller 
than 0.2λ, for each variable, only 3 points are used 
as the interpolation points, a total of 27 
interpolation points in a cube are sufficient to get a 
higher accuracy. While the size of the cube 
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increases to 2 λ, to constrain the error to 0.0135, 
1000 interpolation points should be used, a large 
number that will drastically reduce the efficiency 
of the MLGFIM. Hence in this paper, the Green’s 
function interpolation technique is just used in the 
near-field computation where the electric size of 
the cube is small. Few interpolation points can get 
a higher accuracy and efficiency. The accuracy 
and efficiency retains the same in a wide range 
when the electric size of the cube is smaller than 
0.2 λ;  

 

 
Fig. 1. A three level octree structure. 

 

C. Lower-to-upper level interpolation 
The MLGFIM is used in this paper to calculate 

part of the near-field defined in equation (5). 
Therefore, the near-field part in (5) can be written 
as the following form: 

                  

1

LNF NFl
l L

Z x Z x


                          (11) 

In (11), the term NFZ  denotes the total near-field 
in the MLFMM which are calculated by MoM. 
The first term LNFZ denotes part of the near-field in 
MLFMM which is calculated by MoM at the finest 
level of the MLFMM-MLGFIM, the second term 

1



 l
l L

is part of the near-field which is calculated 

by the MLGFIM. These two terms combined 
together form the total near-field in MLFMM. L is 
the number of levels which the MLGFIM 
technique is used for computing the near-field , 
The core in MLGFIM is to calculate the second 
term defined in equation (11). According to the 
tree structure used in MLFMM-MLGFIM, the 
near-field NF LZ  in (11) can be expressed as 

, ; , ,
,

 of ,

( )NF m L n LL L L n LL
Gn LL

Neighbors
Gm LL

Z Z x


                (12-a) 

, ; , ,

Interaction List
of 

, 1, 1 ,

, , 1, 1

l m L n L n L
G G G

G G G

L L L
n n nl l l l L L

m n l n Ll l l L

A x


 
 



         (12-b) 

The term , ; ,m L n LL L
A  in (12-b) can be written as 

the following for 

, ; , , , ; , ,L L L L L L

T
m L n L m L m L n L n LA W G W             (13) 

For two well-separated cubes , 11 m LL
G and 

, 11 n LL
G  at level 1L , cube ,m LL

G  is the child of 
cube , 11 m LL

G and cube ,n LL
G  is the child of 

cube , 11 n LL
G , the Green’s function matrix 

, ; ,m L n LL L
G  can be interpolated using the 

interpolation matrix , 1; , 11 1  m L n LL L
G . 

, ; , , 1; , 1, 1; , 1 11

T
m L n L m L n LL L m L m L L LL L

G C G    
              

, 1; ,1n L n LL L
C


          (14) 

, 1; ,1n L n LL L
C


 is the lower-to-upper interpolation 

matrix defined in  [11], performing the Green’s 
function interpolation recursively, (14) becomes 

, ; , , ; ,, 1; , , ; , 11 1
T T

m L n L m l n lL L m L m L m l m l l lL L l l
G C C G

  
          

, ; , , 1; ,1 1n l n l n L n Ll l L L
C C

 
             (15) 

Substituting (15) and (13) into (12-b) gives (16) 
Let 

, , , T
n L n L n LL L L

S W x    and 

, , 1, ; , 11
,1, 1


 

 n l n ll n l n l ll lG Gn n ll l l

S C S           (17) 

,n ll
S  here is just a symbol for recurrence without 
any means, Hence (16) can be rewritten as 

, , 1; , , ; , 11 1
T T

l m LL m L m L m l m lL L l l
W C C

  
    

, ; , ,
Interaction,

 List of ,

m l n l n ll l l
Gnl l

Gml l

G S


      (18) 

Let 
        

, , ; , ,
Interaction,

 List of ,

m l m l n l n ll l l l
Gnl l

Gml l

G S


           (19)                     

Hence 

, ,, 1; , , ; , 11 1
T T

l m L m lL m L m L m l m l lL L l l
W C C 

  
  

 
(20) 

 
 

Level-3 Level-1 Level-2 

    

    

 5   

    

1 2 

3 4 
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Substituting (20) into (11) and let 

, , , 1, 1; , 11
T

m l m l m ll l m l m l ll l
B C B  

    , 1 1,1 ,1m mB  (21) 
Substituting (21) into (20) recursively gives (22). 
Hence the formula for MLGFIM algorithm is 

derived, what we want is to compute ,m LLB , which 
can be obtained using recurrence (22) from the top 
level to the finest level of the cluster tree. At the 
top level of the MLGFIM 

1 1,1 ,1m mB  is obtained 
using (22) from the finest level to the top level of 
the tree. Thus the procedure of the MVP of 
MLGFIM is similar to the MVP of MLFMM. (17) 
Is similar to the procedure in upward pass of 
MLFMM, (19) is similar to the procedure of 
shifting phase of MLFMM and (22) is similar to 
the procedure in downward pass of MLFMM. The 
difference is that our method uses Green’s 
function interpolation instead of multipole 
expansion in each step. Equation (15) indicates 
that the Lagrange interpolation matrix of a cube 
can be interpolated using the Lagrange 
interpolation matrix of its child. For any other 
non-leaf cluster, we can directly use the 
contribution from its eight sons to obtain the result 
of MVP without any additional operations. This 
property is an important factor that enables us to 
reduce the complexity of MLGFIM. 

 
, , , 1, 1; , 1 , ; , 11 1

, 1 , ,2 ,11 , ; 1, 1 ,2; ,3 2 1,1; 2,2 12 3

, , , 1, 1; , 1 , ; , 11 1

( (

( ( ( )))))

( (

(

T T
m L m L m LL L m L m L L m l m lL L l l

T T T
m l m l m ml m l m l l m m m ml l

T T
m L m L m LL L m L m L L m l m lL L l l

ml

W C C

C C C

W C C

 

   

 



   

  

   



       

     

      







, 1 , ,2 ,11 , ; 1, 1 ,2; ,3 2 1,1; 2,2 12 3

, , , 1, 1; , 1 , ; , 11 1
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D. Compression of the Green’s function 
matrices using ACA, QR factorization, SVD 

For any two well-separated cubes m  and n  at 
the same level, the Green’s function matrix 

( , )m nG r r is a K K  full matrix. Since, the Green’s 
function matrix represents interactions between 
the interpolation points of two well-separated 
cubes, it is low rank. In order to reduce the 
computational complexity of MLGFIM, the ACA 
[13-14], QR factorization [15-16], and SVD, are 

used to compress the Green’s function matrix as 
data sparse representation, which brings a great 
advantage in the MVP operation , ; , ,m l n l n ll l lG S .  

Let the K K  rectangular matrix ( , )m nG r r  
represent the interactions between the 
interpolation points of two well-separated cubes 
m and n , the ACA allows the low rank Green’s 
function matrix ( , )m nG r r to be represented by only 
a few rows and columns of ( , )m nG r r  to obtain the 
numerical representation from namely, 

 ( )
K K K r K r HG A B
                (23) 

where the number of terms r is much less than K , 
K rA and K rB  are two dense rectangular matrices. 

The goal of the ACA is to achieve 
 

    
K KK K K K K KR G G G for a given 

tolerance  , where R  is termed as the error 
matrix. . refer to the matrix Frobenus norm.  If 

min( , )r m n , then a significant reduction in MVP 
can be accomplished. For the matrix U andV , we 
can continue to use QR decomposition technique 
to compress it 

1 1
K r K r r rA Q R                          (24-1) 

2 2
K r K r r rB Q R                      (24-2) 

Then, the matrix  K K
G can be expressed as the 

following form 


1 1 2 2

1 1 2 2

( ) ( )

( ) ( )

K K K r r r H K r r r K r r r H

K r r r r r H K r H

G A B Q R Q R
Q R R Q

      

   

 


         (25) 

Here, we let 1 2( )  r r r r r r HW R R , using singular 
value decomposition (SVD), 

r r r r r r r rW U S V                           (26)  
where U and V are orthonormal matrices, and S  
is the diagonal matrix whose elements are the 
nonnegligible singular values of r rW  , it can be 
written as 1 2 3( , , , )rS diag      . We discard 
those normalized values which fall below the 
threshold; typically chosen threshold to be 310 , 
the columns of U and V corresponding to 
negligible singular values of S  are discarded. 
Then, the matrix  K K

G can be written as the 
following 
 


1 1 2 2( ) ( )

K K K r r r r r H K r HG Q R R Q
      

1 1 1 1
1 2( )K r r r r r r r K r HQ U S V Q      (27)  
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Let 
1 1 1 1

1 1
   K r K r r r r rA Q R S  and  

1 1
2( )r K r r K r HB V Q    

then 
 1 1K K K r r KG A B

                              (28) 
Usually the compressed matrices rank 1r  is much 
smaller than the number of interpolation points K . 
This brings a great advantage in the MVP because   

1 1K KK K K r r KG S A B S                              (29) 
When 1 r K , to calculate 1 1 KK r r KA B S     is 

much faster than to calculate  K K KG S . Table 1 
lists the corresponding average numerical ranks of 
Green’s function matrices with different sizes of 
the cube. We can see that the corresponding 
numerical ranks are very small. Thus, a high 
compression of the Green’s function matrices is 
obtained. 

 
III. NUMERICAL RESULTS  

In this section, three examples are presented to 
demonstrate the benefits of the proposed method. 
All the simulations are performed on a computer 
with 2.8GHz CPU and 2 GB RAM. The 
terminating tolerances of the ACA and SVD are 
set as 0.001   and 0.001  , respectively. The 
resulting linear systems are solved iteratively by 
the GMRES (30) solver with a relative residual 
of 310 . 

First, the proposed method is used to analyse 
scattering from a PEC sphere of radius 0.5 λ, its 
surface is discretized with 6312, 11649, and 25944 
unknowns, respectively. The finest cube size is 
0.25 λ in MLFMM, two-level MLGFIM are added 
to calculate part of the near-field of the MLFMM. 
The finest cube size is 0.0625 λ in MLFMM-
MLGFIM. Figure 2 shows the bistatic radar cross-
section (RCS) results obtained from the MIE 
series and the MLFMM-MLGFIM. It can be seen 
from Fig. 2, that the result from the MLFMM-
MLGFIM has good agreement with the MIE 
series. Table II lists the near-field memory 
requirement, the matrix filling time and MVP time 
of MLFMM and MLFMM-MLGFIM for different 
discretizations. The time and memory requirement 
in computing the near-field impedance matrix in 
MLFMM-MLGFIM includes two parts. The first 
part denotes the time and memory requirement in 
computing the part of the near-field matrix by 
MoM, while the second part denotes the time and 

memory requirement in computing part of the 
near-field matrix by MLGFIM.  It can be seen 
from Table 2 that the memory requirement and 
filling time of the near-field matrix in MLFMM-
MLGFIM is significantly reduced as the number 
of unknowns increases compared with MLFMM.  

The second example is a PEC ogive, whose 
length and maximum radius is 2λ and 0.5 λ. The 
ogive is discretized with 11874 and 18876 
unknowns, respectively. 1-level MLGFIM is 
added to calculate part of the near-field interaction 
when the number of unknowns is 11874, the finest 
cube size is 0.125 λ. 2-level MLGFIM is added to 
calculate part of the near-field interaction when 
the number of unknowns is 18876, the finest cube 
size is 0.0625 λ. Figure 3 is the bistatic RCS of the 
ogive computed by MLFMM and MLFMM-
MLGFIM. It can be seen from Fig. 3 that the 
proposed method agrees well with the MLFMM 
results. Table 3 lists the near-field memory 
requirement, the near-filed impedance matrix 
filling time, and the MVP time needed by 
MLFMM-MLGFIM and MLFMM for different 
discretizations. It can be seen from Table 3 that the 
memory requirement by the MLFMM-MLGFIM 
can be saved by a factor of 4.1 with one-level 
MLGFIM when the number of unknowns is 
11874. The flaw for the MLFMM-MLGFIM is 
that the MVP time is 1.9 while the MLFMM is 
1.07s. The near-filed matrix filling time and 
memory requirement can be saved by a factor of 
16.8 and 14.2 with two-level MLGFIM when the 
number of unknowns is 18876. Again, it can be 
seen that the MLFMM-MLGFIM can greatly 
reduce the near-filed memory requirement and the 
matrix filling time compared with MLFMM. 

The last example is a VIAS structure as shown 
in Fig.4, the electric size of the VIAS structure 
is 1.2 1 1    , it is discretized with 10609 and 
15305 unknowns, respectively. For MLFMM, a 2-
level division is used since the finest cube size is 
0.30 λ. For MLFMM-MLGFIM, a 4-level division 
is used. The finest cube size is 0.075 λ. A 2-level 
MLGFIM is added to calculate part of the near-
field interaction. Good agreement is achieved as 
shown in Fig. 4. Table 4 lists the comparison of 
the near-field memory requirement, the near-filed 
matrix filling time, and the MVP time between the 
MLFMM-MLGFIM and MLFMM for the two 
above discretizations. It can be found that the 
MLGFIM can extremely decrease the near-filed 
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matrix filling time when compared with MLFMM, 
MLFMM-MLGFIM can save much of the memory 
requirement by a factor of 9.9 with 10609 
unknowns and 10.3 with 15305 unknowns for the 
near-field. When the number of unknowns is 
15305, the MVP time in each iteration step in the 
MLFMM-MLGFIM is less than that in MLFMM. 
This is because the number of elements in the 
near-field impendence matrix is greatly reduced by 
the MLGFIM. The result of Table 4 indicates 
again that the matrix filing time and memory 
requirement can be greatly reduced with the 
MLGFIM in MLFMM in the near-field 
computation. 
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Fig. 2. RCS of a PEC sphere obtained from the 
MIE series and the MLFMM-MLGFIM. 
 

IV.    CONCLUSIONS 
In this paper, the MLGFIM is introduced in 

MLFMM to solve electromagnetic scattering 
problems of the objects with fine structures. It is 
found that with MLGFIM we can continue to 
subdivide the cube until the number of unknowns 
in each cube is less or equal to a required number 
regardless of the cube size. Several examples have 
demonstrated that with MLGFIM the near-field 
memory requirement is greatly reduced in 
MLFMM-MLGFIM compared with MLFMM 
without compromising the accuracy. Moreover, 
the ACA, QR factorization, SVD are applied to 
compress the low rank Green’s function matrix for 
speeding up the MVP in MLFMM-MLGFIM. 
Therefore, the MLGFIM is an efficient augment 
for MLFMM. 
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Table 1: Corresponding rank of the Green’s function with different size of the cube 
Cube size d=1.0 d=0.5 d=0.25 d=0.125 

Interpolation points 8×8×8 6×6×6 4×4×4 3×3×3 

﹟of entries in G 262144 47524 4096 729 

Threshold 
0.01   
0.01   

Numerical rank 11 6 5 4 

﹟of entries in Q and R 11264 2616 640 216 

Threshold 
0.01   
0.001   

Numerical rank 17 11 9 8 

﹟of entries in Q and R 17408 4752 1152 432 

Threshold 
0.001   
0.01   

Numerical rank 11 8 5 4 

﹟of entries in Q and R 11264 3456 640 216 

Threshold 
0.001   
0.001   

Numerical rank 17 12 9 8 

﹟of entries in Q and R 17408 5184 1152 432 

 
Table 2: The near-field memory, the matrix filling time and one MVP time of MLFMM、MLFMM-
MLGFIM for different numbers of unknowns 

Unknowns Methods CPU time for 
Matrix filling 

CPU time for each 
MVP Memory 

6312 
MLFMM 35.2 s 0.22 s 70 Mb 

MLFMM-MLGFIM 2.1 s+0.57 s 3.65 s 4.1 Mb+ 2.5 Mb 

11649 
MLFMM 124.3 s 0.81 s 240 Mb 

MLFMM-MLGFIM 6.9 s+0.96 s 3.9 s 14 Mb+ 4.7 Mb 

25944 
MLFMM 641.1 s 3.1 s 1191 Mb 

MLFMM-MLGFIM 32.5s+2.0 s 4.4 s 69 Mb+ 10 Mb 

 
Table 3: The near-field memory, the matrix filling time and one MVP time of MLFMA、MLFMM-
MLGFIM for different numbers of unknowns 

Unknowns level Methods CPU time for 
Matrix filling CPU time for each MVP Memory 

11874 
3 MLFMM 206.9s 1.07s 404Mb 

4 MLFMM-MLGFIM 46.5s+0.32s 1.9s 89Mb + 9Mb 

18876 
3 MLFMM 533.5s 2.5s 1019 Mb 

5 MLFMM-MLGFIM 31.2s+0.56s 2.9s 56 Mb + 15.5 
Mb 

 
Table 4: The near-field memory, the matrix filling time and one MVP time of MLFMA, MLFMM-
MLGFIM for different numbers of unknowns 

Unknowns level Methods CPU time for 
Matrix filling 

CPU time for each 
MVP Memory 

10609 
2 MLFMM 214.2s 1s 388Mb 

4 MLFMM-MLGFIM 20.9s+0.33s 1.48s 35Mb + 4 Mb 

15305 
2 MLFMM 451.4s 2.04s 805Mb 

4 MLFMM-MLGFIM 42s+0.43s 1.59s 72Mb+6Mb 
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